

Database Administration
The Complete Guide to DBA Practices and Procedures

Second Edition

Craig S. Mullins

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales, which may include electronic
versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Database administration : the complete guide to DBA practices and
procedures /
Craig S. Mullins.—2 [edition].
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-321-82294-9 (alk. paper)—ISBN 0-321-82294-3 (alk. paper)
1. Database management. I. Title.
 QA76.9.D3M838 2013
 005.74—dc23
 2012029466

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw

Copyright © 2013 Craig S. Mullins

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material
from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey
07675, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-82294-9
ISBN-10: 0-321-82294-3

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
Second printing, November 2015

Editor-in-Chief
Mark Taub

Acquisitions Editor
Greg Doench

Development Editor
Susan Brown Zahn

Managing Editor
John Fuller

Production Editor
Caroline Senay

Copy Editor
Barbara Wood

Indexer
Richard Evans

Proofreader
Diane Freed

Technical Reviewers
William Arledge

Kevin Kline

Editorial Assistant
Michelle Housley

Cover Designer
Chuti Prasertsith

Compositor
Rob Mauhar
The CIP Group

Accolades for Database Administration

“I’ve forgotten how many times I’ve recommended this book to people.
It’s well written, to the point, and covers the topics that you need to know
to become an effective DBA.”

—Scott Ambler, Thought Leader, Agile Data Method

“This is a well-written, well-organized guide to the practice of database
administration. Unlike other books on general database theory or
relational database theory, this book focuses more directly on the theory
and reality of database administration as practiced by database
professionals today, and does so without catering too much to any specific
product implementation. As such, Database Administration is very well
suited to anyone interested in surveying the job of a DBA or those in
similar but more specific roles such as data modeler or database
performance analyst.”

—Sal Ricciardi, Program Manager, Microsoft

“One of Craig’s hallmarks is his ability to write in a clear, easy-to-read
fashion. The main purpose of any technical book is to transfer information
from writer to reader, and Craig has done an excellent job. He wants the
reader to learn—and it shows.”

—Chris Foot, Manager, Remote DBA Experts and Oracle ACE

“A complete and comprehensive listing of tasks and responsibilities for
DBAs, ranging from creating the database environment to data warehouse
administration, and everything in between.”

—Mike Tarrani, Computer Consultant

“I think every business manager and every IT manager should have a
copy of this book.”

—Dan Hotka, Independent Consultant and Oracle ACE

“This book by Craig Mullins is wonderfully insightful and truly
important. Mullins describes the role and duties of data administrators and
database administrators in modern organizations with remarkable insight

and clarity.”
—Michael Tozer, Author and former U.S. Navy officer

To my wife, Beth, for her unending love, constant support, and beautiful
smile.

Contents

Preface
How to Use This Book

Acknowledgments

About the Author

Chapter 1 What Is a DBA?
Why Learn Database Administration?
A Unique Vantage Point

DBA Salaries
Database Technology

The Management Discipline of Database Administration
A Day in the Life of a DBA

Evaluating a DBA Job Offer
Database, Data, and System Administration

Data Administration
Database Administration
System Administration

DBA Tasks
Database Design
Performance Monitoring and Tuning
Ensuring Availability
Database Security and Authorization
Governance and Regulatory Compliance
Backup and Recovery
Ensuring Data Integrity

DBMS Release Migration
Jack-of-All-Trades

The Types of DBAs
System DBA
Database Architect
Database Analyst
Data Modeler
Application DBA
Task-Oriented DBA
Performance Analyst
Data Warehouse Administrator

Staffing Considerations
How Many DBAs?
DBA Reporting Structures

Multiplatform DBA Issues
Production versus Test
The Impact of Newer Technology on DBA

Procedural DBAs: Managing Database Logic
The Internet: From DBA to eDBA
The Personal DBA and the Cloud
NoSQL, Big Data, and the DBA
New Technology Impacts on DBA

DBA Certification
The Rest of the Book
Review

Bonus Question

Chapter 2 Creating the Database Environment
Defining the Organization’s DBMS Strategy

Choosing a DBMS
DBMS Architectures
DBMS Clustering
DBMS Proliferation

Hardware Issues
Cloud Database Systems

Installing the DBMS
DBMS Installation Basics
Hardware Requirements
Storage Requirements
Memory Requirements
Configuring the DBMS
Connecting the DBMS to Supporting Infrastructure Software
Installation Verification
DBMS Environments

Upgrading DBMS Versions and Releases
Features and Complexity
Complexity of the DBMS Environment
Reputation of the DBMS Vendor
Support Policies of the DBMS
Organization Style
DBA Staff Skill Set
Platform Support
Supporting Software
Fallback Planning
Migration Verification
The DBMS Upgrade Strategy

Database Standards and Procedures
Database Naming Conventions
Other Database Standards and Procedures

DBMS Education
Summary
Review

Bonus Question

Suggested Reading

Chapter 3 Data Modeling and Normalization
Data Modeling Concepts

Entity-Relationship Diagramming
The Components of a Data Model

Entities
Attributes
Keys
Relationships

Discovering Entities, Attributes, and Relationships
Conceptual, Logical, and Physical Data Models
What Is Normalization?
The Normal Forms

First Normal Form
Second Normal Form
Third Normal Form
A Normalized Data Model
Further Normal Forms

Normalization in Practice
Additional Data Modeling Issues
Summary
Review

Bonus Question
Suggested Reading

Chapter 4 Database Design
From Logical Model to Physical Database

Transform Entities to Tables
Transform Attributes to Columns
Build Referential Constraints for All Relationships
Build Physical Data Structures

Database Performance Design
Designing Indexes
Hashing
Clustering
Interleaving Data

Denormalization
When to Denormalize
Prejoined Tables
Report Tables
Mirror Tables
Split Tables
Combined Tables
Redundant Data
Repeating Groups
Derivable Data
Hierarchies
Special Physical Implementation Needs
Denormalization Summary

Views
Data Definition Language
Temporal Data Support

A Temporal Example
Business Time and System Time

Summary
Review

Bonus Question
Suggested Reading

Chapter 5 Application Design
Database Application Development and SQL

SQL

Set-at-a-Time Processing and Relational Closure
Embedding SQL in a Program
SQL Middleware and APIs
Application Infrastructure
Object Orientation and SQL
Types of SQL
SQL Coding for Performance
Querying XML Data

Defining Transactions
Transaction Guidelines
Unit of Work
Transaction Processing Systems
Application Servers

Locking
Types of Locks
Lock Time-outs
Deadlocks
Lock Duration
Lock Escalation
Programming Techniques to Minimize Locking Problems
Locking Summary

Batch Processing
Summary
Review

Bonus Question
Suggested Reading

Chapter 6 Design Reviews
What Is a Design Review?

Rules of Engagement
Design Review Participants

Knowledge and Skills Required
Types of Design Reviews

Conceptual Design Review
Logical Design Review
Physical Design Review
Organizational Design Review
SQL and Application Code Design Review
Pre-Implementation Design Review
Post-Implementation Design Review

Design Review Output
Additional Considerations

Dealing with Remote Staff
Mentorship and Knowledge Transfer

Summary
Review
Suggested Reading

Chapter 7 Database Change Management
Change Management Requirements

The Change Management Perspective of the DBA
Types of Changes

DBMS Software
Hardware Configuration
Logical and Physical Design
Applications
Physical Database Structures

Impact of Change on Database Structures
The Limitations of ALTER
Database Change Scenarios
Comparing Database Structures
Requesting Database Changes

Standardized Change Requests
Communication
Coordinating Database and Application Changes
Compliance
DBA Scripts and Change Management

Summary
Review
Suggested Reading

Chapter 8 Data Availability
Defining Availability

Increased Availability Requirements
Cost of Downtime

How Much Availability Is Enough?
Availability Problems

Loss of the Data Center
Network Problems
Loss of the Server Hardware
Disk-Related Outages
Operating System Failure
DBMS Software Failure
Application Problems
Security and Authorization Problems
Corruption of Data
Loss of Database Objects
Loss of Data
Data Replication and Propagation Failures
Severe Performance Problems
Recovery Issues
DBA Mistakes
Outages: Planned and Unplanned

Ensuring Availability
Perform Routine Maintenance While Systems Remain Operational
Automate DBA Functions
Exploit High-Availability Features
Exploit Clustering Technology
Database Architecture and NoSQL

Summary
Review
Suggested Reading

Chapter 9 Performance Management
Defining Performance

A Basic Database Performance Road Map
Monitoring versus Management

Reactive versus Proactive
Preproduction Performance Estimation
Historical Trending

Service-Level Management
Types of Performance Tuning

System Tuning
Database Tuning
Application Tuning

Performance Tuning Tools
DBMS Performance Basics
Summary
Review

Bonus Question
Suggested Reading

Chapter 10 System Performance
The Larger Environment

Interaction with the Operating System

Allied Agents
Hardware Configuration
Components of the DBMS

DBMS Installation and Configuration Issues
Types of Configuration
Memory Usage
Data Cache Details
“Open” Database Objects
Database Logs
Locking and Contention
The System Catalog
Other Configuration Options
General Advice

System Monitoring
Summary
Review

Bonus Question
Suggested Reading

Chapter 11 Database Performance
Techniques for Optimizing Databases

Partitioning
Raw Partition versus File System
Indexing
Denormalization
Clustering
Interleaving Data
Free Space
Compression
File Placement and Allocation
Page Size (Block Size)

Database Reorganization
Determining When to Reorganize
Automation

Summary
Review
Suggested Reading

Chapter 12 Application Performance
Designing Applications for Relational Access
Relational Optimization

CPU and I/O Costs
Database Statistics
Query Analysis
Joins
Access Path Choices

Additional Optimization Considerations
View Access
Query Rewrite
Rule-Based Optimization

Reviewing Access Paths
Forcing Access Paths

SQL Coding and Tuning for Efficiency
A Dozen SQL Rules of Thumb
Additional SQL Tuning Tips
Identifying Poorly Performing SQL

Summary
Review
Suggested Reading

Chapter 13 Data Integrity
Types of Integrity
Database Structure Integrity

Types of Structural Problems
Managing Structural Problems

Semantic Data Integrity
Entity Integrity
Unique Constraints
Data Types
Default Values
Check Constraints
Triggers
Referential Integrity

Temporal Database Systems
Summary
Review
Suggested Reading

Chapter 14 Database Security
Data Breaches
Database Security Basics

Database Users
Granting and Revoking Authority

Types of Privileges
Granting to PUBLIC
Revoking Privileges
Label-Based Access Control
Security Reporting

Authorization Roles and Groups
Roles
Groups

Other Database Security Mechanisms
Using Views for Security
Using Stored Procedures for Security

Encryption
Data at Rest Encryption
Data in Transit Encryption
Encryption Techniques

SQL Injection
SQL Injection Prevention

Auditing
External Security

Job Scheduling and Security
Non-DBMS DBA Security

DBMS Fixpacks and Maintenance
Summary
Review
Suggested Reading

Chapter 15 Regulatory Compliance and Database Administration
A Collaborative Approach to Compliance

Why Should DBAs Care about Compliance?
Metadata Management, Data Quality, and Data Governance

Metadata
Data Quality
Data Governance

Database Auditing and Data Access Tracking
Database Auditing Techniques
Privileged User Auditing

Data Masking and Obfuscation
Data Masking Techniques

Database Archiving for Long-Term Data Retention
The Life Cycle of Data
Database Archiving
Components of a Database Archiving Solution

The Impact of e-Discovery on DBA
Closer Tracking of Traditional DBA Tasks

Database Change Management
Database Backup and Recovery

Summary
Review
Suggested Reading

Chapter 16 Database Backup and Recovery
The Importance of Backup and Recovery
Preparing for Problems
Backup

Full versus Incremental Backups
Database Objects and Backups
DBMS Control
Concurrent Access Issues
Backup Consistency
Log Archiving and Backup
Determining Your Backup Schedule
DBMS Instance Backup
Designing the DBMS Environment for Recovery
Alternate Approaches to Database Backup
Document Your Backup Strategy
Database Object Definition Backups

Recovery
Determining Recovery Options
General Steps for Database Object Recovery
Types of Recovery
Index Recovery
Testing Your Recovery Plan
Recovering a Dropped Database Object

Recovering Broken Blocks and Pages
Populating Test Databases

Alternatives to Backup and Recovery
Standby Databases
Replication
Disk Mirroring

Summary
Review
Suggested Reading

Chapter 17 Disaster Planning
The Need for Planning

Risk and Recovery
General Disaster Recovery Guidelines

The Remote Site
The Written Plan
Personnel

Backing Up the Database for Disaster Recovery
Tape Backups
Storage Management Backups
Other Approaches
Some Guidelines

Disaster Prevention
Disaster and Contingency Planning Web Sites

Summary
Review
Suggested Reading

Chapter 18 Data and Storage Management
Storage Management Basics
Files and Data Sets

File Placement on Disk

Raw Partitions versus File Systems
Temporary Database Files

Space Management
Data Page Layouts
Index Page Layouts
Transaction Logs

Fragmentation and Storage
Storage Options

RAID
JBOD
Storage Area Networks
Network-Attached Storage
Tiered Storage

Planning for the Future
Capacity Planning

Summary
Review
Suggested Reading

Chapter 19 Data Movement and Distribution
Loading and Unloading Data

The LOAD Utility
The UNLOAD Utility
Maintaining Application Test Beds

EXPORT and IMPORT
Bulk Data Movement

ETL Software
Replication and Propagation
Messaging Software
Other Methods

Distributed Databases

Setting Up a Distributed Environment
Data Distribution Standards
Accessing Distributed Data
Two-Phase COMMIT
Distributed Performance Problems

Summary
Review

Bonus Question
Suggested Reading

Chapter 20 Data Warehouse Administration
What Is a Data Warehouse?

Analytical versus Transaction Processing
Administering the Data Warehouse

Too Much Focus on Technology?
Data Warehouse Design
Data Movement
Data Cleansing
Data Warehouse Scalability
Data Warehouse Performance
Data Freshness
Data Content
Data Usage
Financial Chargeback
Backup and Recovery
Don’t Operate in a Vacuum!

Summary
Review
Suggested Reading

Chapter 21 Database Connectivity
Multitier, Distributed Computing

A Historical Look
Business Issues
What Is Client/Server Computing?
Types of Client/Server Applications

Network Traffic
Database Gateways
Database Drivers
Connection Pooling

Databases, the Internet, and the Web
Internet-Connected Databases
Web Development and Web Services

Summary
Review
Suggested Reading

Chapter 22 Metadata Management
What Is Metadata?

From Data to Knowledge and Beyond
Metadata Strategy
Data Warehousing and Metadata

Types of Metadata
Repositories and Data Dictionaries

Repository Benefits
Repository Challenges
Data Dictionaries

Summary
Review
Suggested Reading

Chapter 23 DBA Tools
Types and Benefits of DBA Tools

Data Modeling and Design

Database Change Management
Table Editors
Performance Management
Backup and Recovery
Database Utilities
Data Protection, Governance, Risk, and Compliance Tools
Data Warehousing, Analytics, and Business Intelligence
Programming and Development Tools
Miscellaneous Tools

Examine Native DBA Tools
Evaluating DBA Tool Vendors

Homegrown DBA Tools
Summary
Review

Chapter 24 DBA Rules of Thumb
Write Down Everything
Keep Everything
Automate!
Share Your Knowledge
Analyze, Simplify, and Focus
Don’t Panic!
Measure Twice, Cut Once
Understand the Business, Not Just the Technology
Don’t Become a Hermit
Use All of the Resources at Your Disposal
Keep Up-to-Date
Invest in Yourself
Summary
Final Exam

Appendix A Database Fundamentals

What Is a Database?
Why Use a DBMS?

Advantages of Using a DBMS
Summary

Appendix B The DBMS Vendors
The Big Three
The Second Tier
Other Significant Players
Open-Source DBMS Offerings
Nonrelational DBMS Vendors
NoSQL DBMS Vendors
Object-Oriented DBMS Vendors
PC-Based DBMS Vendors

Appendix C DBA Tool Vendors
The Major Vendors
Other DBA Tool Vendors
Data Modeling Tool Vendors
Repository Vendors
Data Movement and Business Intelligence Vendors

Appendix D DBA Web Resources
Usenet Newsgroups
Mailing Lists
Web Sites, Blogs, and Portals

Vendor Web Sites
Magazine Web Sites
Consultant Web Sites
Blogs
Database Portals
Other Web Sites

Appendix E Sample DBA Job Posting
Job Posting

Database Administrator (DBA)

Bibliography
Database Management and Database Systems
Data Administration, Data Modeling, and Database Design
Database Security, Protection, and Compliance
Data Warehousing
SQL
Object Orientation and Database Management
Operating Systems
Related Topics
DB2
IMS
MySQL
Oracle
SQL Server
Sybase
Other Database Systems

Glossary

Index

Preface

The need for database administration is as strong as, or stronger than, it was
when I originally wrote the first edition of this book in 2002. Relational
database management systems are still at the core of most serious production
systems, and they still need to be managed. And this is still the job of
database administrators. Whether you use Oracle, Microsoft SQL Server,
DB2, Informix, Sybase, MySQL, Teradata, PostgreSQL, Ingres, or any
combination of these popular DBMS products, you will benefit from the
information in this book.

But a decade is forever in the world of information technology. And even
though some basic things stay the same (e.g., databases require
administration), many things change. The second edition of this book
incorporates the many changes that impact database administration that have
occurred in the industry over the past decade. What made the book unique
remains. It is still the industry’s only non-product-based description of
database administration techniques and practices. The book defines the job of
database administrator and outlines what is required of a database
administrator, or DBA, in clear, easy-to-understand language. The book can
be used

• As a text for learning the discipline of database administration
• As the basis for setting up a DBA group
• To augment a DBMS-specific manual or textbook
• To help explain to upper-level management what a DBA is, and why

the position is required
But what is new? One of the significant improvements added to this

edition is coverage of regulatory compliance. The number of governmental
and industry regulations has exploded over the course of the past decade, and
many of these regulations dictate changes in the way that data is managed,
handled, and processed. Although the most visible governmental regulation is
undoubtedly the Sarbanes-Oxley Act (aka the U.S. Public Company
Accounting Reform and Investor Protection Act of 2002), there are many
others, including HIPAA (the Health Insurance Portability and
Accountability Act) and GLB (the Gramm-Leach-Bliley Act) to name a

couple. The most visible industry regulation is PCI DSS (Payment Card
Industry Data Security Standard). All of these regulations, and many others,
impose an additional administrative burden on data. This edition of the book
provides an entire chapter devoted to this topic, including the impact of
regulatory compliance on data management tasks such as metadata
management, data quality, database auditing, data masking, database
archiving, and more traditional DBA tasks such as database change
management and database recovery.

Database security is another rapidly evolving area that required a
significant upgrade from the first edition. Fresh coverage is offered on new
security functionality and requirements, including label-based access control,
encryption, and preventing SQL injection attacks.

The book adds coverage of technology that was not widely adopted ten
years ago, such as XML, and where appropriate it discusses nascent
technology that DBAs should be aware of, including NoSQL and cloud
computing. It also covers newer DBMS functionality, such as temporal
database support and INSTEAD-OF triggers.

Finally, the entire book was reviewed and revised to ensure that each topic
addressed up-to-date technology and requirements. Care was taken to ensure
that the example DBMS features used to highlight specific technologies are
accurate and up-to-date. For example, consider the descriptions of DB2
HADR, SQL Server 2012 AlwaysOn, and Oracle Transparent Data
Encryption.

With the second edition of this book you now have a timely, accurate, and
updated guide to implementing and maintaining heterogeneous database
administration. You can use it to learn what is required to be a successful
database administrator. And you can use it on the job in conjunction with the
vendors’ manuals or product-specific books for your particular DBMS
products.

How to Use This Book
This book can be used as both a tutorial and a reference. The book is
organized to proceed chronologically through DBA tasks that are likely to be
encountered. Therefore, if you read the book sequentially from Chapter 1
through Chapter 24, you will get a comprehensive sequential overview of the
DBA job. Alternatively, you can read any chapter independently because

each chapter deals with a single topic. References to other chapters are
clearly made if other material in the book would aid the reader’s
understanding.

Acknowledgments

Writing is a rewarding task, but it also requires a lot of time—researching,
writing, reviewing, editing, and rewriting over and over again until you get it
just right. But no one can write a technical book in a vacuum. I had many
knowledgeable and helpful people to assist me along the way.

First of all, I’d like to thank the many industry experts who reviewed the
original book proposal. The following folks provided many useful
suggestions and thoughts on my original outline that helped me to create a
much better book: Michael Blaha, Keith W. Hare, Michael J. Hernandez,
Robert S. Seiner, and David L. Wells. Additionally, I’d like to thank
everyone who took the time to listen to my ideas for this book before I began
writing. This list of folks is too numerous to include, and I’m sure I’d miss
someone—but you know who you are.

I would like to thank the many folks who have reviewed and commented
on the text of this book. For the second edition of the book, Bill Arledge and
Kevin Kline provided their expertise to the review process and offered many
helpful corrections and suggestions that improved the quality of the book.
And let’s not forget the reviewers of the first edition: Dan Hotka, Chris Foot,
Chuck Kosin, David L. Wells, and Anne Marie Smith pored over each
chapter of various incarnations of the manuscript, and this book is much
better thanks to their expert contributions. Special thanks go to data modeling
and administration gurus William J. Lewis and Robert S. Seiner, who took
extra time to review and make suggestions on Chapter 3. I’d also like to
thank my brother, Scott Mullins, who offered his guidance on application
design and development by reviewing Chapter 5.

My appreciation goes to Mary Barnard, who did a wonderful job editing
the first edition of this book; and Greg Doench, who did a similarly fantastic
job with the second edition. Kudos to both Mary and Greg for making my
book much more readable.

Additionally, thanks to the many understanding and patient folks at
Addison-Wesley who worked with me to make each edition of the book
come to fruition. This list includes Michelle Housley, Patrick Peterson, Stacie
Parillo, Barbara Wood, and Mary O’Brien who were particularly helpful

throughout the process of coordinating the production of the book.
Thank you, too, to my wonderful wife, Beth, whose understanding and

support made it possible for me to write this book. Indeed, thanks go out to
all my family and friends for being supportive and helpful along the way.

And finally, a thank-you to all of the people with whom I have worked
professionally at SoftwareOnZ, NEON Enterprise Software, Embarcadero
Technologies, BMC Software, Gartner Group, PLATINUM Technology,
Inc., Duquesne Light Company, Mellon Bank, USX Corporation, and
ASSET, Inc. This book is a better one due to the many outstanding
individuals with whom I have had the honor to work.

About the Author

Craig S. Mullins is President and Principal Consultant for Mullins
Consulting, Inc., a consulting practice specializing in data management and
database management systems. Craig has extensive experience in the field of
database management, having worked as an application developer, a DBA,
and an instructor with multiple database management systems, including
DB2, Oracle, and SQL Server. Craig has worked in multiple industries,
including manufacturing, banking, commercial software development,
education, research, utilities, and consulting. Additionally, Craig worked as a
Research Director with Gartner Group, covering the field of database
administration. He is the author of DB2 Developer’s Guide, the industry-
leading book on DB2 for z/OS, currently in its sixth edition.

Craig is a frequent contributor to computer industry publications, having
authored hundreds of articles in the past several years. His articles have
appeared in popular industry magazines and Web sites, including Database
Programming & Design, Data Management Review, DBMS, DB2 Update,
Oracle Update, SQL Server Update, and many others. Craig writes several
regular columns, including a monthly column called “The DBA Corner” for
Database Trends and Applications magazine, a quarterly column called “The
Database Report” for The Data Administration Newsletter (www.tdan.com),
and a regular column on DB2 and mainframe data management called
“z/Data Perspectives” for zJournal Magazine. Craig is also a regular blogger,
managing and authoring two popular data-related blogs: The DB2 Portal
(http://db2portal.blogspot.com) focusing on DB2 for z/OS and mainframe
“stuff,” and Data and Technology Today
(http://datatechnologytoday.wordpress.com), which focuses on data and
database management issues, DBA news and thoughts, metadata
management, and data architecture, as well as data-related topics in the realm
of IT and software. Craig is also the publisher and editor of The Database
Site (www.thedatabasesite.com).

Craig regularly presents technical topics at database industry conferences
and events. He has spoken to thousands of technicians about database
management and administration issues at such conferences as Database and
Client/Server World, SHARE, GUIDE, DAMA Symposium, Enterprise Data

http://www.tdan.com
http://db2portal.blogspot.com
http://datatechnologytoday.wordpress.com
http://www.thedatabasesite.com

World, IBM Information On Demand Conference, the DB2 Technical
Conference, the International DB2 Users Group (IDUG), and Oracle Open
World. He has also spoken at regional database user groups across North
America, Europe, Asia, and Australia.

Craig graduated cum laude from the University of Pittsburgh with a double
major in computer science and economics and a minor in mathematics. Craig
has been appointed as an Information Management Champion by IBM for his
work in the field of DB2 database administration, development, and
management.

Readers can obtain information about this book, including corrections,
future editions, and additional writings on database administration by the
author, at the author’s Web site at www.craigsmullins.com. The author can
be contacted at craig@craigsmullins.com or in care of the publisher.

http://www.craigsmullins.com
mailto:craig@craigsmullins.com

1. What Is a DBA?

Every organization that manages data using a database management system
(DBMS) requires a database administration (DBA) group to ensure the
effective use and deployment of the company’s databases. And since most
modern organizations of every size use at least one DBMS, the need for
database administrators (DBAs) is greater today than ever before. However,
the discipline of database administration is not well understood or universally
practiced in a coherent and easily replicated manner.

The need for a database administrator is greater today than
ever before.

There is a frequently repeated joke about database administration that helps
to underscore both the necessity for DBA and lack of understanding of the
DBA function. It goes something like this:

The CIO of Acme Corporation hires a management consulting company to
help them streamline their IT operations. The consultant, determined to
understand the way Acme works, begins by interviewing the CIO. One of
the questions he asks is “So, I see that you have a DBA on staff; what does
he do?”

The CIO says “Well, we use Oracle and I’m told that we need the
DBA to make sure our Oracle databases stay online. I know that some of
our critical business processes like order entry and inventory use Oracle,
but I really don’t know what the DBA does,” says the CIO. “But please
don’t tell me I need another one because we can barely afford to pay the
one we have!”

This is a sad, but too often true, commentary on the state of database
administration in many organizations. Frequently the DBA is viewed as a
guru or magician who uses tricks to make databases and systems operate
efficiently. DBMS software is so complex these days that very few people
understand more than just the basics (like SQL). But DBAs understand the
complexities of the DBMS, making them a valuable resource. Indeed,
sometimes the only source of database management and development

knowledge within the organization is the DBA.
The role of the DBA is as the guardian of the data as a corporate asset. So

DBAs, in trying to protect the data, often are perceived as slow moving and
risk adverse. Developers, on the other hand, are charged with building new
applications and are constantly being challenged to build things fast and
move on to the next project. Obviously, the difference between these two
roles and expectations—with DBAs saying “change control, change
management” and developers saying “deploy it now, deploy it now”—can
create friction.

Another frequent criticism of the DBA staff is that they can be difficult to
deal with. Sometimes viewed as prima donnas, DBAs can be curmudgeons
who have vast technical knowledge but limited people skills. Just about every
database programmer has a favorite DBA story. You know, those famous
anecdotes that begin with “I have a problem . . .” and end with “. . . and then
he told me to stop bothering him and read the manual.” DBAs simply do not
have a “warm and fuzzy” image. This probably has more to do with the
nature and scope of the job than anything else. The DBMS spans the
enterprise, effectively placing the DBA on call for the applications of the
entire organization.

The fact that DBAs often must sit down and work things through on their
own can be a mitigating factor in this poor reputation. Many database
problems require periods of quiet reflection and analysis to resolve. So DBAs
do not generally like to be disturbed. But even though many problems will
require solitude, there are many other problems that require a whole team to
resolve. And due to the vast knowledge most DBAs possess, their quiet time
is usually less than quiet; constant interruptions to answer questions and solve
problems are a daily fact of life.

DBAs should not be encouraged to be antisocial. In fact, DBAs should be
trained to acquire exceptional communication skills. Data is the lifeblood of
computerized applications. Application programs are developed to read and
write data, analyze data, move data, perform calculations using data, modify
data, and so on. Without data there would be nothing for the programs to do.
The DBA is at the center of the development life cycle—ensuring that
application programs have efficient, accurate access to the corporation’s data.
As such, DBAs frequently interface with many different types of people:
technicians, programmers, end users, customers, and executives. However,

many DBAs are so caught up in the minutiae of the inner workings of the
DBMS that they never develop the skills required to relate appropriately with
their coworkers and customers.

DBAs need to acquire exceptional communication skills.

But we have not yet answered the question that is the title of this chapter:
What is a DBA? The short answer to that question is simple: A DBA is the
information technician responsible for ensuring the ongoing operational
functionality and efficiency of an organization’s databases and the
applications that access those databases.

A DBA is the information technician responsible for ensuring
the ongoing operational functionality and efficiency of an
organization’s databases and applications.

The long answer to that question requires a book to answer—this book.
This text will define the management discipline of database administration
and provide practical guidelines for the proper implementation of the DBA
function. In order to begin to answer the question, though, this chapter will
provide an introductory overview of database administration, covering the
reasons to pursue a career as a DBA, high-level summaries of DBA tasks,
and a look at the organizational structure of the DBA team.

Why Learn Database Administration?
As we have already mentioned, data is at the center of today’s applications,
and today’s modern organization simply cannot operate without data. In
many ways, business today is data.1 Without data, businesses would not have
the ability to manage finances, to conduct transactions, or to contact their
customers. Databases are created to store and organize this data. The better
the design and utility of the database, the better the organization will be
positioned to compete for business.

Indeed, one of the largest problems faced by IT organizations is ensuring
quality database administration. According to a recent study:2

• Good DBAs are hard to find and costly to acquire—76 percent of
respondents say it takes more than three months to hire a DBA, and
training a new DBA in a new environment takes months beyond that.

• The database infrastructure supporting applications is complex,
chronically fragmented, and cumbersome to manage.

Both of these findings clearly indicate that database administration is a
difficult job that is in high demand. Additionally, according to the Dice3

2010–11 Tech Salary Survey, Oracle experience is requested in more than
15,000 job postings on any given day. Demand for Oracle skills is up 57
percent year over year, and the national average salary for technology
professionals with experience in Oracle Database is $90,914.

A Unique Vantage Point
The DBA is responsible for designing and maintaining an enterprise’s
databases, placing the DBA squarely at the center of the business. The DBA
has the opportunity to learn about many facets of business and how they
interrelate. The DBA can explore groundbreaking technologies as they are
adopted by the organization. Exposure to new technology keeps the job
stimulating—but frustrating if you are trying to figure out how a new
technology works for the first time. The DBA is often working alone in these
endeavors; he does not have access to additional expertise to assist when
troubles arise. Therefore, a good DBA needs to enjoy challenges and be a
good problem solver.

A good DBA needs to enjoy challenges and be a good
problem solver.

DBA Salaries
As a technician you can find no more challenging job in IT than DBA.
Fortunately, the job of DBA also is quite rewarding. DBAs are well paid.
According to a salary study conducted by Global Knowledge4 and Tech-
Republic,5 the average DBA salary is $78,468, while their managers average
$87,261. These average salaries are a little lower than the numbers from the
Janco6 salary survey (conducted the previous year).

For full-time employees functioning as DBAs, the mean salary ranges in
the high $80 thousands. Refer to Table 1.1 for a breakdown of the mean
salary for DBAs between 2006 and 2011 (according to the Dice 2010–11
Tech Salary Survey).

Table 1.1. Mean Salary for DBAs between 2006 and 2011

Keep in mind that the salary figures quoted here are for illustrative
purposes only and will vary based on numerous factors. As might be
expected, as the years of experience and number of people managed
increases, so does the salary. Of course, DBA salaries, like all salaries, vary
by region of the country as well. In the United States, DBA salaries are likely
to be higher in the Northeast and on the West Coast than in other regions.
Type of industry is also a factor, with pharmaceuticals paying higher than
government entities (for example). When all of these factors are considered,
the salary figures for DBAs are quite stable and on the higher end of IT
individual contributors.

According to the 2012 Computerworld Salary Survey, the national average
salary for a DBA is $95,187, but the average salary for a DBA with 15 to 20
years of experience and working on the Pacific coast is $103,597.7 Obviously
experience level and location make a significant difference.

The U.S. Bureau of Labor Statistics (BLS)8 provides additional
information about DBA employment and compensation. As of May 2010, the
BLS reports that the median annual wages of database administrators were
$73,490 and the mean annual wage was $75,730. The lowest 10 percent
earned less than $41,570, and the highest 10 percent earned more than
$115,660. The BLS also breaks down earnings statistics by geographical
region, so you can use their data to determine expected salary ranges for your
specific location of interest.

Perhaps more important than compensation is employability, and your
prospects for employment as a DBA are quite good. According to the U.S.
Bureau of Labor Statistics Occupational Outlook Handbook, 2010–11

Edition, “Employment is expected to grow much faster than the average, and
job prospects should be excellent.” Indeed, between the years 2008 and 2018
the BLS estimates that the number of DBA jobs will increase by 20 percent.

The job market for DBAs will grow much faster than the
average.

So, DBAs are well paid, highly employable, possess challenging jobs, and
are likely to be engaged in the most visible and important projects. What’s
not to like? Well, DBAs are expected to know everything, not just about
database technology but about anything remotely connected to it. DBAs
almost never work simple eight-hour days, instead working long days with a
lot of overtime, especially when performance is suffering or development
projects are behind schedule. According to industry analysts, the average
DBA works more than 50 hours per week, including an average of six hours
on weekends. DBAs frequently have to work on weekends and holidays to
maintain databases during off-peak hours.

Database administration is a nonstop job.

The job of DBA is technically challenging and rewarding, but also
potentially one that will exhaust and frustrate you. But don’t let that scare
you. The positive aspects of the job far outweigh the negative.

Database Technology
The DBA is the IT professional who understands the specific details of
database technology. It is important for the DBA to have a solid
understanding of the fundamentals of database management. This requires
much more than simple knowledge of rows, columns, and tables, or SQL.

This book assumes the reader has basic knowledge of relational database
technology and DBMS fundamentals. For readers needing to review these
concepts, please refer to Appendix A, “Database Fundamentals.” This is not a
trivial matter. Sometimes the problem is that people think they know more
than they actually do. For example, “What is a database?” I bet most people
reading this believe they know the answer to that question. But some
(perhaps many) of you would be wrong. SQL Server is not a database; it is a
DBMS, or database management system. You can use SQL Server to create a
database, but SQL Server, in and of itself, is not a database.

So what is a database? A database is an organized store of data wherein the
data is accessible by named data elements (for example, fields, records, and
files) (see Figure 1.1).

Figure 1.1. DBMS versus database

A database is an organized store of data wherein the data is
accessible by named data elements

A DBMS is software that enables end users or application programmers to
share data. It provides a systematic method of creating, updating, retrieving,

and storing information in a database. DBMSs also are generally responsible
for data integrity, data security, data access control and optimization,
automated rollback, restart, and recovery.

In layperson’s terms, you can think of a database as a file folder. You can
think of the filing cabinet holding the files along with the file labels as the
DBMS. A DBMS manages databases. You implement and access database
instances using the capabilities of the DBMS. So, DB2 and Oracle and SQL
Server are database management systems. Your payroll application uses the
payroll database, which may be implemented using DB2 or Oracle or SQL
Server.

Why is that important? If we do not use precise terms in the workplace,
confusion can result. And confusion leads to over-budget projects,
improperly developed systems, and lost productivity.

In addition to database management fundamentals, DBAs must be experts
in the specific DBMS products being used, and there may be many in the
organization. For example, a large organization may use DB2 on the
mainframe, Oracle and Informix on several different UNIX platforms,
MySQL on Linux, and SQL Server on Windows. Older legacy systems may
use IMS databases, and then there is that one crazy application out there that
uses a fringe DBMS like Adabas or Ingres.9 And there is also new database
technology, such as NoSQL, and column store DBMS offerings like Hadoop,
as well as cloud database systems, such as Microsoft’s SQL Azure and
Google’s BigTable.

The DBA group, therefore, must have expertise in each of these different
DBMSs and platforms. Furthermore, the DBA must be capable of
determining which DBMS and platform are most suited to the needs of each
application. This can be a difficult job fraught with politics and conflicting
opinions. The DBA group must be able to act as an impartial judge and base
implementation decisions on the needs of the application compared to the
capabilities and specifications of each DBMS and platform.

DBAs must implement decisions based on the best fit of
application, DBMS, and platform.

Once again, for a short introduction to DBMS concepts, refer to Appendix
A.

The Management Discipline of Database
Administration
Database administration is rarely approached as a management discipline.
The term discipline implies planning and implementation according to that
plan. When database administration is treated as a management discipline, the
treatment of data within your organization will improve. It is the difference
between being reactive and proactive.

All too frequently the DBA group is overwhelmed by requests and
problems. This ensues for many reasons, including understaffing,
overcommitment to supporting new (and even old) application development
projects, lack of repeatable processes, lack of budget, and on and on. When
operating in this manner, the database administrator is being reactive. The
reactive DBA functions more like a firefighter. His attention is focused on
resolving the biggest problem being brought to his attention. In other words,
a reactive DBA attempts to resolve problems only after problems occur.

A proactive DBA can avoid many problems altogether by developing and
implementing a strategic blueprint to follow when deploying databases within
his organization. This plan should address all phases of the application
development life cycle (ADLC) (see Figure 1.2). The proactive DBA
implements practices and procedures to avoid problems before they occur.

Figure 1.2. The application development life cycle (ADLC)

A proactive DBA can avoid many problems.

A data specialist, usually the DBA, should be involved during each phase
of the ADLC. During the initiation and requirements-gathering phase of the
project the DBA must be available to identify the data components of the
project. He can help to determine if the required data already exists elsewhere
in the organization or if the data is brand-new. During the analysis and design
phases the rudimentary data requirements must be transformed into a
conceptual and logical data model.

Before development can begin, the logical data model must be translated to
a physical database design that can be implemented using a DBMS, such as

Oracle or DB2. Sample data must be populated into the physical database to
assist with application testing. Furthermore, the DBA must develop and
implement a process to refresh test data to enable repeatable test runs.

When the application moves from development to operational status, the
DBA must ensure that the DBMS is prepared for the new workload. This
preparation includes implementing appropriate security measures, measuring
and modifying the storage and memory requirements for the new application,
and anticipating the impact of the new workload on existing databases and
applications. The DBA is also responsible for migrating the new database
from the test environment to production.

While the application is operational, the DBA performs a host of duties,
including performance and availability monitoring, tuning, backup and
recovery, and managing authorization. But no application or database
remains static for long. Because the needs of the business will change, the IT
systems that support the business also will change. When maintenance is
requested, the DBA becomes engaged in the entire process once again from
requirements gathering all the way through to the changes becoming
operational. When monitoring reveals a performance shortcoming, the DBA
may suggest better-performing alternatives to the development team (if the
problem is in the application code) or to the storage team (if the bottleneck is
I/O-centric) or recommend other fixes such as new or improved indexes,
alternative SQL code, and so forth.

Privacy Policies and Data
Data privacy is a burgeoning issue that is becoming more and more of a
burden on organizations, as not only the amount of data under management
increases, but the velocity of new data arriving increases.

In this networked world, in which we are thoroughly digitized, with
our identities, locations, actions, purchases, associations, movements,
and histories stored as so many bits and bytes, we have to ask: Who is
collecting all of this? What are they doing with it? With whom are they
sharing it? Most of all, individuals are asking, “How can I protect my
information from being misused?” These are reasonable questions to
ask; we should all want to know the answers.

There are more than 30 federal statutes and over 100 state statutes
governing information privacy in the United States. The approach to

protecting privacy has been piecemeal. The European Union, on the
other hand, has adopted a Data Protection Directive requiring its
member countries to adopt laws that implement its terms. The directive
creates rights for persons about whom information is collected, known
as “data subjects.” Entities that collect information must give data
subjects notice explaining who is collecting the data, who will ultimately
have access to it, and why the data is being collected. Data subjects also
have the right to access and correct data about them.

There is even a Data Privacy Day,10 the purpose of which is to
celebrate the dignity of the individual expressed through personal
information.

The recent bankruptcy of Borders Books provides an example of the
impact of privacy policies on corporate data. As part of Borders ceasing
operations, Barnes & Noble, a competing bookseller, acquired some of
its assets, including Borders’ brand trademarks and its customer list.
Their first course of action, however, was to alert the customers as to
their rights. The e-mail I received stated (in part):

It’s important for you to understand however you have the absolute right
to opt-out of having your customer data transferred to Barnes & Noble.
If you would like to opt-out, we will ensure all your data we receive from
Borders is disposed of in a secure and confidential manner.
This is one example of how privacy policies can impact the job of

database administration and corporate data experts. Of course, you may
never work for a company that goes bankrupt, but your company may
decide to retire applications and data due to legal regulations, business
conditions, or mergers.

Finally, when the application reaches the end of its useful life, the DBA
must help to determine the final status of the data used by the application. Is
the data no longer required, or do other applications and processes use the
data, too? Are there regulations that require the data to be stored longer than
the application?11 Does the business have any stated privacy policies that
impose special rules for handling the data?

The DBA is responsible for managing the overall database environment.
Often this includes installing the DBMS and setting up the IT infrastructure

to allow applications to access databases. These tasks need to be completed
before any application programs can be developed. Furthermore, ad hoc
database access is a requirement for many organizations.

Additionally, the DBA is in charge of setting up the ad hoc query
environment, which includes query and reporting tool evaluation and
implementation, establishing policies and procedures to ensure efficient ad
hoc queries, and monitoring and tuning ad hoc SQL.

As you can see, a good DBA is integral to the entire application
development life cycle. The DBA is “in demand” for his knowledge of data
and the way in which data is managed by modern applications.

A good DBA is integral to the entire application development
life cycle.

A Day in the Life of a DBA
A day in the life of a DBA is usually quite busy. The DBA is required to
maintain production and test environments while at the same time keeping an
eye on active application development projects, attending strategy and design
meetings, helping to select and evaluate new products, and connecting legacy
systems to the Web. And Joe in Accounting, he just submitted that “query
from hell” again that is bringing the system to a halt; can you do something
about that? All of these things can occur within a single DBA workday.

To add to the chaos, DBAs are expected to know everything about
everything. From technical and business jargon to the latest management and
technology fads, the DBA is expected to be “in the know.” And don’t expect
any private time. A DBA must always be prepared to be interrupted at any
time to answer any type of question—and not just about databases, either.

When application problems occur, the database environment is frequently
the first thing blamed. The database is “guilty until proven innocent” instead
of the other way around. A DBA will never experience an application
developer coming to him for help with a question like “I’ve got some really
bad SQL here; can you help me fix it?” No, instead the developer will barge
into the DBA’s cubicle stating very loudly that “there’s a problem with DB2
[or insert your favorite DBMS here]; why don’t you fix it so my wonderful
program can run?”

When application problems occur, the database is “guilty until

proven innocent.”

Thus, the DBA is forced to prove that the database is not the source of the
problem. He must know enough about all aspects of information technology
to track down errors and exonerate that which is in his realm: the DBMS and
database structures he has designed. So he must be an expert in database
technology but also know about IT components with which the DBMS
interacts: application programming languages, operating systems, network
protocols and products, transaction processors, every type of computer
hardware imaginable, and more. The need to understand such diverse topics
makes the DBA a very valuable resource. It also makes the job interesting
and challenging.

And the DBA job is a nonstop job. A DBA must be constantly available to
deal with problems, because database applications run around the clock. Most
DBAs carry a pager or mobile phone at all times so they can be reached at a
moment’s notice. If there is a database problem at 2:00 A.M., the DBA must
get out of bed, clear his head, and solve the problem to get the applications
back up and running. Failure to do so can result in database downtime, and
that can completely shut down business processes.

DBAs frequently spend weekends in front of the computer performing
database maintenance and reorganizations during off-peak hours. You can’t
bring mission-critical databases down during the nine-to-five day to maintain
them. And frankly, more and more businesses have 24-hour days instead of
the mythical eight-hour business days of yore.

If this still sounds intriguing to you, read on. And actually, it isn’t as bad as
it sounds. The work is interesting, there is always something new to learn,
and, as previously mentioned, the pay can be good. The only question is, Can
anyone do this type of job for 20 or more years without needing a rest? And,
oh, by the way, I think I hear your mobile phone buzzing, so you might want
to pause here to see what is wrong.

Evaluating a DBA Job Offer
As a DBA, it is almost inevitable that you will change jobs several times
during your career. When making a job change, you will obviously consider
requirements such as salary, bonus, benefits, frequency of reviews, and
amount of vacation time. However, you also should consider how the

company treats its DBAs. Different organizations place different value on the
DBA job. It is imperative for your career development that you scout for
progressive organizations that understand the complexity and ongoing
learning requirements of the position.

Here are some useful questions to ask:
• Does the company offer regular training for its DBAs to learn new

DBMS features and functionality? What about training for related
technologies such as programming, networking, e-business, transaction
management, message queuing, and the like?

• Does the company allow DBAs to regularly attend local user groups?12

What about annual user groups at remote locations?
• Are there backup DBAs, or will you be the only one on call 24/7?
• Are there data administration and system administration organizations,

or are the DBAs expected to perform all of these duties, too?
• Does the DBA group views its relationship with application

development groups as a partnership? Or is the relationship more
antagonistic?

• Are DBAs included in design reviews, budgeting discussions, and other
high-level IT committees and functions?

The more “yes” answers you get to these questions, the more progressive
the DBA environment is.

Database, Data, and System Administration
Some organizations define separate roles for the business aspects of data and
the technical aspects of data. The business aspects of data are aligned with a
discipline known as data administration, whereas the more technical aspects
are handled by database administration. Not every organization has a data
administration function. Indeed, many organizations combine data
administration into the database administration role.

Many organizations combine data administration into the
database administration role.

Sometimes organizations also split up the technical aspects of data
management, with the DBA being responsible for using the DBMS and

another role, known as system administration or systems programming, being
responsible for installing and upgrading the DBMS.

Data Administration
Data administration (DA) separates the business aspects of data resource
management from the technology used to manage data. When the DA
function exists in an organization, it is more closely aligned with the actual
business users of data. The DA group is responsible for understanding the
business lexicon and translating it into a logical data model. Referring back to
the application development life cycle, the data administrator (DA) would be
involved more in the requirements-gathering, analysis, and design phases; the
DBA, in the design, development, testing, and operational phases.

Another differentiating factor between DA and DBA is the focus of their
efforts. The DA is responsible for issues such as

• Identifying and cataloging the data required by business users
• Production of conceptual and logical data models to accurately depict

the relationship among data elements for business processes
• Production of an enterprise data model that incorporates all of the data

used by all of the organization’s business processes
• Setting data policies for the organization
• Identifying data owners and stewards
• Setting standards for control and usage of data

In short, the DA can be thought of as the Chief Data Officer of the
corporation. The DA position has nothing specifically to do with technology,
though. However, in my experience, the DA is never given an executive
position. That is actually too bad. Many IT organizations state that they treat
data as a corporate asset, but the falsehood of that statement is revealed when
you review their actions. Responsibility for data policy is often relegated to
technicians who fail to concentrate on the nontechnical, business aspects of
data management. Technicians do a good job of ensuring availability,
performance, and recoverability but are not usually capable of ensuring data
quality and setting corporate policies.

The data administrator can be thought of as the Chief Data
Officer of the corporation.

In fact, data is rarely treated as a true corporate asset. Think about the
assets that every company has in common: capital, human resources,
facilities, and materials. Each of these assets is modeled: chart of accounts,
organization charts and reporting hierarchies, building blueprints and office
layouts, and bills of materials. Each is tracked and protected. Professional
auditors are employed to ensure that no discrepancies exist in our accounting
of the assets. Can we say the same thing about data in most organizations?

A mature DA organization is responsible for planning and guiding the data
usage requirements throughout the organization. This role encompasses how
data is documented, shared, and implemented. A large responsibility of the
DA staff is to ensure that data elements are documented properly, usually in a
data dictionary or repository. This is another key differentiation between DA
and DBA. The DA focuses on the repository, whereas the DBA focuses on
the physical databases and DBMS.

Furthermore, the DA deals with metadata, as opposed to the DBA, who
deals with data. Metadata is often described as “data about data”; more
accurately, metadata is the description of the data and data interfaces required
by the business. Data administration is responsible for the business’s
metadata strategy.

Examples of metadata include the definition of a data element, business
names for a data element, any abbreviations used for that element, and the
data type and length of the element. Data without metadata is difficult to use.
For example, the number 12 is data, but what kind of data? In other words,
what does that 12 mean? Without metadata we have no idea. Consider:

• Is it a date representing December, the twelfth month of the year?
• Or is it a date representing the twelfth day of some month?
• Could it be an age?
• A shoe size?
• Or, heaven forbid, an IQ?
• And so on.

But there are other, more technical aspects of metadata, too. Think about
our number 12 again. Consider:

• Is 12 a large number or a small one?
• What is its domain (that is, what is the universe of possible values of

which 12 is but a single value)?
• What about the data type; is it an integer or a decimal number with a 0

scale?
Metadata provides the context in which data can be understood and

therefore become information. In many organizations metadata is not
methodically captured and cataloged; instead, it exists mostly in the minds of
the business users. Where it has been captured in systems it is spread
throughout multiple programs in file definitions, documentation in various
states of accuracy, or in long-lost program specifications. Some of it, of
course, is in the system catalog of the DBMS.

Metadata provides the context in which data can be
understood and therefore become information.

A comprehensive metadata strategy will enable an organization to
understand the information assets under its control and to measure the value
of those assets. Additional coverage of metadata is provided in Chapter 22,
“Metadata Management.”

One of the biggest contributions of DA to the corporate data asset is the
creation of data models. A conceptual data model outlines data requirements
at a very high level. A logical data model provides in-depth details of data
types, lengths, relationships, and cardinality. The DA uses normalization
techniques to deliver sound data models that accurately depict the data
requirements of the organization.

Many DBAs dismiss data administration as mere data modeling, required
only because someone needs to talk to those end users to get the database
requirements. But a true DA function is much more than mere data modeling.
It is a business-oriented management discipline responsible for the data asset
of the organization.

Why spend so much time talking about data administration in a book about
database administration? Well, few organizations have implemented and
staffed a DA role. The larger the organization, the more likely it is that a DA
function exists. However, when the DA role is undefined in the organization,
the DBA must assume the mantle of data planner and modeler. The DBA
usually will not be able to assume all of the functions and responsibility of
DA as summarized in this section for the following reasons.

• The DBA has many other technical duties to perform that will consume
most of his time.

• The manager of the DBA group typically does not have an executive
position that enables him to dictate policy.

• The DBA generally does not have the skills to communicate effectively
with business users and build consensus.

• Frankly, most DBAs are happier dealing with technical issues and
technicians than with business issues and non-technicians.

When DA and DBA functions exist within the organization, the two
groups must work very closely with one another. It is not necessary that both
have the same manager, though that could make it easier to facilitate
cooperation between DA and DBA. At any rate, it is imperative that there be
some degree of cross-pollination of skills between the two groups. The DA
will never understand the physical database like a DBA, and the DBA will
never understand the business issues of data like a DA, but each job function
would be more effective with some knowledge about the other.

Organizations truly concerned about data quality, integrity,
and reuse will invariably implement and staff the DA function.

In short, organizations that are truly concerned about data quality,
integrity, and reuse will invariably implement and staff the data
administration function.

Database Administration
Database administration is the focus of this entire book, so I will not spend a
lot of time defining it in this short section. The rest of the book will
accomplish that nicely. This section will quickly outline the functions
performed by the DBA group when the DA function exists. As illustrated in
Figure 1.3, at a high level, the DBA manages data and the DA manages
metadata. But let’s dig a little deeper.

Figure 1.3. DBA versus DA

The first DBA duty is to understand the data models built by DA and to be
able to communicate the model to the application developers and other
appropriate technicians. The logical data model is the map the DBA will use
to create physical databases. The DBA will transform the logical data model
into an efficient physical database design. It is essential that the DBA
incorporate his knowledge of the DBMS being used to create an efficient and
appropriate physical database design from the logical model. The DBA
should not rely on the DA for the final physical model any more than the DA
should rely on the DBA for the conceptual and logical data models.

The DBA is the conduit for communication between the DA team and the
technicians and application programming staff. Of course, the bulk of the
DBA’s job is the ongoing support of the databases created from the physical
design and the management of the applications that access those databases.
An overview of these duties is provided in the upcoming “DBA Tasks”
section of this chapter.

The DBA is the conduit for communication between the DA
team and the technicians and application programming staff.

System Administration
Some organizations, once again the larger ones, also have a system
administration (SA) or systems programming role that impacts DBMS
implementation and operations. When the SA role exists separately from the

DBA role, it is responsible for the installation and setup of the DBMS. The
system administrator (SA) typically has no responsibility for database design
and support. Instead, the DBA is responsible for the databases and the SA is
responsible for DBMS installation, modification, and support. If this
distinction is not clear to you, please review Appendix A for a clear
definition of database terminology.

Furthermore, the SA role ensures that the IT infrastructure is implemented
such that the DBMS is configured to work with other enabling system
software. The SA may need to work with other technicians to configure
transaction processors, message queuing software, networking protocols, and
operating system parameters to enable the DBMS to operate effectively. The
SA ensures that the IT infrastructure is operational for database development
by setting up the DBMS appropriately, applying ongoing maintenance from
the DBMS vendor, and coordinating migration to new DBMS releases and
versions.

The system administrator ensures that the IT infrastructure is
operational for database development by setting up the DBMS
appropriately, applying ongoing maintenance from the DBMS
vendor, and coordinating migration to new DBMS releases
and versions.

As with DA, there must be cross-training of skills between the SA and
DBA, too. The SA will never understand the physical database like a DBA,
but the DBA is unlikely to understand the installation and in-depth technical
relationships of system software like the SA. Each job function will be more
effective with some knowledge of the other, though.

When an independent SA group does not exist, or when no DBMS-focused
SA exists, the DBA assumes responsibility for system administration and
programming. The graphic in Figure 1.4 provides a quick delineation of the
DA, DBA, and SA tasks.

Figure 1.4. DA, DBA, and SA responsibilities

DBA Tasks
A DBA must be capable of performing many tasks to ensure that the
organization’s data and databases are useful, usable, available, and correct.
These tasks include design, performance monitoring and tuning, ensuring
availability, authorizing security, backup and recovery, ensuring data
integrity, and, really, anything that interfaces with the company’s databases.
Let’s examine each of these topics.

Database Design
The first task that most people think of when they think about DBAs is the
ability to create well-designed databases. To properly design and create
relational databases DBAs must understand and adhere to sound relational

design practices. They must understand both relational theory and the specific
implementation of the RDBMS being used to create the database. Database
design requires a sound understanding of conceptual and logical data
modeling techniques. The ability to create and interpret entity-relationship
diagrams is essential to designing a relational database.

Furthermore, the DBA must be able to transform a logical data model into
a physical database implementation. The DBA must ensure that the database
design and implementation will enable a useful database for the applications
and clients that will use it.

The DBA must be able to transform a logical data model into
a physical database.

Indeed, database design is a significant skill for the DBA to possess.
However, the job of the DBA often is disproportionately associated with
database design. Although designing optimal databases is important, it is a
relatively small portion of the DBA’s job. A DBA will most likely spend
more time administering and tuning databases than in originally designing
and building databases.

By no means, though, should you interpret this to mean that database
design is not important. A poor relational design can result in poor
performance, a database that does not meet the needs of the organization, and
potentially inaccurate data.

Performance Monitoring and Tuning
The second role most closely associated with the DBA is performance
monitoring and tuning. But what is meant by the term database performance?
Think, for a moment, of database performance using the familiar concepts of
supply and demand. Users demand information from the database. The
DBMS supplies information to those requesting it. The rate at which the
DBMS supplies the demand for information can be termed database
performance. But it is not really that simple. Five factors influence database
performance: workload, throughput, resources, optimization, and contention.

The workload that is requested of the DBMS defines the demand. It is a
combination of online transactions, batch jobs, ad hoc queries, data
warehousing and analytical queries, and commands directed through the
system at any given time. Workload can fluctuate drastically from day to day,

hour to hour, minute to minute, and even second to second. Sometimes
workload can be predicted (such as heavy month-end processing of payroll,
or very light access after 7:30 p.m., when most users have left for the day),
but at other times it is unpredictable. The overall workload has a major
impact on database performance.

Throughput defines the overall capability of the computer hardware and
software to process. It is a composite of I/O speed, CPU speed, parallel
capabilities of the machine, and the efficiency of the operating system and
system software. The hardware and software tools at the disposal of the
system are known as the resources of the system. Examples include the
database kernel, disk space, cache controllers, and microcode.

The fourth defining element of database performance is optimization. All
types of systems can be optimized, but relational queries are unique in that
optimization is primarily accomplished internal to the DBMS. However,
there are many other factors that need to be optimized (SQL formulation,
database parameters, programming efficiently, and so on) to enable the
database optimizer to create the most efficient access paths.

When the demand (workload) for a particular resource is high, contention
can result. Contention is the condition in which two or more components of
the workload are attempting to use a single resource in a conflicting way (for
example, dual updates to the same piece of data). As contention increases,
throughput decreases.

Therefore, database performance can be defined as the optimization of
resource usage to increase throughput and minimize contention, enabling the
largest possible workload to be processed.

Whenever performance problems are encountered by an application that
uses a database, the DBA is usually the first one called to resolve the
problem. Of course, the DBA cannot manage database performance in a
vacuum. Applications regularly communicate with other applications,
systems, and components of the IT infrastructure. An effective performance
monitoring and tuning strategy requires not just DBMS expertise but
knowledge outside the scope of database administration. Many performance
management tasks must be shared between the DBA and other technicians. In
other words, handling performance problems is truly an enterprise-wide
endeavor.

Database performance can be defined as the optimization of
resource usage to increase throughput and minimize
contention, enabling the largest possible workload to be
processed.

The DBA must be vigilant in monitoring system, database, and application
performance. As much as possible this should be accomplished using
automated software and scripts. Polling system tables and building alerts
based on thresholds can be used to proactively identify problems. Alerts can
be set up to e-mail the DBA when performance metrics are not within
accepted boundaries.

Many tasks and abilities are required of DBAs to ensure efficient access to
databases. Some of these abilities include building appropriate indexes,
specifying large enough buffers and caches, aligning the database
implementation with the IT infrastructure, ongoing monitoring of databases
and applications, database reorganization, and adapting to business changes
—more users, more data, additional processing, and changing requirements
and regulations.

Ensuring Availability
Availability of data and databases is often closely aligned with performance,
but it is actually a separate concern. Of course, if the DBMS is offline,
performance will be horrible because no data can be accessed. But ensuring
database availability is a multifaceted process.

Ensuring database availability is a multi-faceted process.

The first component of availability is keeping the DBMS up and running.
Vigilant monitoring and automated alerts can be used to warn of DBMS
outages and call for corrective action.

Individual databases also must be maintained such that the data contained
therein is available whenever applications and clients require it. Doing so
requires the DBA to design the database so that it can be maintained with
minimal disruptions, but also to help design applications to minimize
conflicts when concurrent access is required.

An additional component of availability is minimizing the amount of
downtime required to perform administrative tasks. The faster the DBA can

perform administrative tasks that require databases to be offline, the more
available the data becomes. Increasingly, DBMS vendors and independent
software vendors (ISVs) are providing nondisruptive utilities that can be
performed on databases while applications read and write from them. But
these usually require more skill and up-front planning to implement.

The DBA must understand all of these aspects of availability and ensure
that each application is receiving the correct level of availability for its needs.

Database Security and Authorization
Once the database is designed and implemented, programmers and users will
need to access and modify the data in the database. But only authorized
programmers and users should have access to prevent security breaches and
improper data modification. It is the responsibility of the DBA to ensure that
data is available only to authorized users.

Typically, though not always (see the sidebar “Centralization of Security”),
the DBA works with the internal security features of the DBMS in the form
of SQL GRANT and REVOKE statements, as well as any group
authorization features of the DBMS. Security must be administered for many
actions required by the database environment:

• Creating database objects, including databases, tables, views, and
program structures

• Altering the structure of database objects
• Accessing the system catalog
• Reading and modifying data in tables
• Creating and accessing user-defined functions and data types
• Running stored procedures
• Starting and stopping databases and associated database objects
• Setting and modifying DBMS parameters and specifications
• Running database utilities such as LOAD, RECOVER, and REORG

Database security can be enforced in other ways as well. For example,
views can be created to block sensitive columns or rows from being viewed
by end users and programmers. And the DBA also frequently interfaces with
external security methods when they impact database security.

The DBA must understand and be capable of implementing any aspect of

security that impacts access to databases. One area that should be of
particular interest given the data breaches in the news these days is SQL
injection attacks and how to prevent them.

The DBA must understand the aspects of security that impact
access to databases.

Centralization of Security
Some organizations have taken steps to assemble all security and
authorization tasks, policies, and procedures in a centralized IT security
group. Such an undertaking is not trivial and, as such, it is more common
in larger organizations than it is in smaller ones.

Heavily regulated industries may opt to centralize security operations.
Furthermore, organizations with mainframe computers tend to consider
centralization more often than those without mainframes.

Successfully transferring database security responsibility from the
database administration group to a centralized security group requires
training the security personnel in database security techniques.
Additionally, many of these shops use software that removes security
operations from the DBMS and mimics the same functionality in a more
traditional security package (such as RACF or ACF2 on the mainframe).

Even taking these issues into consideration, most organizations still
rely on the DBA to administer database security.

Governance and Regulatory Compliance
Assuring compliance with industry and governmental regulations is an
additional task required of database administration, at least in terms of
implementing proper controls. The DBA must work with management,
auditors, and business experts to understand the regulations that apply to their
industry and the manner in which data is treated.

Certain aspects of regulatory compliance address standard DBA operating
procedures. For example, regulations may contain language enforcing
specific security and authorization procedures, auditing requirements, data
backup specifications, and change management procedures. To ensure
compliance, however, stricter documentation may be required, or perhaps a

higher degree of diligence or automation (such as deeper audit tracing).
Other aspects of regulatory compliance may require the DBA to adopt

different techniques, tactics, and skills. For example, data retention
regulations may require data to be maintained long after it is needed to be
stored in a production database, requiring database archiving skills. Or
certain data may need to be protected from view, requiring data masking or,
in some cases, encryption to be set up.

DBAs should not be tasked with understanding regulations in any depth,
nor should they be setting the standards by which the organization complies
with the regulations. However, DBAs will get involved in helping to set the
proper controls and procedures for compliance projects, specifically and
especially with regard to the treatment of data.

DBAs set the proper technological controls and procedures for
compliance with regard to the treatment of data.

Backup and Recovery
The DBA must be prepared to recover data in the event of a problem.
“Problem” can mean anything from a system glitch or program error to a
natural disaster that shuts down an organization. The majority of recoveries
today occur as a result of application software error and human error.
Hardware failures are not as prevalent as they used to be. In fact, analyst
estimates indicate that 80 percent of application errors are due to software
failures and human error. The DBA must be prepared to recover data to a
usable point, no matter what the cause, and to do so as quickly as possible.

The majority of recoveries today occur as a result of
application software error and human error.

The first type of data recovery that usually comes to mind is a recover to
current, usually in the face of a major shutdown. The end result of the
recovery is that the database is brought back to its current state at the time of
the failure. Applications are completely unavailable until the recovery is
complete.

Another type of traditional recovery is a point-in-time recovery. Point-in-
time recovery usually is performed to deal with an application-level problem.
Conventional techniques to perform a point-in-time recovery will remove the

effects of all transactions since a specified point in time. This sometimes can
cause problems if there were some valid transactions during that time frame
that still need to be applied.

Transaction recovery is a third type of recovery that addresses the
shortcomings of the traditional types of recovery: downtime and loss of good
data. Thus, transaction recovery is an application recovery whereby the
effects of specific transactions during a specified time frame are removed
from the database. Therefore, transaction recovery is sometimes referred to as
application recovery.

Most technicians think about recovery in order to resolve disasters such as
hardware failures. Although hardware failures still occur, and technicians
need to be prepared to recover from such failures, most recoveries today are
required because of human error or errors in programs.

The DBA must be prepared to deal with all of these types of recovery. This
involves developing a backup strategy to ensure that data is not lost in the
event of an error in software, hardware, or a manual process. The strategy
must be applicable to database processing, so it must include image copies of
database files as well as a backup/recovery plan for database logs. It needs to
account for any non-database file activity that can impact database
applications as well.

The DBA must be prepared to deal with all types of recovery.

Ensuring Data Integrity
A database must be designed to store the correct data in the correct way
without that data becoming damaged or corrupted. To ensure this process, the
DBA implements integrity rules using features of the DBMS. Three aspects
of integrity are relevant to our discussion of databases: physical, semantic,
and internal.

Three aspects of integrity are relevant to our discussion of
databases: physical, semantic, and internal.

Physical issues can be handled using DBMS features such as domains and
data types. The DBA chooses the appropriate data type for each column of
each table. This action ensures that only data of that type is stored in the
database. That is, the DBMS enforces the integrity of the data with respect to

its type. A column defined as “integer” can contain only integers. Attempts to
store nonnumeric or noninteger values in a column defined as integer will
fail. DBAs can also use constraints to further delineate the type of data that
can be stored in database columns. Most relational DBMS products provide
the following types of constraints:

• Referential constraints are used to specify the columns that define any
relationships between tables. Referential constraints are used to
implement referential integrity, which ensures that all intended
references from data in one column (or set of columns) of a table are
valid with respect to data in another column of the same or a different
table.

• Unique constraints ensure that the values for a column or a set of
columns occur only once in a table.

• Check constraints are used to place more complex integrity rules on a
column or set of columns in a table. Check constraints are typically
defined using SQL and can be used to define the data values that are
permissible for a column or set of columns.

Semantic integrity is more difficult to control and less easily defined.
DBAs must be prepared to enforce policies and practices to ensure that data
stored in their databases is accurate, appropriate, and usable. An example of a
semantic issue is the quality of the data in the database. Simply storing any
data that meets the physical integrity definitions specified to the database is
not enough. Procedures and practices need to be in place to ensure data
quality. For example, a customer database that contains a wrong address or
phone number for 25 percent of the customers stored therein is an example of
a database with poor quality. There is no systematic, physical method of
ensuring data accuracy. Data quality is encouraged through proper
application code, sound business practices, and specific data policies.
Redundancy is another semantic issue. If data elements are stored
redundantly throughout the database, the DBA should document this fact and
work to ensure that procedures are in place to keep redundant data
synchronized and accurate.

The final aspect of integrity is an internal DBMS issue. The DBMS relies
upon internal structures and code to maintain links, pointers, and identifiers.
In most cases the DBMS will do a good job of maintaining these structures,
but the DBA needs to be aware of their existence and how to cope when the

DBMS fails. Internal DBMS integrity is essential in the following areas:
• Index consistency. An index is really nothing but an ordered list of

pointers to data in database tables. If for some reason the index gets out
of sync with the data, indexed access can fail to return the proper data.
The DBA has tools at his disposal to check for and remedy these types
of errors.

• Pointer consistency. Sometimes large multimedia objects are not stored
in the same physical files as other data. Therefore, the DBMS requires
pointer structures to keep the multimedia data synchronized to the base
table data. Once again, these pointers may get out of sync if proper
administration procedures are not followed.

• Backup consistency. Some DBMS products occasionally take improper
backup copies that effectively cannot be used for recovery. It is
essential to identify these scenarios and take corrective actions.

Overall, ensuring integrity is an essential DBA skill.

Ensuring integrity is an essential DBA skill.

DBMS Release Migration
The DBA is also responsible for managing the migration from release to
release of the DBMS. DBMS products change quite frequently—new
versions are usually released every year or so. The task of keeping the DBMS
running and up-to-date is an ongoing effort that will consume many DBA
cycles. Whatever approach is taken must conform to the needs of the
organization, while reducing outages and minimizing the need to change
applications.

The task of keeping the DBMS running and up-to-date is an
ongoing effort that will consume many DBA cycles.

Jack-of-All-Trades
Databases are at the center of modern applications. If the DBMS fails,
applications fail, and if applications fail, the entire business can come to a
halt. If databases and applications fail often enough, the entire business can
fail. Database administration therefore is critical to the ongoing success of
modern business.

Furthermore, databases interact with almost every component of the IT
infrastructure. The IT infrastructure of today consists of things such as

• Programming languages and environments such as COBOL, Microsoft
Visual Studio, C/C++/C#, Java, and PHP

• Software frameworks such as .NET and J2EE
• Database and process design tools such as ERwin and Rational Rose
• Transaction processing systems such as CICS and Tuxedo
• Application servers such as WebSphere, JBoss, Oracle Application

Server, and EAServer
• Message queuing software such as MQSeries and MSMQ
• Networking software and protocols such as SNA, VTAM, and TCP/IP
• Networking hardware such as bridges, routers, hubs, and cabling
• Multiple operating systems such as Windows, z/OS and MVS, UNIX

and Linux, and perhaps others
• Data storage hardware and software such as enterprise storage servers,

Microsoft SMS, IBM DFHSM, SANs, and NAS
• Operating system security packages such as RACF, ACF2, and

Kerberos
• Other types of storage hardware, for example, tape machines, silos, and

solid-state (memory-based) storage
• Non-DBMS data set and file storage techniques such as VSAM and b-

tree
• NoSQL products such as Hadoop and MongoDB
• Database administration tools and how they interface with other

systems management solutions
• Systems management tools and frameworks such as HP OpenView and

CA Unicenter
• Operational control software such as batch scheduling software and job

entry subsystems
• Software distribution solutions for implementing new versions of

system software across the network
• The Internet and Web-enabled databases and applications

• Client/server development techniques (multitier, fat server/thin client,
thin server/fat client, etc.)

• Object-oriented and component-based development technologies and
techniques such as CORBA, COM, OLE/DB, ADO, and EJB

• Pervasive computing technology devices such as tablets and
smartphones

Although it is impossible to become expert in all of these technologies, the
DBA should have some knowledge of each of these areas and how they
interrelate. Even more importantly, the DBA should have the phone numbers
of experts to contact in case any of the associated software and hardware
causes database access or performance problems.

The Types of DBAs
There are DBAs who focus on logical design and DBAs who focus on
physical design; DBAs who specialize in building systems and DBAs who
specialize in maintaining and tuning systems; specialty DBAs and general-
purpose DBAs. Truly, the job of DBA encompasses many roles.

Some organizations choose to split DBA responsibilities into separate jobs.
Of course, this occurs most frequently in larger organizations, because
smaller organizations often cannot afford the luxury of having multiple,
specialty DBAs.

Still other companies simply hire DBAs to perform all of the tasks required
to design, create, document, tune, and maintain the organization’s data,
databases, and database management systems. Let’s look at some of the more
common types of DBA.

System DBA
A system DBA focuses on technical rather than business issues, primarily in
the system administration area. Typical tasks center on the physical
installation and performance of the DBMS software, including

A system DBA focuses on technical rather than business
issues.

• Installing new DBMS versions and applying maintenance fixes
supplied by the DBMS vendor

• Setting and tuning system parameters
• Tuning the operating system, network, and transaction processors to

work with the DBMS
• Ensuring appropriate storage for the DBMS
• Enabling the DBMS to work with storage devices and storage

management software
• Interfacing with any other technologies required by database

applications
• Installing DBA tools and utilities

System DBAs rarely get involved with actual implementation of databases
and applications. They may get involved in application tuning efforts when
operating system parameters or complex DBMS parameters need to be
altered.

Indeed, the job of system DBA usually exists only if the organization does
not have an official system administration or systems programming
department.

Database Architect
Some organizations designate a separate job, referred to as a database
architect, for designing and implementing new databases. Database architects
are involved in new design and development work only; they do not get
involved in maintenance, administration, and tuning efforts for established
databases and applications. The database architect designs new databases for
new applications or perhaps a new database for an existing application.

The database architect is involved in new design and
development work only.

The rationale for creating a separate position is that the skills required for
designing new databases are different from the skills required to keep an
existing database implementation up and running. A database architect is
more likely to have data administration and modeling expertise than a
general-purpose DBA, because DA skills are more useful for developing an
initial database design.

Typical tasks performed by the database architect include
• Creation of a logical data model (if no DA or data modeler position

exists)
• Translation of logical data models into physical database designs
• Implementing efficient databases, including physical characteristics,

index design, and mapping database objects to physical storage devices
• Analysis of data access and modification requirements to ensure

efficient SQL and to ensure that the database design is optimal
• Creation of backup and recovery strategies for new databases

Most organizations do not staff a separate database architect position,
instead requiring DBAs to work on both new and established database
projects.

Database Analyst
Another common staff position is the database analyst. There is really no
common definition for database analyst. Sometimes junior DBAs are referred
to as database analysts. Sometimes a database analyst performs a role similar
to the database architect. Sometimes the DA is referred to as the database
analyst, or perhaps the data analyst. And sometimes database analyst is just
another term used by some organizations instead of database administrator.

Data Modeler
When the DA role is not defined or staffed, there may be a data modeler role
defined. A data modeler is usually responsible for a subset of the DA’s
responsibilities. Data modeling tasks include

• The collection of data requirements for development projects
• Analysis of the data requirements
• Design of project-based conceptual and logical data models
• Creation of a corporate data model and keeping the corporate data

model up-to-date
• Working with the DBAs to ensure they have a sound understanding of

the data models

Application DBA
In direct contrast to the system DBA is the application DBA. Application
DBAs focus on database design and the ongoing support and administration
of databases for a specific application or applications. The application DBA

is likely to be an expert at writing and debugging complex SQL and
understands the best ways to incorporate database requests into application
programs. The application DBA also must be capable of performing database
change management, performance tuning, and most of the other roles of the
DBA. The difference is the focus of the application DBA—not on the overall
DBMS implementation and database environment, but on a specific subset of
applications (see Figure 1.5).

Figure 1.5. Focus of the application DBA

The application DBA focuses on database design and the
ongoing support and administration of databases for a specific
application or applications.

Not every organization staffs application DBAs. However, when
application DBAs exist, general-purpose DBAs are still required to support
the overall database environment and infrastructure. When application DBAs
do not exist within an organization, general-purpose DBAs are likely to be
assigned to support specific applications while also maintaining the
organization’s database environment.

There are pros and cons to staffing application DBAs. The arguments in

favor of application DBAs include the following:
• Application DBAs can better focus on an individual application, which

can result in better service to the developers of that application.
• The application DBA is more often viewed as an integral component of

the development team and therefore is better informed about new
development plans and changes to plans.

• Because application DBAs consistently work on a specific set of
applications, they can acquire a better overall understanding of how
each application works, enabling them to better support the needs of the
application developers.

• With a more comprehensive understanding of the application, an
application DBA will have a better understanding of how the
application impacts the overall business. This knowledge will likely
result in the execution of DBA tasks to better support the organization.

But all is not favorable for application DBAs. There are cons to
implementing an application DBA role, including these:

• Application DBAs can lose sight of the overall data needs of the
organization because of their narrow focus on a single application.

• The application DBA can become isolated. Lack of communication
with a centralized DBA group (if one exists) can result in diminished
sharing of skills.

• When application DBAs implement useful procedures, it takes more
effort to share these procedures among the other DBAs.

• Due to the application-centric nature of application DBAs, they can
lose sight of new features and functionality being delivered by the
DBMS group.

In general, when staffing application DBAs, be sure to also staff a
centralized DBA group. The application DBAs should have primary
responsibility for specific applications but should also be viewed as part of
the centralized DBA group. Doing so will encourage the pros of
implementing application DBAs while discouraging the cons.

When staffing application DBAs, be sure to also staff a
centralized DBA group.

Task-Oriented DBA
Larger organizations sometimes create very specialized DBAs who focus on
a single specific DBA task. But task-oriented DBAs are quite rare outside of
very large IT shops. One example of a task-oriented DBA is a backup and
recovery DBA who devotes his entire day to ensuring the recoverability of
the organization’s databases.

Most organizations cannot afford this level of specialization, but when
possible, task-oriented DBAs can ensure that very important DBA tasks are
tackled by very knowledgeable specialists.

Performance Analyst
Performance analysts are a specific type of task-oriented DBA. The
performance analyst, more common than other task-oriented DBAs, focuses
solely on the performance of database applications.

A performance analyst must understand the details and nuances of SQL
coding for performance, as well as have the ability to design databases for
performance. Performance analysts have knowledge of the DBMS being used
at a very detailed technical level so that they can make appropriate changes to
DBMS and system parameters when required.

But the performance analyst should not be a system DBA. The
performance analyst must be able to speak to application developers in their
language in order to help them facilitate the appropriate program changes for
performance.

The performance analyst is usually the most skilled, senior member of the
DBA staff. It is very likely that a senior DBA grows into this role due to his
experience and the respect he has gained in past tuning endeavors.

The performance analyst is usually the most skilled, senior
member of the DBA staff.

Data Warehouse Administrator
Organizations that implement data warehouses for performing in-depth data
analysis often staff DBAs specifically to monitor and support the data
warehouse environment. Data warehouse administrators must be capable
DBAs, but with a thorough understanding of the differences between a
database that supports online transaction processing (OLTP) and a data

warehouse. Common data warehouse administration tasks and requirements
include

• Experience with business intelligence, data analytics, and query and
reporting tools

• Database design for read-only access
• Data warehousing design issues such as star schema
• Data warehousing technologies such as online analytical processing, or

OLAP (including ROLAP, MOLAP, and HOLAP)
• Data transformation and conversion skills
• An understanding of data quality issues
• Experience with data formats for loading and unloading of data
• Middleware implementation and administration

Staffing Considerations
Staffing the DBA organization is not a simple matter. There are several
nontrivial considerations that must be addressed, including the size of the
DBA staff and the reporting structure for the DBAs.

How Many DBAs?
One the most difficult things to determine is the optimal number of DBAs
required to keep an organization’s databases online and operating efficiently.
Many organizations try to operate with the minimal number of DBAs on
staff, the idea being that having fewer staff members lowers cost. But that
assumption may not be true. An overworked DBA staff may make mistakes
that cause downtime and operational problems far in excess of the cost of the
salary of an additional DBA.

But determining the optimal number of DBAs is not a precise science. It
depends on many factors, including

• Number of databases. The more databases that need to be supported,
the more complex the job of database administration becomes. Each
database needs to be designed, implemented, monitored for availability
and performance, backed up, and administered. There is a limit to the
number of databases that an individual DBA can control.

• Number of users. As additional users are brought online as clients of

the applications that access databases, it becomes more difficult to
ensure optimal database performance. Additionally, as the number of
users increases, the potential for increase in the volume of problems
and calls increases, further complicating the DBA’s job.

• Number of applications. A single database can be used by numerous
applications. Indeed, one of the primary benefits of the DBMS is to
enable data to be shared across an organization. As more applications
are brought online, additional pressure is exerted on the database in
terms of performance, availability, and resources required, and more
DBAs may be required to support the same number of databases.

• Service-level agreements (SLAs). The more restrictive the SLA, the
more difficult it becomes for the DBA to deliver the service. For
example, an SLA requiring subsecond response time for transactions is
more difficult to support than an SLA requiring 3-second response
time.

• Availability requirements. When databases have an allowable period of
scheduled downtime, database administration becomes easier because
some DBA tasks either require an outage or are easier when an outage
can be taken. Considerations such as supporting e-business transactions
and the Web drive the need for 24/7 database availability.

• Impact of downtime. The greater the financial impact of a database
being unavailable, the more difficult DBA becomes because pressure
will be applied to assure greater database availability.

• Performance requirements. As the requirements for database access
become more performance oriented and faster and more frequent access
is dictated, DBA becomes more complicated.

• Type of applications. Organizations implement all kinds of
applications. The types of applications that must be supported have an
impact on the need for DBA services. The DBMS and database needs
of a mission-critical application differ from those of a non-mission-
critical application. Mission-critical applications are more likely to
require constant monitoring and more vigilance to ensure availability.
Likewise, OLTP application will have different characteristics and
administration requirements from OLAP applications. OLTP
transactions are likely to be of shorter duration than OLAP queries;
OLTP applications perform both read and write operations, whereas

OLAP applications are usually read only. Each has administration
challenges that impose different DBA procedures and needs.

• Volatility. The frequency of database change requests is an important
factor in the need for additional DBAs. A static database environment
requiring few changes will not require the same level of DBA effort as
a volatile, frequently changing database environment. Unfortunately,
the level of volatility for most databases and applications tends to
change dramatically over time. It is difficult to ascertain how volatile an
overall database environment will be over its lifetime.

• DBA staff experience. The skill of the existing DBA staff will impact
whether or not additional DBAs are required. A highly skilled DBA
staff will be able to accomplish more than a novice team. Skills more
than experience dictate DBA staffing level requirements. A highly
motivated DBA with two years of experience might easily outperform a
ten-year veteran who is burned out and unmotivated.

• Programming staff experience. The less skilled application developers
are in database and SQL programming, the more involved DBAs will
need to be in the development process, performing tasks such as
complex SQL composition, analysis, debugging, tuning, and ensuring
connectivity. As the experience of the programming staff increases, the
complexity of DBA decreases.

• End user experience. When end users access databases directly with ad
hoc SQL, their skill level has a direct impact on the complexity of
DBA.

• DBA tools. DBMS vendors and a number of ISVs offer tools that
automate DBA tasks and make administering databases easier. The
more tools that are available and the degree to which they are integrated
can make DBA tasks less complex. Industry analysts have estimated
that without DBA tools up to twice the number of DBAs can be
required.

Determining how many DBAs are needed is not a precise
science.

The previous list of complexity issues notwithstanding, it is very difficult
to combine all of these factors into a formula that will dictate the optimum
number of DBAs to employ. Though the research is somewhat dated,

industry analysts at the META Group13 created a loose formula for
calculating DBA level of effort (LOE). The formula is not a rigorous one but
arrives at a DBA LOE by applying weights to six factors: system complexity,
application immaturity, end user sophistication, software functionality,
system availability, and staff sophistication. By measuring each of these
items as much as possible to indicate high or low rates, you plug values into
the formula and arrive at a number that is translated into an estimate for the
number of DBAs required.

Creating a formula that can dictate the optimal number of
DBAs to employ is difficult to achieve.

DBA Reporting Structures
To whom should the DBA group report within the organization? Different
companies have taken different approaches to the DBA reporting structure,
but a few reporting hierarchies are quite common. There is no one correct
answer, but some reporting structures work better than others. Let’s review
some of the possibilities.

One of the best structures is to create a data resource management (DRM)
group that consists of all the data and information specialists of the
organization—DA, DBA, data analysts, performance analysts, and so on.
This group usually reports directly to the CIO but might report through a
systems programming unit, the data center, or technical support. Figure 1.6
depicts a typical reporting structure.

Figure 1.6. Typical DBA reporting structure

When an organization staffs application DBAs, they will be spread out in
application groups, typically with a direct reporting line to the business
programming managers. Each application development team has a dedicated
application DBA resource, as shown in Figure 1.7.

Figure 1.7. Application DBA reporting structure

There are problems with both of these reporting structures, though. The
first problem is that DRM should be placed higher in the IT reporting
hierarchy. It is a good idea to have the DRM group report directly to the CIO.
When an organization understands the importance of data to the health of the
organization, placing DRM at this level is encouraged.

Furthermore, when application DBAs exist, they should not report to the
application programming manager only. A secondary line of reporting to the
DRM group will ensure that DBA skills are shared and communicated
throughout the organization. Figure 1.8 delineates the recommended
reporting structure for the data resource management group.

Figure 1.8. Recommended DBA reporting structure

Multiplatform DBA Issues
Managing a multiplatform environment complicates the job of database
administration. A whole batch of different problems and issues arise that
need to be addressed. The first task is to define the scope of each DBA’s job.
Does a single DBA administer all of the different DBMSs, or does each DBA
focus on supporting only one DBMS?

Managing a multiplatform environment complicates the job of
database administration.

This is a particularly thorny issue. On the one hand, the functionality of a
DBMS is strikingly similar regardless of platform and vendor. A DBMS is
designed to store, retrieve, and protect data. Programmers, programs, and end
users all interact with the DBMS to access and modify data. Administration
issues are similar—design, creation, optimization, and so on—though each
DBMS implements these items differently. So, the case can be made that a
DBA should support multiple DBMSs and databases, regardless of platform
or vendor.

On the other hand, each DBMS offers different features, functionality, and
technology. Keeping all of the differences and nuances straight is a
monumental task. Wouldn’t it be better to develop platform-expert DBAs?
That way, your Oracle DBAs can focus on learning all there is to know about
Oracle, your DB2 DBAs can focus on DB2, and so on.

Every organization will have to make this determination based on its
particular mix of DBMSs, features, and DBA talent. If your organization uses
one DBMS predominantly, with limited use of others, it may make sense for
each DBA to support all of them, regardless of platform or vendor. Sparse
usage of a DBMS usually means fewer problems and potentially less usage of
its more sophisticated features. By tasking your DBAs to be multi-DBMS
and multiplatform, you can ensure that the most skilled DBAs in your shop
are available for all database administration issues. If your organization uses
many different DBMSs, it is probably wise to create specialist DBAs for the
heavily used platforms and perhaps share administration duties for the less
frequently used platforms among other DBAs.

When DBA duties are shared, be sure to carefully document the skills and
knowledge level of each DBA for each DBMS being supported. Take care to
set up an effective and fair on-call rotation that does not unduly burden any
particular DBA or group of DBAs. Furthermore, use the organizational
structure to promote sharing of database standards and procedures across all
supported DBMS environments.

Keep in mind, too, that when multiple DBMSs and platforms are
supported, you should consider implementing DBA tools, performance
monitors, and scripts that can address multiple platforms. For this reason,
DBA tools from third-party vendors are usually better for heterogeneous
environments than similar tools offered by the DBMS vendors.

When your organization supports multiple DBMSs, the DBA group should

develop guidelines for which DBMS should be used in which situations.
These guidelines should not be hard-and-fast rules but instead should provide
guidance for the types of applications and databases best supported by each
DBMS. Forcing applications into a given DBMS environment is not a good
practice. The guidelines should be used simply to assure best fit of
application to DBMS. These guidelines should take into account

• Features of each DBMS
• Features and characteristics of the operating system
• Networking capabilities of the DBMS and operating system

combination
• DBMS skills of the application developers
• Programming language support
• Any other organizational issues and requirements

Production versus Test
At least two separate environments must be created and supported for a
quality database implementation: production and test (or development). New
development and maintenance work is performed in the test environment; the
operational functioning applications are run in the production environment. It
is necessary to completely separate the test environment from the production
environment to ensure the integrity and performance of operational work.
Failure to separate test and production will cause development activities to
impair the day-to-day business of your organization. The last thing you want
is for errant program code in the early stages of development to access or
modify production data. Test access to production data can cause production
performance problems. And, of course, test programs modifying production
data can create invalid data.

Separating the test and production environments ensures the
integrity and performance of operational work.

The test environment need not be exactly the same as the production
environment. The production environment will contain all of the data
required to support the operational applications. The test environment,
however, can contain only a subset of the data that is required to facilitate
acceptable application testing. Furthermore, the test DBMS implementation

usually will not be set up with the same amount of resources as the
production environment. For example, less memory will be allocated to
buffering and caches, data set allocations will be smaller and on fewer
devices, and the DBMS software may be a later version in test than in
production (to shake out any bugs in the DBMS code itself before it is trusted
to run in production).

The test and production environments should be put together similarly,
though. Access to the same system software should be provided in test as is
provided to production because the programming staff will need to create
their applications in the same type of environment in which they will
eventually run.

Another difference in the test environment is the number of databases.
Multiple copies of databases may need to be created to support concurrent
development by multiple programmers. The DBA must plan and create this
environment in such a way as to allow the programming staff to control the
contents of the test databases. During the development process programs that
modify data in the database may need to be run multiple times. The
programmer must be able to ensure, however, that the data at the beginning
of each test run is the same. Failure to do so can render the results of the test
invalid. Therefore, the DBA must assist the programming staff in the creation
of database load and unload jobs to set up test databases for testing runs.
Prior to a test run, the database must be loaded with the test data. After the
test run, the programmer can examine the output from the program and the
contents of the database to determine if the program logic is correct. If not, he
can repeat the process, loading to reset the data in the database and retesting.
Automated procedures can be put in place to unload the databases impacted
by the program and compare the results to the load files.

Trying to predict how test applications will perform once they are moved
to production is a difficult task. But the DBA can assist here as well. A
relational DBMS typically provides a method to gather statistical information
about the contents of its databases. These statistics are then used by the
relational optimizer to determine how SQL will retrieve data. This topic is
covered in more depth in Chapter 12, “Application Performance.” But
remember, there will be much less data in test databases than in production.
In some cases, though, the DBA can set up scripts to read the production
statistics and copy them to the test environment, thereby enabling developers

to more accurately gauge how test applications will perform in production.
Some organizations implement more than two environments, as shown in

Figure 1.9. If special care is needed for complex application development
projects, additional levels of isolated testing may need to occur. For example,
a unit test environment may exist for individual program development, then
an integration testing environment to ensure that new programs work
together, or that new programs work correctly with existing programs. A
quality assurance (QA) environment may need to be established to perform
rigorous testing against new and modified programs before they are migrated
to the production environment.

Figure 1.9. Establishing multiple database environments

A QA environment may be needed to perform rigorous testing
against new and modified programs before they are migrated.

The Impact of Newer Technology on DBA
The DBA is at the center of the action whenever new ways of doing business
and new technologies are introduced to the organization. Data is at the heart
of any application, and most new technology impacts data as it is adopted by
application developers. Indeed, data is the lifeblood of modern business; the
database houses the data; and the DBA is the expert who understands
database technology—and in particular, how databases can be integrated with

other new technologies.
Let’s examine three specific newer technologies that rely on database

administration, at least somewhat, to be effectively implemented: database-
coupled application logic, Internet-enabled e-business development, and
handheld computing.

Procedural DBAs: Managing Database Logic
Traditionally, the domain of a database management system was,
appropriately enough, to store, manage, and access data. Although these core
capabilities are still required of modern DBMS products, additional
procedural functionality is slowly becoming not just a nice feature to have,
but a necessity. Features such as triggers, user-defined functions, and stored
procedures provide the ability to define business rules to the DBMS instead
of in separate application programs. These features tightly couple application
logic to the database server.

Since all of the most popular RDBMS products provide sometimes
complex features to facilitate database-coupled procedural logic, additional
work is required to manage and ensure the optimal usage of these features.
This requires an expansion of the management discipline of database
administration. Typically, as new features are added, the administration,
design, and management of these features are assigned to the DBA by
default. Without proper planning and preparation, this can lead to chaos. But
first let’s quickly examine how database logic is stored in a DBMS.
Stored Procedures

Stored procedures can be thought of as programs that live in a database. The
procedural logic of a stored procedure is maintained, administered, and
executed through the database commands. The primary reason for using
stored procedures is to move application code from a client workstation to the
database server. Stored procedures typically consume less overhead in a
client/server environment because one client can invoke a stored procedure
that causes multiple SQL statements to be run. The alternative, the client
executing multiple SQL statements directly, is less efficient because it
increases network traffic which can degrade overall application performance.
A stored procedure is a freestanding database object; it is not “physically”
associated with any other object in the database. A stored procedure can
access and/or modify data in many tables.

Triggers

Triggers are event-driven specialized procedures that are attached to database
tables. The trigger code is executed by the RDBMS automatically as data
changes in the database. Each trigger is attached to a single, specified table.
Triggers can be thought of as an advanced form of rule or constraint written
using procedural logic. A trigger cannot be directly called or executed; it is
automatically executed (or “fired”) by the RDBMS as the result of an
INSERT, UPDATE, or DELETE SQL statement being issued on its
associated table. Once a trigger is created, it is always executed when its
“firing” event occurs.
User-Defined Functions

A UDF, or user-defined function, provides a result based upon a set of input
values. UDFs are programs that can be executed in place of standard, built-in
SQL scalar or column functions. A scalar function transforms data for each
row of a result set; a column function evaluates each value for a particular
column in each row of the results set and returns a single value. Once written,
and defined to the RDBMS, a UDF becomes available just like any other
built-in database function.

Table 1.2 summarizes the differences among stored procedures, triggers,
and user-defined functions.

Table 1.2. Procedural Database Objects

Administering Stored Procedures, Triggers, and UDFs

Once applications and developers begin to rely upon stored procedures,
triggers, and UDFs, steps need to be taken to ensure they are managed
properly. DBAs must grapple with the issues of quality, maintainability,
efficiency, and availability. How and when will these procedural objects be

tested? The impact of a failure is enterprise-wide, not relegated to a single
application. This increases the visibility and criticality of these objects. Who
is responsible if they fail? The answer must be: a DBA.

The role of administering procedural database logic should fall upon
someone skilled in that discipline. A new type of DBA is required to
accommodate the administration of database procedural logic. This new role
can be defined as a procedural DBA.

The procedural DBA should be responsible for those database management
activities that require procedural logic support. This should include primary
responsibility for ensuring that stored procedures, triggers, and user-defined
functions are effectively planned, implemented, shared, and reused. The
procedural DBA also should take primary responsibility for coding and
testing all triggers. Stored procedures and user-defined functions, however,
will most likely be coded by application programmers and reviewed for
accuracy and performance by procedural DBAs.

The procedural DBA should participate in and lead the review and
administration of all procedural database objects: that is, triggers, stored
procedures, and UDFs. Although procedural DBAs are unlikely to be as
skilled at programming as application programmers or systems analysts, they
must be able to write and review program code reasonably well. The skill
level required depends on what languages are supported by the DBMS for
creating procedural objects, the rate and level of adoption within the
organization, and whether or not an internal organization exists for creating
common, reusable programs. Table 1.3 provides a reasonable level of
procedural DBA involvement for each type of procedural object.
Additionally, the procedural DBA should be on call for any problems that
occur to database procedural objects in production.

Table 1.3. Procedural DBA Involvement by Object

The procedural DBA should participate in and lead the review
and administration of all procedural database objects: that is,
triggers, stored procedures, and UDFs.

The role of the procedural DBA requires communication skills as much as
it requires technological acumen (see Figure 1.10). In addition to managing
and optimizing database procedural objects, the procedural DBA must inform
the development community of new triggers, stored procedures, and UDFs.
Furthermore, the DBA must promote reuse. If the programmers do not know
that these objects exist, they will never be used. Other procedural
administrative functions can be allocated to the procedural DBA. Depending
upon the number of DBAs and the amount of application development being
done, the procedural DBA can be assigned to additional functions, such as

Figure 1.10. Procedural DBA duties

• Participating in application code design reviews
• Reviewing and analyzing SQL access paths (from EXPLAIN or

SHOWPLAN)
• Debugging SQL
• Writing and analyzing complex SQL statements
• Rewriting queries for optimal execution

Off-loading coding-related tasks to the procedural DBA can help the other
staff DBAs to concentrate on the actual physical design and implementation
of databases, resulting in much better-designed databases. The procedural
DBA should still report through the same management unit as the traditional
DBA. Doing so enables better sharing of skills between the procedural DBAs
and traditional data-focused DBAs. Of course, there will need to be a greater
synergy between the procedural DBA and the application programmers. The
typical job path for the procedural DBA should be from the application

programming ranks because this is where the coding skill base exists.

The Internet: From DBA to eDBA
Although at this late date the Internet can hardly be considered a trend,
companies and technologists are still adapting their processes to align with e-
commerce. Organizations of every type and size are using Internet
technologies to speed up business processes, and database administration
practices and procedures are impacted by the adoption of Internet-enabled
applications and databases.

E-businesses must be able to adapt and react to constant change. When
your business is online, it never closes. People expect full functionality on
Web sites they visit regardless of the time. And the Web is worldwide. It may
be two o’clock in the morning in New York City, but it is always prime time
somewhere in the world. An e-business must be available and prepared to
engage with customers 24 hours a day, 365 days a year (366 during leap
years). Failing to do so can cause loss of business. When a Web site is down,
the customer will go elsewhere to do business because the competition is just
a simple mouse click away. So those who manage an e-business must be
adept, proactive, and ever vigilant.

Adopting the frantic pace of an e-business requires changes for those who
keep the e-business operational. DBAs are extremely impacted by e-business.
The need to integrate the Web with traditional IT services, such as the
DBMS, places high expectations on database administrators.

A DBA who is capable of managing Web-based applications because he
understands the special issues that arise because of the Internet is an eDBA.
An eDBA also needs to have all of the knowledge and training of a
traditional DBA, but these skills need to be adapted to suit applications and
databases that are Internet enabled. When the Web is coupled with traditional
applications and databases, a complex infrastructure is the result (see Figure
1.11). The eDBA must be capable of navigating this complex, heterogeneous
infrastructure and providing expertise wherever databases interact within this
infrastructure.

Figure 1.11. The complex infrastructure resulting from Web-to-database
capabilities

A DBA who is capable of managing Web-based applications
because he understands the special issues that arise because of
the Internet is an eDBA.

Indeed, there are many factors that impact database administration when
the Internet is coupled with database technology. Some of these issues
include

• 24/7 data availability
• Adoption of new technologies such as Java and XML
• Connectivity to the Web
• Integrating legacy data with modern Web-based applications
• Database and application architecture
• Web-based administration

• Performance engineering for the Internet
• Unpredictable workload

The Personal DBA and the Cloud
Personal devices, usually smartphones but also PDAs (personal digital
assistants), are fast becoming a necessity for modern executives and
businessmen. A smartphone is a handheld computing device. And sometimes
it will have a database management system running on it. Why is that
interesting? Does it change the way you will use your device? What will that
mean to your IT department?

Popular mobile computing platforms include Symbian OS, Windows
Mobile, iPhone OS, and Android.

Smartphones offer many benefits. The devices are small and therefore
easily transportable. They do not interfere with a mobile worker’s ability to
be mobile. And because most everyone carries a mobile phone these days,
boosting its capabilities to perform computing tasks is a no-brainer.

Perhaps the biggest benefit of these devices is their ability to run mobile
applications. It is not uncommon for an enterprise mobile application to rely
on information retrieved from a main computer server to be delivered to the
mobile device pervasively, at any place and at any time it is required. Mobile
applications using the cloud as the back end are becoming more and more
popular.

Enterprise mobile applications rely on information retrieved
from a main computer server.

What Is Cloud Computing?
Cloud computing offers a new model for the delivery of IT resources to
users. The primary defining characteristic of cloud computing is to give the
illusion of on-demand access to an infinite amount of computing resources.
A good example of a cloud computing service is offered by
Salesforce.com, which delivers access to a CRM application over the Web.

Another aspect prevalent with cloud computing offerings is that users
can rent computing power with no commitment. Instead of buying a
server, you can rent the use of one and pay just for what you use. This
used to be referred to as utility computing because it mimics how people

pay for utilities, such as water or electricity. It is a “pay as you go”
service.

From a database perspective, there are several cloud offerings,
including Amazon’s SimpleDB and Google’s App Engine Datastore.
Additionally, Microsoft’s SQL Azure supports data in the cloud.

Cloud computing can allow even the smallest of organizations—or
indeed, a single individual—to obtain computing resources in ways not
previously possible.

The design and implementation of mobile applications is not as
straightforward as desktop PC application development. It is very important
for mobile application developers to consider the context in which the
application will be used.

Although the benefits are significant, there are challenges to be faced as
organizations incorporate personal devices into their infrastructure. The data
on the device must be managed professionally to ensure integrity and
reliability. Because the device is remote, sharing of data can be difficult. The
business data on a smartphone must be reliably synchronized with existing
enterprise systems and databases. And from a business and compliance
perspective, it can be difficult to assess the risk associated with a mobile
application. Mobile devices are easily misplaced and without proper security
can result in a data breach.

All of the major DBMS vendors provide small-footprint versions of their
flagship products to run on personal devices. For example, IBM markets DB2
Personal Edition, Oracle sells Oracle Database Lite, Microsoft provides SQL
Server Compact, and Sybase offers Adaptive Server Anywhere. The general
idea is to store a small amount of critical data on the mobile device in a
database. The local database is later synchronized to long-term data stores on
enterprise database servers. Each mobile DBMS provides technology to
synchronize data back and forth from the mobile device to the enterprise
server platforms.
Impact on DBAs

DBAs are not needed to manage and work on the database on each PDA, but
the job of the DBA will be impacted by this development. A database the size
of those stored on PDAs should not require the in-depth tuning and

administration that are required of enterprise database implementations.
However, DBAs will be called upon to help design appropriately
implemented databases for small-form-factor devices like PDAs. But this is
not the biggest impact.

A big impact on the DBA is in the planning for and management of the
data synchronization from hundreds or thousands of PDAs. When should
synchronization be scheduled? How will it impact applications that use large
production databases that are involved in the synchronization? How can you
ensure that mobile users will synchronize their data reliably and on schedule?

Additionally, for cloud implementations, DBAs will likely be responsible
for assuring reliable data availability. Designing and tuning a database
implementation for cloud computing can require significant resources to
manage large amounts of data and assure around-the-clock availability.

These are not minor issues. Before implementing a large battalion of
mobile database users who must synchronize their data, make sure that your
DBA staff is prepared for the impact on their databases. Like most anything,
failure to prepare is a recipe for sure disaster. But prepare we must. The DBA
staff must be ready to support the mobile workforce by understanding data
synchronization technology, cloud computing, and the potential need for
remote database users in your organization.

An additional step in the preparation process for supporting databases on
handheld devices is to review the applications in your organization and try to
determine which might be impacted first. Companies with remote workers
such as a distributed sales force or delivery tracking services will most likely
be the first impacted. Take some time to review the data requirements of
those applications and how a large influx of remote connections might impact
the current systems.

Pervasive computing and the mobile workforce are here to stay. And the
DBA staff must be ready to support these mobile workers with a valid, shared
data infrastructure.

NoSQL, Big Data, and the DBA
NoSQL is another trend that can impact the job performed by the DBA.
NoSQL is a movement that, at its most basic, is described by its title. That is,
a NoSQL DBMS does not support SQL. At a high level, NoSQL implies
nonrelational, distributed, flexible, and scalable. Most NoSQL offerings are

also open source.
NoSQL grew out of the perceived need for “modern” database systems to

support Web initiatives. Additionally, some common attributes of NoSQL
DBMSs include the lack of a schema, simplicity of use, replication support,
and an “eventually consistent” capability (instead of the typical ACID—
atomicity, consistency, isolation, and durability—transaction capability). It
really does not mean no SQL support. Some NoSQL offerings have begun to
support SQL, leading some pundits to define NoSQL as “Not Only SQL.”

Examples of NoSQL Offerings
• Cassandra: http://cassandra.apache.org/
• CouchDB: http://couchdb.apache.org/
• HBase: http://hbase.apache.org/
• mongoDB: www.mongodb.org/
• Riak: www.basho.com/

The NoSQL movement is tied to the Big Data movement. NoSQL
databases are designed to deliver low-cost storage and access to large
amounts of data.

With NoSQL implementations the data is typically accessed in one way
and there is little to no flexibility in terms of generating off-the-cuff, ad hoc
queries.
Impact on DBAs

Another hallmark of NoSQL is that it requires very little database
administration work. Of course, the DBMS must be set up and managed, and
the data must be backed up. So be careful when anyone tries to tell you that
any database system requires no database administration. It just isn’t true.

New Technology Impacts on DBA
As new technology is introduced to the organization, the DBA group is
typically the first to examine and use it. The preceding technologies are
merely examples of recent trends and technologies that require database
administration for efficient and effective implementation. Most new
technologies will have some impact on the role of the DBA.

http://cassandra.apache.org/
http://couchdb.apache.org/
http://hbase.apache.org/
http://www.mongodb.org/
http://www.basho.com/

DBA Certification
Professional certification is an ongoing trend in IT and is available for many
different IT jobs. The availability and levels of certification have been
growing at an alarming rate for database administration. Certification
programs are available for most of the popular DBMS platforms, including
IBM DB2, Microsoft SQL Server, and Oracle. The concept behind
certification of DBAs is to certify that an individual is capable of performing
database administration tasks and duties.

This is a noble goal, but the problem is that passing a test is not a viable
indicator of being able to perform a complex job like DBA. Some things you
just have to learn by doing. Now I am not saying that certification is useless.
Indeed, taking the test and focusing on the questions you miss can help to
point out areas of weakness upon which you can improve. But does anyone
really believe that someone who passes a formal test will be as capable as
someone with several years of experience as a DBA? Organizations should
hire DBAs based on past experience that indicates a level of capability. Of
course, someone with both experience and certification is better than
someone with only one of the two.

Certification can make you more employable.

I do recommend that professional DBAs take the time to study and pass the
certification exams, not because certification will make you a better DBA,
but because it will make you more employable. Some companies will hire
only certified professionals. The trend toward using certification to guide
hiring practices will increase because of increasing IT complexity. If you
think you might change jobs at some point in your career (and who among us
will not?), certification is a worthwhile pursuit.

Keep in mind that the DBA certification tests sometimes ask arcane syntax
questions that are not really good indicators of a DBA’s skills. Getting the
syntax 100 percent accurate is what manuals and DBA tools are for. There is
no reason to memorize syntax because it tends to change quite often. It is
better to know where to find the syntax, parameters, and answers to your
questions when you need them, that is, which manuals and textbooks contain
the needed information. DBAs should possess a broad overarching
knowledge of DBMS concepts and IT fundamentals, and a good knowledge

of the way in which their organization’s database systems work. Memorizing
every detail about SQL syntax and structure is a waste of time because it is
complex and changes all the time. In other words, it is better to know off the
top of your head that something can (or cannot) be done than to know the
exact syntax for how to accomplish it.

Certification tests sometimes ask arcane syntax questions that
are not really good indicators of a DBA’s skills.

If you decide to pursue certification, take the time to prepare for the tests.
There are books and self-learning software titles available that can be quite
useful. These books and programs cover the most likely test topics and
provide sample questions to help you prepare. In many ways it is like
preparing for a college entrance exam, such as the SATs.

And once you earn your certification, make sure you display it proudly on
your résumé and your business card (if your company allows it).

Consult Table 1.4 for Web sites that contain information about
professional certification for the most popular DBMS products.

Table 1.4. Sources of DBA Certification Information

The Rest of the Book
This first chapter has introduced you to the world of the DBA. Ideally you
have garnered a respect for the complexity of the position and the qualities
required of a good DBA. The remainder of the book will examine the details
of the tasks, roles, and responsibilities required of the DBA. Read on to learn
of the challenges faced by DBAs and how to overcome them.

Review
1. At a high level, discuss the primary job responsibilities of a DBA.

2. What is the single biggest problem faced by organizations using
relational databases?

3. What is the difference between a data administrator and a database
administrator?

4. What factors determine the number of DBAs required to properly
support an organization’s database environment?

5. How does new technology impact the job of the DBA?
6. Cite the technology influences that mandate the need for procedural

DBAs.
7. What is the difference between a database architect and a system

administrator?
8. What job function is most likely to be responsible for installing a new

DBMS release?
9. What are the three types of integrity that DBAs must understand?

10. Is a certified DBA necessarily a qualified DBA? Why or why not?

Bonus Question
Why must the DBA be prepared to function as a jack-of-all-trades?

2. Creating the Database Environment

One of the primary tasks associated with the job of DBA is the process of
choosing and installing a DBMS. Unfortunately, many business executives
and IT professionals without database management background assume that
once the DBMS is installed, the bulk of the work is done. The truth is,
choosing and installing the DBMS is hardly the most difficult part of a
DBA’s job. Establishing a usable database environment requires a great deal
of skill, knowledge, and consideration. This chapter will outline the
principles involved in establishing a usable database environment.

Defining the Organization’s DBMS Strategy
The process of choosing a suitable DBMS for enterprise database
management is not as difficult as it used to be. The number of major DBMS
vendors has dwindled due to industry consolidation and domination of the
sector by a few very large players.

Choosing a suitable DBMS for enterprise database
management is not as difficult as it used to be.

Yet, large and medium-size organizations typically run multiple DBMS
products, from as few as two to as many as ten. For example, it is not
uncommon for a large company to use IMS or IDMS and DB2 on the
mainframe, Oracle and MySQL on several different UNIX servers, Microsoft
SQL Server on Windows servers, as well as pockets of other DBMS products
such as Sybase, Ingres, Adabas, and PostgreSQL on various platforms, not to
mention single-user PC DBMS products such as Microsoft Access, Paradox,
and FileMaker. Who chose to install all these DBMSs and why?

Unfortunately, often the answer is that not much thought and planning
went into the decision-making process. Sometimes the decision to purchase
and install a new DBMS is driven by a business need or a new application.
This is reasonable if your organization has no DBMS and must purchase one
for the first time. This is rarely the case, though. Regardless of whether a
DBMS exists on-site, a new DBMS is often viewed as a requirement for a
new application. Sometimes a new DBMS product is purchased and installed
without first examining if the application could be successfully implemented

using an existing DBMS. Or, more likely, the DBAs know the application
can be implemented using an existing DBMS but lack the organizational
power or support to reject a new DBMS proposal.

There are other reasons for the existence of multiple DBMS platforms in a
single organization. Perhaps the company purchased a commercial off-the-
shelf application package that does not run on any of the current DBMS
platforms. Sometimes the decision to buy a new DBMS is driven by the
desire to support the latest and greatest technology. For example, many
mainframe shops moving from a hierarchic (IMS) or CODASYL (IDMS)
database model to the relational model deployed DB2, resulting in an
additional DBMS to learn and support. Then, when client/server computing
became popular, additional DBMSs were implemented on UNIX, Linux, and
Windows servers.

Once a DBMS is installed, removal can be difficult because of
incompatibilities among the different DBMSs and the necessity of converting
application code. Furthermore, when a new DBMS is installed, old
applications and databases are usually not migrated to it. The old DBMS
remains and must continue to be supported. This complicates the DBA’s job.

So what should be done? Well, the DBA group should be empowered to
make the DBMS decisions for the organization. No business unit should be
allowed to purchase a DBMS without the permission of the DBA group. This
is a difficult provision to implement and even more difficult to enforce.
Business politics often work against the DBA group because it frequently
possesses less organizational power than other business executives.

The DBA group should be empowered to make the DBMS
decisions for the organization.

Choosing a DBMS
The DBA group should set a policy regarding the DBMS products to be
supported within the organization. Whenever possible, the policy should
minimize the number of different DBMS products. For a shop with multiple
operating systems and multiple types of hardware, choose a default DBMS
for the platform. Discourage deviation from the default unless a compelling
business case exists—a business case that passes the technical inspection of
the DBA group.

Most of the major DBMS products have similar features, and if the feature
or functionality does not exist today, it probably will within 18 to 24 months.
So, exercise caution before deciding to choose a DBMS based solely on its
ability to support a specific feature.

When choosing a DBMS, select a product from a tier-1
vendor.

When choosing a DBMS, it is wise to select a product from a tier-1 vendor
as listed in Table 2.1. Tier 1 represents the largest vendors having the most
heavily implemented and supported products on the market. You cannot go
wrong with DB2 or Oracle. Both are popular and support just about any type
of database. Another major player is Microsoft SQL Server, but only for
Windows platforms. DB2 and Oracle run on multiple platforms ranging from
mainframe to UNIX, as well as Windows and even handheld devices.
Choosing a DBMS other than these three should be done only under specific
circumstances.

Table 2.1. Tier-1 DBMS Vendors

After the big three come MySQL, Sybase, Teradata, and Informix. Table
2.2 lists these tier-2 DBMS vendors. All of these offerings are quality DBMS
products, but their installed base is smaller, their products are engineered and

marketed for niche purposes, or the companies are smaller with fewer
resources than the Big Three (IBM, Oracle, and Microsoft), so there is some
risk in choosing a DBMS from tier 2 instead of tier 1. However, there may be
solid reasons for deploying a tier-2 solution, such as the high performance
offered by Informix or the data warehousing and analytics capabilities of
Teradata.

Table 2.2. Tier-2 DBMS Vendors

Of course, there are other DBMS products on the market, many of which
are fine products and worthy of consideration for specialty processing, certain
predefined needs, and niche roles. If your company is heavily into the open-
source software movement, PostgreSQL, EnterpriseDB, or MySQL might be
viable options. If an object DBMS is important for a specific project, you
might consider ObjectDesign or Versant. And there are a variety of NoSQL
DBMS offerings available, too, such as Hadoop, Cassandra, and MongoDB.1

Choosing any of the lower-tier candidates involves incurring
additional risk.

However, for the bulk of your data management needs, a DBMS from a
tier-1, or perhaps tier-2, DBMS vendor will deliver sufficient functionality

with minimal risk. A myriad of DBMS products are available, each with
certain features that make them worthy of consideration on a case-by-case
basis. Choosing any of the lower-tier candidates—even such major names as
Software AG’s Adabas and Actian’s Ingres—involves incurring additional
risk. Refer to Appendix B for a list of DBMS vendors.
I do not want it to sound as if the selection of a DBMS is a no-brainer. You
will need a strategy and a plan for selecting the appropriate DBMS for your
specific situation. When choosing a DBMS, be sure to consider each of these
factors:

• Operating system support. Does the DBMS support the operating
systems in use at your organization, including the versions that you are
currently using and plan on using?

• Type of organization. Take into consideration the corporate philosophy
when you choose a DBMS. Some organizations are very conservative
and like to keep a tight rein on their environments; these organizations
tend to gravitate toward traditional mainframe environments.
Government operations, financial institutions, and insurance and health
companies usually tend to be conservative. More-liberal organizations
are often willing to consider alternative architectures. It is not
uncommon for manufacturing companies, dot-coms, and universities to
be less conservative. Finally, some companies just do not trust
Windows as a mission-critical environment and prefer to use UNIX;
this rules out some database vendors (Microsoft SQL Server, in
particular).

• Benchmarks. What performance benchmarks are available from the
DBMS vendor and other users of the DBMS? The Transaction
Processing Performance Council (TPC) publishes official database
performance benchmarks that can be used as a guideline for the basic
overall performance of many different types of database processing.
(Refer to the sidebar “The Transaction Processing Performance
Council” for more details.) In general, performance benchmarks can be
useful as a broad indicator of database performance but should not be
the only determinant when selecting a DBMS. Many of the TPC
benchmarks are run against database implementations that are not
representative of most production database systems and therefore are
not indicative of the actual performance of a particular DBMS. In

addition, benchmarks are constantly updated to show new and
improved performance measurements for each of the major DBMS
products, rendering the benchmark “winners” obsolete very quickly.

Benchmarks are constantly updated to show new and
improved performance measurements.

• Scalability. Does the DBMS support the number of users and database
sizes you intend to implement? How are large databases built,
supported, and maintained—easily or with a lot of pain? Are there
independent users who can confirm the DBMS vendor’s scalability
claims?

• Availability of supporting software tools. Are the supporting tools you
require available for the DBMS? These items may include query and
analysis tools, data warehousing support tools, database administration
tools, backup and recovery tools, performance-monitoring tools,
capacity-planning tools, database utilities, and support for various
programming languages.

The Transaction Processing Performance Council (TPC)
The Transaction Processing Performance Council is an independent, not-
for-profit organization that manages and administers performance
benchmark tests. Its mission is to define transaction processing and
database benchmarks to provide the industry with objective, verifiable
performance data. TPC benchmarks measure and evaluate computer
functions and operations.

The definition of transaction espoused by the TPC is a business one.
A typical TPC transaction includes the database updates for things such
as inventory control (goods), airline reservations (services), and banking
(money).

The benchmarks produced by the TPC measure performance in terms
of how many transactions a given system and database can perform per
unit of time, for example, number of transactions per second. The TPC
defines three benchmarks:

• TPC-C, for planned production workload in a transaction environment
• TPC-H, a decision support benchmark consisting of a suite of business-

oriented ad hoc queries and concurrent data modifications
• TPC-E, an updated OLTP workload (based on financial transaction

processing)
Additional information and in-depth definitions of these benchmarks

can be found at the TPC Web site at www.tpc.org (see Figure 2.1).

Figure 2.1. The TPC Web site

• Technicians. Is there a sufficient supply of skilled database
professionals for the DBMS? Consider your needs in terms of DBAs,
technical support personnel (system programmers and administrators,
operations analysts, etc.), and application programmers.

• Cost of ownership. What is the total cost of ownership of the DBMS?
DBMS vendors charge wildly varying prices for their technology. Total
cost of ownership should be calculated as a combination of the license
cost of the DBMS; the license cost of any required supporting software;
the cost of database professionals to program, support, and administer

http://www.tpc.org

the DBMS; and the cost of the computing resources required to operate
the DBMS.

• Release schedule. How often does the DBMS vendor release a new
version? Some vendors have rapid release cycles, with new releases
coming out every 12 to 18 months. This can be good or bad, depending
on your approach. If you want cutting-edge features, a rapid release
cycle is good. However, if your shop is more conservative, a DBMS
that changes frequently can be difficult to support. A rapid release cycle
will cause conservative organizations either to upgrade more frequently
than they would like or to live with outdated DBMS software that is
unlikely to have the same level of support as the latest releases.

• Reference customers. Will the DBMS vendor supply current user
references? Can you find other users on your own who might provide
more impartial answers? Speak with current users to elicit issues and
concerns you may have overlooked. How is support? Does the vendor
respond well to problems? Do things generally work as advertised? Are
there a lot of bug fixes that must be applied continuously? What is the
quality of new releases? These questions can be answered only by the
folks in the trenches.

When choosing a DBMS, be sure to take into account the complexity of
the products. DBMS software is very complex and is getting more complex
with each new release. Functionality that used to be supported only with add-
on software or independent programs is increasingly being added as features
of the DBMS, as shown in Figure 2.2. You will need to plan for and support
all the features of the DBMS. Even if there is no current requirement for
certain features, once you implement the DBMS the programmers and
developers will find a reason to use just about anything the vendor threw into
it. It is better to plan and be prepared than to allow features to be used
without a plan for supporting them.

Figure 2.2. Convergence of features and functionality in DBMS software

DBMS Architectures
The supporting architecture for the DBMS environment is very critical to the
success of the database applications. One wrong choice or poorly
implemented component of the overall architecture can cause poor
performance, downtime, or unstable applications.

When mainframes dominated enterprise computing, DBMS architecture
was a simpler concern. Everything ran on the mainframe, and that was that.
However, today the IT infrastructure is distributed and heterogeneous. The
overall architecture—even for a mainframe DBMS—will probably consist of
multiple platforms and interoperating system software. A team consisting of
business and IT experts, rather than a single person or group, should make the
final architecture decision. Business experts should include representatives
from various departments, as well as from accounting and legal for software
contract issues. Database administration representatives (DA, DBA, and SA),
as well as members of the networking group, operating system experts,
operations control personnel, programming experts, and any other interested
parties, should be included in this team.

The supporting architecture for the DBMS environment is
very critical to the success of the database applications.

Furthermore, be sure that the DBMS you select is appropriate for the
nature and type of processing you plan to implement. Four levels of DBMS
architecture are available: enterprise, departmental, personal, and mobile.

An enterprise DBMS is designed for scalability and high performance. An
enterprise DBMS must be capable of supporting very large databases, a large
number of concurrent users, and multiple types of applications. The
enterprise DBMS runs on a large-scale machine, typically a mainframe or a
high-end server running UNIX, Linux, or Windows Server. Furthermore, an
enterprise DBMS offers all the “bells and whistles” available from the DBMS
vendor. Multiprocessor support, support for parallel queries, and other
advanced DBMS features are core components of an enterprise DBMS.

Four levels of DBMS architecture are available: enterprise,
departmental, personal, and mobile.

A departmental DBMS, sometimes referred to as a workgroup DBMS,
serves the middle ground. The departmental DBMS supports small to
medium-size workgroups within an organization; typically, it runs on a
UNIX, Linux, or Windows server. The dividing line between a departmental
database server and an enterprise database server is quite gray. Hardware and
software upgrades can allow a departmental DBMS to tackle tasks that
previously could be performed only by an enterprise DBMS. The steadily
falling cost of departmental hardware and software components further
contributes to lowering the total cost of operation and enabling a workgroup
environment to scale up to serve the enterprise.

A personal DBMS is designed for a single user, typically on a low- to
medium-powered PC platform. Microsoft Access, SQLite, and FileMaker2

are examples of personal database software. Of course, the major DBMS
vendors also market personal versions of their higher-powered solutions,
such as Oracle Database Personal Edition and DB2 Personal Edition.
Sometimes the low cost of a personal DBMS results in a misguided attempt
to choose a personal DBMS for a departmental or enterprise solution.
However, do not be lured by the low cost. A personal DBMS product is
suitable only for very small-scale projects and should never be deployed for
multiuser applications.

Finally, the mobile DBMS is a specialized version of a departmental or
enterprise DBMS. It is designed for remote users who are not usually

connected to the network. The mobile DBMS enables local database access
and modification on a laptop or handheld device. Furthermore, the mobile
DBMS provides a mechanism for synchronizing remote database changes to
a centralized enterprise or departmental database server.

A DBMS designed for one type of processing may be ill suited for other
uses. For example, a personal DBMS is not designed for multiple users, and
an enterprise DBMS is generally too complex for single users. Be sure to
understand the differences among enterprise, departmental, personal, and
mobile DBMS software, and choose the appropriate DBMS for your specific
data-processing needs. You may need to choose multiple DBMS types—that
is, a DBMS for each level—with usage determined by the needs of each
development project.

If your organization requires DBMS solutions at different levels, favor the
selection of a group of DBMS solutions from the same vendor whenever
possible. Doing so will minimize differences in access, development, and
administration. For example, favor Oracle Database Personal Edition for your
single-user DBMS needs if your organization uses Oracle as the enterprise
DBMS of choice.

DBMS Clustering
Clustering is the use of multiple “independent” computing systems working
together as a single, highly available system. A modern DBMS offers
clustering support to enhance availability and scalability. The two
predominant architectures for clustering are shared-disk and shared-nothing.
These names do a good job of describing the nature of the architecture—at
least at a high level.

A modern DBMS offers clustering support to enhance
availability and scalability.

Shared-nothing clustering is depicted in Figure 2.3. In a shared-nothing
architecture, each system has its own private resources (memory, disks, etc.).
The clustered processors communicate by passing messages through a
network that interconnects the computers. In addition, requests from clients
are automatically routed to the system that owns the resource. Only one of
the clustered systems can “own” and access a particular resource at a time. In
the event a failure occurs, resource ownership can be dynamically transferred

to another system in the cluster. The main advantage of shared-nothing
clustering is scalability. In theory, a shared-nothing multiprocessor can scale
up to thousands of processors because they do not interfere with one another
—nothing is shared.

Figure 2.3. Shared-nothing architecture

The main advantage of shared-nothing clustering is scalability.

Shared-disk clustering is better suited to large-enterprise
processing in a mainframe environment.

In a shared-disk environment, all the connected systems share the same
disk devices, as shown in Figure 2.4. Each processor still has its own private
memory, but all the processors can directly address all the disks. Typically,
shared-disk clustering does not scale as well for smaller machines as shared-
nothing clustering. Shared-disk clustering is better suited to large-enterprise
processing in a mainframe environment. Mainframes—very large processors
—are capable of processing enormous volumes of work. Great benefits can
be obtained with only a few clustered mainframes, while many PC and
midrange processors would need to be clustered to achieve similar benefits.

Figure 2.4. Shared-disk architecture

Shared-disk clustering is usually preferable for applications and services
requiring only modest shared access to data and for applications or workloads
that are very difficult to partition. Applications with heavy data update
requirements are probably better implemented as shared-nothing. Table 2.3
compares the capabilities of shared-disk and shared-nothing architectures.

Table 2.3. Comparison of Shared-Disk and Shared-Nothing
Architectures

The major DBMS vendors provide support for different types of clustering
with different capabilities and requirements. For example, DB2 for z/OS
provides shared-disk clustering with its Data Sharing and Parallel Sysplex
capabilities; DB2 on non-mainframe platforms uses shared-nothing
clustering. Oracle’s Real Application Clusters provide shared-disk clustering.

For most users, the primary benefit of clustering is the enhanced
availability that accrues by combining processors. In some cases, clustering
can help an enterprise to achieve five-nines (99.999 percent) availability.
Additionally, clustering can be used for load balancing and failover.

DBMS Proliferation
As a rule of thumb, create a policy (or at least some simple guidelines) that
must be followed before a new DBMS can be brought into the organization.
Failure to do so can cause a proliferation of different DBMS products that
will be difficult to support. It can also cause confusion regarding which
DBMS to use for which development effort.

A proliferation of different DBMS products can be difficult to
support.

As mentioned earlier, there is a plethora of DBMS vendors, each touting
its benefits. As a DBA, you will be bombarded with marketing and sales
efforts that attempt to convince you that you need another DBMS. Try to
resist unless a very compelling reason is given and a short-term return on
investment (ROI) can be demonstrated. Even when confronted with valid
reasons and good ROI, be sure to double-check the arguments and ROI
calculations. Sometimes the reasons specified are outdated and the ROI
figures do not take everything into account—such as the additional cost of
administration.

Remember, every DBMS requires database administration support.
Moreover, each DBMS uses different methods to perform similar tasks. The
fewer DBMS products installed, the less complicated database administration
becomes, and the better your chances become of providing effective data
management resources for your organization.

Hardware Issues
When establishing a database environment for application development,
selecting the DBMS is only part of the equation. The hardware and operating
system on which the DBMS will run will greatly impact the reliability,
availability, and scalability (RAS) of the database environment. For example,
a mainframe platform such as an IBM zEC12 running z/OS will probably
provide higher RAS than a midrange IBM xSeries machine running AIX,
which in turn will probably exceed a Dell server running Windows. That is
not to say everything should run on a mainframe; other issues such as cost,
experience, manageability, and the needs of the applications to be developed
must be considered. The bottom line is that you must be sure to factor
hardware platform and operating system constraints into the DBMS selection

criteria.

Factor hardware platform and operating system constraints
into the DBMS selection criteria.

Cloud Database Systems
Cloud computing (see the sidebar) is increasing in usage, especially at small
to medium-size businesses. A cloud implementation can be more cost-
effective than building an entire local computing infrastructure that requires
management and support.

A cloud database system delivers DBMS services over the Internet. The
trade-off essentially comes down to trusting a cloud provider to store and
manage your data in return for minimizing database administration and
maintenance cost and effort. Using cloud database systems can enable
organizations, especially smaller ones without the resources to invest in an
enterprise computing infrastructure, to focus on their business instead of their
computing environment.

By consolidating data sources in the cloud, it is possible to improve
collaboration among partners, branch offices, remote workers, and mobile
devices, because the data becomes accessible as a service. There is no need to
install, set up, patch, or manage the DBMS software because the cloud
provider manages and cares for these administrative tasks. Of course, the
downside is that your data is now stored and controlled by an external agent
—the cloud provider. Another inherent risk of cloud computing is the
possibility of nefarious agents posing as legitimate customers.

Cloud Computing Overview
At a high level, cloud computing is the delivery of computing as a service.
Cloud computing applications rely on a network (typically the Internet) to
provide users with shared resources, software, and data. With cloud
computing, computer systems and applications are supposed to function
like a utility provider (such as the electricity grid).

The term cloud is used as a metaphor for the Internet. It is based on
the tendency to draw network access as an abstract “cloud” in
infrastructure diagrams. An example of this can be seen in Figure 1.11
in Chapter 1 of this book.

From a DBMS perspective, cloud computing moves the data and its
management away from your local computing environment and delivers
it as a service over the Internet.

An example of a cloud database platform is Microsoft SQL Azure. It is
built on SQL Server technologies and is a component of the Windows Azure
platform.

Installing the DBMS
Once the DBMS has been chosen, you will need to install it. Installing a
DBMS is not as simple as popping a CD into a drive and letting the software
install itself (or, for you mainframe folks, just using IEBGENER to copy it
from a tape). A DBMS is a complex piece of software that requires up-front
planning for installation to be successful. You will need to understand the
DBMS requirements and prepare the environment for the new DBMS.

DBMS Installation Basics
The very first thing to do when you install a DBMS for the first time is to
understand the prerequisites. Every DBMS comes with an installation manual
or guide containing a list of the operating requirements that must be met for
the DBMS to function properly. Examples of prerequisites include ensuring
that an appropriate version of the operating system is being used, verifying
that there is sufficient memory to support the DBMS, and ensuring that any
related software to be used with the DBMS is the proper version and
maintenance level.

Read the installation guide from cover to cover.

Once the basics are covered, read the installation guide from cover to
cover. Make sure that you understand the process before you even begin to
install the DBMS. Quite a few preparations need to be made before installing
a DBMS, and reading about them before you start will ensure a successful
installation. Review how the installation program or routine for the DBMS
operates, and follow the explicit instructions in the installation guide
provided with the DBMS software. You additionally might want to work
closely with the DBMS vendor during an initial installation to ensure that
your plans are sound. In some cases, working with a local, experienced

vendor or consultant can be beneficial to avoid installation and configuration
errors.

The remainder of this section will discuss some of the common
preparations that are required before a DBMS can be installed. If the DBMS
is already operational and you are planning to migrate to a new DBMS
release, refer to the section “Upgrading DBMS Versions and Releases.”

Hardware Requirements
Every DBMS has a basic CPU requirement, meaning a CPU version and
minimum processor speed required for the DBMS to operate. Additionally,
some DBMSs specify hardware models that are required or unsupported.
Usually the CPU criterion will suffice for an Intel environment, but in a
mainframe or enterprise server environment the machine model can make a
difference with regard to the DBMS features supported. For example, certain
machines have built-in firmware that can be exploited by the DBMS if the
firmware is available.

Choose the correct DBMS for your needs and match your
hardware to the requirements of the DBMS.

Furthermore, each DBMS offers different “flavors” of its software for
specific needs. (I use “flavor” as opposed to “version” or “release,” which
specify different iterations of the same DBMS.) Different flavors of the
DBMS (at the same release level) are available for specific environments
such as parallel processing, pervasive computing (such as handheld devices),
data warehousing, and/or mobile computing. Be sure to choose the correct
DBMS for your needs and to match your hardware to the requirements of the
DBMS.

Storage Requirements
A DBMS requires disk storage to run. And not just for the obvious reason—
to create databases that store data. A DBMS will use disk storage for the
indexes to be defined on the databases as well as for the following items:

• The system catalog or data dictionary used by the DBMS to manage
and track databases and related information. The more database objects
you plan to create, the larger the amount of storage required by the
system catalog.

• Any other system databases required by the DBMS, for example, to
support distributed connections or management tools.

• Log files that record all changes made to every database. These include
active logs, archive logs, rollback segments, and any other type of
change log required by the DBMS.

• Start-up or control files that must be accessed by the DBMS when it is
started or initialized.

• Work files used by the DBMS to sort data or for other processing
needs.

• Default databases used by the DBMS for system structures or as a
default catchall for new database objects as they are created.

• Temporary database structures used by the DBMS (or by applications
accessing databases) for transient data that is not required to be
persistent but needs reserved storage during operations (such as
rebuilding clustered indexes on Microsoft SQL Server).

• System dump and error-processing files.
• DBA databases used for administration, monitoring, and tuning—for

example, DBA databases used for testing new releases, migration
scripts, and so on.

Be sure to factor in every storage requirement of the DBMS and reserve
the appropriate storage. Also, be aware that the DBMS will use many of these
databases and file structures concurrently. Therefore, it is a good idea to plan
on using multiple storage devices even if you will not fill them to capacity.
Proper database and file placement will enable the DBMS to operate more
efficiently because concurrent activities will not be constrained by the
physical disk as data is accessed.

Factor in every storage requirement of the DBMS and reserve
the appropriate storage.

Disk storage is not the only requirement of a DBMS. Tape or optical discs
(such as DVDs and CDs) are also required for tasks such as database backups
and log off-loading. When the active log file fills up, the log records must be
off-loaded to an archive log either on disk or on tape, as shown in Figure 2.5.
Depending on the DBMS being used and the features that have been
activated, this process may be automatic or manual. The archive log files

must be retained for recovery purposes, and even if originally stored on disk,
they must eventually be migrated to an external storage mechanism for
safekeeping.

Figure 2.5. Log off-loading

Plan on maintaining multiple tape or CD/DVD drives to enable the DBMS
to run concurrent multiple processes that require external storage, such as
concurrent database backups. Database outages can occur if you single-thread
your database backup jobs using a single drive.

Memory Requirements
Relational DBMSs, as well as their databases and applications, love memory.
A DBMS requires memory for basic functionality and will use it for most
internal processes such as maintaining the system global area and performing
many DBMS tasks.

A DBMS requires a significant amount of memory to cache data in
memory structures in order to avoid I/O. Reading data from a disk storage
device is always more expensive and slower than moving the data around in
memory. Figure 2.6 shows how the DBMS uses a memory structure called a
buffer pool or data cache to reduce physical I/O requests. By caching data

that is read into a buffer pool, the DBMS can avoid I/O for subsequent
requests for the same data, as long as it remains in the buffer pool. In general,
the larger the buffer pool, the longer the data can remain in memory and the
better overall database processing will perform.

Figure 2.6. Buffer pool (or data cache)

Besides data, the DBMS will cache other structures in memory. Most
DBMSs set aside memory to store program structures required by the DBMS
to process database requests.3 The program cache stores things like
“compiled” SQL statements, database authorizations, and database structure
blocks that are used by programs as they are executed. When these structures
are cached, database processing can be optimized because additional I/O
requests to access them from a physical storage device are avoided.

Memory is typically required by the DBMS to support other features such
as handling lock requests, facilitating distributed data requests, sorting data,
optimizing processes, and processing SQL.

Ensure that the DBMS has a more-than-adequate supply of memory at its
disposal. This will help to optimize database processing and minimize

potential problems.

Ensure that the DBMS has a more-than-adequate supply of
memory at its disposal.

Configuring the DBMS
Configuring the system parameters of the DBMS controls the manner in
which the DBMS functions and the resources made available to it.4 Each
DBMS allows its system parameters to be modified in different ways, but the
installation process usually sets the DBMS system parameters by means of
radio buttons, menus, or panel selections. During the installation process, the
input provided to the installation script will be used to establish the initial
settings of the system parameters.

Each DBMS also provides a method to change the system
parameters once the DBMS is operational.

Each DBMS also provides a method to change the system parameters once
the DBMS is operational. Sometimes you can use DBMS commands to set
the system’s parameters; sometimes you must edit a file that contains the
current system parameter settings. If you must edit a file, be very careful: An
erroneous system parameter setting can be fatal to the operational status of
the DBMS.

What do the system parameters control? Well, for example, system
parameters control DBA authorization to the DBMS and the number of active
database logs; system parameters set the amount of memory used for data and
program caching and turn DBMS features on or off. Although every DBMS
has system parameters that control its functionality, each DBMS has a
different method of setting and changing the values. And, indeed, each
DBMS has different specifications that can be set using system parameters.

Beware of simply using default system parameters when installing the
database system software. Although using defaults can save time and make
for an easier installation, it can also result in subsequent problems. Most
DBMSs are poorly served, in the long run, by default settings and, in some
cases, can experience worsening performance over time because resources
were not preallocated during installation or setup.

Be sure to understand fully the parameters used by your DBMS. Failure to

do so can result in an incorrectly configured database environment, which
can cause performance problems, data integrity problems, or even DBMS
failure.

Connecting the DBMS to Supporting Infrastructure Software
Part of the DBMS installation process is the connection of the DBMS to other
system software components that must interact with the DBMS. Typical
infrastructure software that may need to be configured to work with the
DBMS includes networks, transaction processing monitors, message queues,
other types of middleware, programming languages, systems management
software, operations and job control software, Web servers, and application
servers.

Each piece of supporting infrastructure software will have
different requirements for interfacing with the DBMS.

Each piece of supporting infrastructure software will have different
requirements for interfacing with the DBMS. Typical configuration
procedures can include installing DLL files, creating new parameter files to
establish connections, and possibly revisiting the installation procedures for
the supporting software to install components required to interact with the
DBMS.

Installation Verification
After installing the DBMS, you should run a battery of tests to verify that the
DBMS has been properly installed and configured. Most DBMS vendors
supply sample programs and installation verification procedures for this
purpose. Additionally, you can ensure proper installation by testing the
standard interfaces to the DBMS. One standard interface supported by most
DBMSs is an interactive SQL interface where you can submit SQL
statements directly to the DBMS.5

Create a set of SQL code that comprises SELECT, INSERT, UPDATE,
and DELETE statements issued against sample databases. Running such a
script after installation helps you to verify that the DBMS is installed
correctly and operating as expected.

Furthermore, be sure to verify that all required connections to supporting
software are operational and functioning properly. If the DBMS vendor does

not supply sample programs, you may need to create and run simple test
programs for each environment to ensure that the supporting software
connections are functioning correctly with the DBMS.

DBMS Environments
Generally, installing a DBMS involves more than simply installing one
instance or subsystem. To support database development, the DBA needs to
create multiple DBMS environments to support, for example, testing, quality
assurance, integration, and production work. Of course, it is possible to
support multiple environments in a single DBMS instance, but it is not
prudent. Multiple DBMS installations are preferable to support multiple
development environments for a single database. This minimizes migration
issues and won’t require complex database naming conventions to support.
Furthermore, segregating database instances makes testing, tuning, and
monitoring easier.

Upgrading DBMS Versions and Releases
Change is a fact of life, and each of the major DBMS products changes quite
rapidly. A typical release cycle for DBMS software is 18 to 24 months for
major releases, with constant bug fixes and maintenance updates delivered
between major releases. Indeed, keeping DBMS software up-to-date can be a
full-time job.

Change is a fact of life.

The DBA must develop an approach to upgrading DBMS software that
conforms to the organization’s needs and minimizes business disruptions due
to outages and database unavailability.

You may have noticed that I use the terms version and release somewhat
interchangeably. That is fine for a broad discussion of DBMS upgrades, but a
more precise definition is warranted. For a better discussion of the differences
between a version and a release, please refer to the sidebar.

A DBMS version upgrade can be thought of as a special case of a new
installation. All the procedures required of a new installation apply to an
upgrade: You must plan for appropriate resources, reconsider all system
parameters, and ensure that all supporting software is appropriately
connected. However, another serious issue must be planned for: existing

users and applications. An upgrade needs to be planned to cause as little
disruption to the existing users as possible. Furthermore, any additional
software that works with the DBMS (such as purchased applications, DBA
tools, utilities, and so on) must be verified to be compatible with the new
DBMS version. Therefore, upgrading can be a tricky and difficult task.

Version or Release?
Vendors typically make a distinction between a version and a release of a
software product. A new version of software is a major concern, with
many changes and new features. A release is typically minor, with fewer
changes and not as many new features.

For example, moving from Version 10g of Oracle Database to
Version 11g would be a major change—a version change. However, an
in-between point such as Oracle Database 11g Release 2 would be
considered a release—consisting of a smaller number of changes.
Usually DBMS vendors increase prices for versions, but not necessarily
for releases (but that is not a hard-and-fast rule).

Usually significant functionality is added for version upgrades, less so
for point releases. Nevertheless, upgrading from one point release to
another can have just as many potential pitfalls as a version upgrade. It
depends on the nature of the new features provided in each specific
release.

The issues and concerns discussed in this chapter pertain to both types
of DBMS upgrades: to a new release and to a new version.

In a complex, heterogeneous, distributed database environment, a coherent
upgrade strategy is essential. Truthfully, even organizations with only a
single DBMS should approach DBMS upgrades cautiously and plan
accordingly. Failure to plan a DBMS upgrade can result in improper and
inefficient adoption of new features, performance degradation of new and
existing applications, and downtime.

Upgrading to a new DBMS release offers both rewards and risks. The
following are some of the benefits of moving to a new release:

• Developers can avail themselves of new features and functionality
delivered only in the new release. If development requires a new

feature, or can simply benefit from a new feature, program development
time can be reduced or made more cost-effective.

• For purchased applications, the application vendor may require a
specific DBMS version or release for specific versions of its application
to enable specific functionality within the application.

• New DBMS releases usually deliver enhanced performance and
availability features that can optimize existing applications. Sometimes
a new DBMS release is required to scale applications to support
additional users or larger amounts of data.

• DBMS vendors often provide better support and respond to problems
faster for a new release of their software. DBMS vendors are loath to
allow bad publicity about bugs in a new and heavily promoted version
of their products.

• Cost savings may accrue by upgrading to a new DBMS release. Some
vendors charge additionally when a company uses multiple versions of
a DBMS, such as the new version in a test environment and the old in
production. When both are migrated to the same version, the price tag
for the DBMS sometimes can be reduced.

• Production migration to a new DBMS release will align the test and
production database environments, thereby providing a consistent
environment for development and implementation. If a new release is
running in the test environment for too long, database administration
and application development tasks become more difficult because the
test databases will operate differently from the production databases.

However, an effective DBMS upgrade strategy must balance the benefits
against the risks of upgrading to arrive at the best timeline for migrating to a
new DBMS version or release. The risks of upgrading to a new DBMS
release include the following:

An effective DBMS upgrade strategy must balance the
benefits against the risks of upgrading.

• An upgrade to the DBMS usually involves some level of disruption to
business operations. At a minimum, databases will not be available
while the DBMS is being upgraded. This can result in downtime and
lost business opportunities if the DBMS upgrade occurs during normal

business hours (or if there is no planned downtime). Clustered database
implementations may permit some database availability while
individual database clusters are migrated to the new DBMS version.

• Other disruptions can occur, such as having to convert database
structures or discovering that previously supported features were
removed from the new release (thereby causing application errors).
Delays to application implementation timelines are another possibility.

• The cost of an upgrade can be a significant barrier to DBMS release
migration. First, the cost of the new version or release must be
budgeted for (price increases for a new DBMS version can amount to
as much as 10 to 25 percent). The upgrade cost must also factor in the
costs of planning, installing, testing, and deploying not just the DBMS
but also any applications that use databases. Finally, be sure to include
the cost of any new resources (such as memory, storage, additional
CPUs) required to use the new features delivered by the new DBMS
version.6

• DBMS vendors usually tout the performance gains that can be achieved
with a new release. However, when SQL optimization techniques
change, it is possible that a new DBMS release will generate SQL
access paths that perform worse than before. DBAs must implement a
rigorous testing process to ensure that new access paths are helping, not
harming, application performance. When performance suffers,
application code may need to be changed—a very costly and time-
consuming endeavor. A rigorous test process should be able to catch
most of the access path changes in the test environment.

• New DBMS releases may cause features and syntax that are being used
in existing applications to be deprecated.7 When this occurs, the
applications must be modified before migration to the new release can
proceed.

• To take advantage of improvements implemented in a new DBMS
release, the DBA may have to apply some invasive changes. For
example, if the new version increases the maximum size for a database
object, the DBA may have to drop and recreate that object to take
advantage of the new maximum. This will be the case when the DBMS
adds internal control structures to facilitate such changes.

• Supporting software products may lack immediate support for a new

DBMS release. Supporting software includes the operating system,
transaction processors, message queues, purchased applications, DBA
tools, development tools, and query and reporting software.

After weighing the benefits of upgrading against the risks of a new DBMS
release, the DBA group must create an upgrade plan that works for the
organization. Sometimes the decision will be to upgrade immediately upon
availability, but often there is a lag between the general availability of a new
release and its widespread adoption.

When the risks of a new release outweigh the benefits, some organizations
may decide to skip an interim release if doing so does not impact a future
upgrade. For example, a good number of Oracle customers migrated directly
from Oracle7 to Oracle8i, skipping Oracle8. If the DBMS vendor does not
allow users to bypass a version or release, it is still possible to “skip” a
release by waiting to implement that release until the next release is available.
For example, consider the following scenario:

1. ABC Corporation is using DB Version 8 from DBCorp.
2. DBCorp announces Version 9 of DB.
3. ABC Corporation analyzes the features and risks and determines not to

upgrade immediately.
4. DBCorp later announces DB Version 10 and that no direct migration

path will be provided from Version 8 to Version 10.
5. ABC Corporation decides that DB Version 10 provides many useful

features and wants to upgrade its current Version 8 implementation of
DB. However, it has no compelling reason to first implement and use
Version 9.

6. To fulfill its requirements, ABC Corporation first upgrades Version 8
to Version 9 and then immediately upgrades Version 9 to Version 10.

Although a multiple-release upgrade takes more time, it allows customers
to effectively control when and how they will migrate to new releases of a
DBMS instead of being held hostage by the DBMS vendor. When attempting
a multiple-release upgrade of this type, be sure to fully understand the
features and functionality added by the DBMS vendor for each interim
release. In the case of the hypothetical ABC Corporation, the DBAs would
need to research and prepare for the new features of not just Version 10 but
also Version 9.

A multiple-release upgrade allows customers to effectively
control when and how they will migrate to new releases of a
DBMS.

An appropriate DBMS upgrade strategy depends on many things. The
following sections outline the issues that must be factored into an effective
DBMS release upgrade strategy.

Features and Complexity
Perhaps the biggest factor in determining when and how to upgrade to a new
DBMS release is the functionality supported by the new release. Tightly
coupled to functionality is the inherent complexity involved in supporting
and administering new features.

It is more difficult to delay an upgrade if application developers are
clamoring for new DBMS features. If DBMS functionality can minimize the
cost and effort of application development, the DBA group will feel pressure
to migrate swiftly to the new release. An additional factor that will coerce
rapid adoption of a new release is when DBMS problems are fixed in the new
release (instead of through regular maintenance fixes).

Regardless of a new release’s “bells and whistles,” certain administration
and implementation details must be addressed before upgrading. The DBA
group must ensure that standards are modified to include the new features,
educate developers and users as to how new features work and should be
used, and prepare the infrastructure to support the new DBMS functionality.

The types of changes required to support the new functionality must be
factored into the upgrade strategy. When the DBMS vendor makes changes
to internal structures, data page layouts, or address spaces, the risks of
upgrading are greater. Additional testing is warranted in these situations to
ensure that database utilities, DBA tools, and data extraction and movement
tools still work with the revised internal structures.

Complexity of the DBMS Environment
The more complex your database environment is, the more difficult it will be
to upgrade to a new DBMS release. The first complexity issue is the size of
the environment. The greater the number of database servers, instances,
applications, and users, the greater the complexity. Additional concerns
include the types of applications being supported. A DBMS upgrade is easier

to implement if only simple, batch-oriented applications are involved. As the
complexity and availability requirements of the applications increase, the
difficulty of upgrading also increases.

Location of the database servers also affects the release upgrade strategy.
Effectively planning and deploying a DBMS upgrade across multiple
database servers at various locations supporting different lines of business is
difficult. It is likely that an upgrade strategy will involve periods of
supporting multiple versions of the DBMS at different locations and for
different applications. Supporting different versions in production should be
avoided, but that is not always possible.

Finally, the complexity of the applications that access your databases must
be considered. The more complex your applications are, the more difficult it
will be to ensure their continuing uninterrupted functionality when the
DBMS is modified. Complexity issues include the following:

• Usage of stored procedures and user-defined functions.
• Complexity of the SQL—the more tables involved in the SQL and the

more complex the SQL features, the more difficult it becomes to ensure
that access path changes do not impact performance.

• Client/server processing—network usage and usage of multiple tiers
complicates testing the new DBMS release.

• Applications that are designed, coded, and generated by a framework or
an IDE (for example, Hibernate) may have additional components that
need to be tested with a new DBMS release.

• Integration with other infrastructure software such as message queues
and transaction processors can complicate migration because new
versions of these products may be required to support the new DBMS
release.

• The language used by the programs might also impact DBMS release
migration due to different support for compiler versions, changes to
APIs (application programming interfaces), or new ways of embedding
SQL into application programs.

Reputation of the DBMS Vendor
DBMS vendors have different reputations for technical support, fixing bugs,
and responding to problems, which is why customer references are so

important when choosing a database.

The better the reputation of the vendor, the greater the
likelihood of organizations rapidly adopting a new release.

The better the reputation of the vendor, the greater the likelihood of
organizations rapidly adopting a new release. If the DBMS vendor is good at
responding to problems and supporting its customers as they migrate to new
releases, those customers will more actively engage in migration activities.

Support Policies of the DBMS
As new releases are introduced, DBMS vendors will retire older releases and
no longer support them. The length of time that the DBMS vendor will
support an old release must be factored into the DBMS release migration
strategy. You should never run a DBMS release in production that is no
longer supported by the vendor. If problems occur, the DBMS vendor will
not be able to resolve them for you.

Sometimes a DBMS vendor will provide support for a retired release on a
special basis and at an increased maintenance charge. If you absolutely must
continue using a retired DBMS release (for business or application issues), be
sure to investigate the DBMS vendor’s policies regarding support for retired
releases of its software.

Organization Style
Every organization displays characteristics that reveal its style when it comes
to adopting new products and technologies. Industry analysts at Gartner, Inc.,
have ranked organizations into three distinct groups labeled types A, B, and
C. A type-A enterprise is technology driven and, as such, is more likely to
risk using new and unproven technologies to try to gain a competitive
advantage. A type-B organization is less willing to take risks but will adopt
new technologies once others have shaken out the bugs. Finally, a type-C
enterprise, very conscious of cost and averse to risk, will lag behind the
majority when it comes to migrating to new technology.

Only type-A organizations should plan on moving aggressively to new
DBMS releases immediately upon availability and only if the new features of
the release will deliver advantages to the company. Type-C enterprises
should adopt a very conservative strategy to ensure that the DBMS release is

stable and well tested by type-A and type-B companies first. Type-B
organizations will fall somewhere between types A and C: Almost never
upgrading immediately, the type-B company will adopt the new release after
the earliest users have shaken out the biggest problems, but well before type-
C enterprises.

DBA Staff Skill Set
Upgrading the DBMS is easier if your DBA staff is highly skilled and/or
experienced. The risk of an upgrade increases as the skills of the DBA staff
decrease. If your DBAs are not highly skilled, or have never migrated a
DBMS to a new release, consider augmenting your DBA staff with
consultants for the upgrade. Deploying an integrated team of internal DBAs
and consultants will ensure that your upgrade goes as smoothly as possible.
Furthermore, the DBA staff will be better prepared to handle the future
upgrades alone.

The risk of an upgrade increases as the skills of the DBA staff
decrease.

If consultants will be required, be sure to include their contracting cost in
the DBMS release upgrade budget. The budget should allow you to retain the
consultants until all production database environments are stable.

Platform Support
When a DBMS vendor unleashes a new release of its product, not all
platforms and operating systems are immediately supported. The DBMS
vendor usually first supports the platforms and operating systems for which it
has the most licensed customers. The order in which platforms are supported
for a new release is likely to differ for each DBMS vendor. For example,
Linux for System z is more strategic to IBM than to Oracle, so a new DB2
release will most likely support Linux for System z very quickly, whereas
this may not be true of Oracle. The issue is even thornier for UNIX platforms
because of the sheer number of UNIX variants in the marketplace. The most
popular variants are Oracle’s Solaris, IBM’s AIX, Hewlett-Packard’s HP-
UX, and Linux, the open-source version of UNIX (the Red Hat and Suse
distributions are supported more frequently and rapidly than others). Most
DBMS vendors will support these UNIX platforms quickly upon general
availability. Other less popular varieties of UNIX will take longer for the

DBMS vendors to support.
When planning your DBMS upgrade, be sure to consider the DBMS

platforms you use and try to gauge the priority of your platform to your
vendor. Be sure to build some lag time into your release migration strategy to
accommodate the vendor’s delivery schedule for your specific platforms.

Supporting Software
Carefully consider the impact of a DBMS upgrade on any supporting
software. Supporting software includes purchased applications, DBA tools,
reporting and analysis tools, and query tools. Each software vendor will have
a different time frame for supporting and exploiting a new DBMS release.
Review the sidebar to understand the difference between support and
exploitation of a new DBMS release.

Carefully consider the impact of a DBMS upgrade on any
supporting software.

Some third-party tool vendors follow guidelines for supporting and
exploiting new DBMS releases. Whenever possible, ask your vendors to state
their policies for DBMS upgrade support. Your vendors will probably not
commit to any firm date or date range to support new versions and releases—
some DBMS versions are larger and more complicated and therefore take
longer to fully exploit.

Support versus Exploit
Some vendors differentiate specifically between supporting and exploiting
a new DBMS version or release. Software that supports a new release will
continue to function the same as before the DBMS was upgraded, but with
no new capabilities. Therefore, if a DBA tool, for example, supports a new
version of Oracle, it can provide all the services it did for the last release,
as long as none of the new features of the new version of Oracle are used.
In contrast, a DBA tool that exploits a new version or release provides the
requisite functionality to operate on the new features of the new DBMS
release.

So, to use a concrete example, IBM added support for hashing in
Version 10 of DB2. A DBA tool can support DB2 Version 10 without
operating on hashes, but it must operate on hashes to exploit DB2

Version 10.
Prior to migrating to a new DBMS version or release, make sure you

understand the difference between supporting and exploiting a new
version, and get a schedule for both from your third-party vendors for
the DBA tools you use.

Fallback Planning
Each new DBMS version or release should come with a manual that outlines
the new features of the release and describes the fallback procedures to return
to a prior release of the DBMS. Be sure to review the fallback procedures
provided by the DBMS vendor in its release guide. You may need to return to
a previous DBMS release if the upgrade contains a bug, performance
problems ensue, or other problems arise during or immediately after
migration. Keep in mind that fallback is not always an option for every new
DBMS release.

If fallback is possible, follow the DBMS vendor’s recommended
procedures to enable it. You may need to delay the implementation of certain
new features for fallback to remain an option. Understand fully the
limitations imposed by the DBMS vendor on fallback, and exploit new
features only when fallback is no longer an option for your organization.

Migration Verification
The DBA should implement procedures—similar to those for a new
installation—to verify that the DBMS release upgrade is satisfactory. Perform
the same steps as with a brand-new DBMS install, but also test a
representative sampling of your in-house applications to verify that the
DBMS upgrade is working correctly and performing satisfactorily.

The DBA should implement procedures to verify that the
DBMS release upgrade is satisfactory.

The DBMS Upgrade Strategy
In general, design your DBMS release upgrade policy according to the
guidelines discussed in the preceding sections. Each specific DBMS upgrade
will be unique, but the strategies we’ve discussed will help you to achieve
success more readily. A well-thought-out DBMS upgrade strategy will

prepare you to support new DBMS releases with minimum impact on your
organization and in a style best suited to your company.

Database Standards and Procedures
Before a newly installed DBMS can be used effectively, standards and
procedures must be developed for database usage. Studies have shown that
companies with high levels of standardization reduce the cost of supporting
end users by as much as 35 percent or more as compared to companies with
low levels of standardization.

Standards and procedures must be developed for database
usage.

Standards are common practices that ensure the consistency and
effectiveness of the database environment, such as database naming
conventions. Procedures are defined, step-by-step instructions that direct the
processes required for handling specific events, such as a disaster recovery
plan. Failure to implement database standards and procedures will result in a
database environment that is confusing and difficult to manage.

The DBA should develop database standards and procedures as a
component of corporate-wide IT standards and procedures. They should be
stored together in a central location as a printed document, in an online
format, or as both. Several vendors offer “canned” standards and procedures
that can be purchased for specific DBMS products.

Database Naming Conventions
One of the first standards to be implemented should be a set of guidelines for
the naming of database objects. Without standard database object naming
conventions, it will be difficult to identify database objects correctly and to
perform the proper administration tasks.

Database object naming standards should be developed in conjunction with
all other IT naming standards in your organization. In all cases, database
naming standards should be developed in cooperation with the data
administration department (if one exists) and, wherever possible, should
peacefully coexist with other IT standards, but not at the expense of
impairing the database environment. For example, many organizations have
shop conventions for naming files, but coordinating the database object to the

operating system file may require a specific format for database filenames
that does not conform to the shop standards (see Figure 2.7). Therefore, it
may be necessary to make exceptions to existing shop standards for naming
database files.

Figure 2.7. Database objects map to filenames

Be sure to create and publish naming standards for all database objects that
can be created within each DBMS used by your organization. A basic list of
database objects supported by most DBMSs includes databases, tables,
columns, views, indexes, constraints, programs, user-defined data types, user-
defined functions, triggers, and stored procedures. However, this list is
incomplete because each DBMS uses other database objects specific to its
operation. For example, DB2 uses plans and storage groups; Oracle uses
database links and clusters; SQL Server uses filegroups and rules (see the
sidebar).

Be sure to establish naming conventions for all database
objects.

The database naming standard should be designed to minimize name
changes across environments. For example, embedding a T into the name for
“test” and a P for “production” is a bad idea. It is especially important to
avoid this approach for user-visible database objects such as columns, tables,
and views. Minimizing name changes simplifies the migration of databases
from one environment to another. It is possible to make all the database
object names the same by assigning each environment to a different instance
or subsystem. The instance or subsystem name, rather than the database
object names, will differentiate the environments.

Minimize name changes across environments.

Example Nonstandard Database Objects
Unless you use all three of DB2, Oracle, and SQL Server, some of the
database objects that are specific to only one of these database systems
probably will be unfamiliar to you. Given that, this sidebar offers short
definitions of the database objects mentioned in this section.

For DB2:
• A plan is associated with a DB2 application program and refers to

packages that contain bound access path details for the SQL in that
program.

• A storage group is a database object used to associate disk storage
with DB2 tablespaces.

For Oracle:
• A database link is a schema object in one database that enables you to

access objects in another database.
• A cluster is made up of a group of tables that share the same data

blocks. The tables are grouped together because they share common
columns and are often used together.

For SQL Server:
• Database objects and files can be grouped together in filegroups for

allocation and administration purposes.
• A rule is a freestanding database constraint that can be attached to

columns. Microsoft has indicated that rules will be removed from a
future version of SQL Server.

In most cases, for objects not accessed by typical end users, provide a way
to differentiate types of database objects. For example, start indexes with I or
X and databases with D. For tables and similar objects, though, as discussed
earlier, this approach is inappropriate.

In general, do not impose unnecessary restrictions on the names of objects
accessed by end users. Relational databases are supposed to be user friendly.
A strict database naming convention, if not developed logically, can be
antithetical to a useful and effective database environment. Some

organizations impose arbitrary length limitations on database tables, such as
an 8-byte limit even though the DBMS can support up to 128-byte table
names. There is no practical reason to impose a limitation on the length of
database table names.

Table names should be as descriptive as possible, within reason.
Furthermore, the same naming conventions should be used for all “tablelike”
objects, including views, synonyms, and aliases, if supported by the DBMS.
Each of these objects is basically a collection of data accessible as rows and
columns. Developing separate naming conventions for each is of no real
value. With this approach, database objects that operate like tables will be
defined similarly with a very descriptive name. The type of object can always
be determined by querying the DBMS system catalog or data dictionary.

Avoid encoding table names to make them shorter.

Encoding table names to make them shorter is another arbitrary naming
standard that should be avoided. Table names should include a 2- or 3-byte
application identification prefix, followed by an underscore and then a clear,
user-friendly name. For example, a good name for the table containing
employee information in a human resources system would be
HR_EMPLOYEE. You may want to drop the application identification prefix
from the table name for tables used by multiple applications.

Keep in mind, too, that some database object names will, in some cases, be
externalized. For instance, most DBMSs externalize constraint names when
the constraint is violated. There are many types of constraints—triggers,
unique constraints, referential constraints, check constraints—each of which
can be named. Keeping the names consistent across environments allows the
error messages to be consistent. If the DBMS delivers the same error message
in the development, test, integration, and production environments,
debugging and error correction will be easier.
Standard Abbreviations

Although you should keep the database object names as English-like as
possible, you will inevitably encounter situations that require abbreviations.
Use abbreviations only when the full text is too long to be supported as an
object name or when it renders the object name unwieldy or difficult to
remember. Create a list of standard abbreviations and forbid the use of

nonstandard abbreviations. For example, if “ORG” is the standard
abbreviation for “organization,” do not allow variants such as “ORGZ” to be
used. Using standard abbreviations will minimize mistyping and make it
easier for users to remember database object names. Adhering to this practice
will make it easier to understand the database objects within your
environment.

Create a list of standard abbreviations.

Other Database Standards and Procedures
Although database naming standards are important, you will need to develop
and maintain other types of database standards. Be sure to develop a
comprehensive set of standards and procedures for each DBMS used by your
organization. Although you can write your database standards from scratch,
there are other potentially easier ways to build your standards library. Basic
standards that can be modified to your requirements can be bought from a
publisher or software vendor. Or you can gather suggested standards from the
community via user groups and conferences.

Regardless of whether they are purchased, written in house, or adopted
from a user group or committee, each of the following areas should be
covered.
Roles and Responsibilities

The successful operation of a DBMS requires the coordinated management
efforts of many skilled technicians and business experts. A matrix of database
management and administration functions should be developed that
documents each support task and who within the organization provides the
support. The matrix can be created at a departmental level, a job description
level, or even by individual name. A sample matrix is shown in Table 2.4. An
X in the matrix indicates involvement in the process, whereas a P indicates
primary responsibility.

Table 2.4. Database Support Roles and Responsibilities

Of course, you can create whatever tasks you deem necessary in your roles
and responsibilities matrix. You may need additional tasks, or fewer than in
this sample. For example, you may wish to differentiate between stored-
procedure development, testing, and management by creating a different task
category for each and breaking down the support requirements differently.

Whatever the final format of your roles and responsibilities matrix, be sure
to keep it accurate and up-to-date with new DBMS features and tasks. An up-
to-date matrix makes it easier to define roles within the organization and to
effectively apportion database-related workload.
Communication Standards

You might also choose to develop specific standards for communication
between groups and specific personnel. For example, you might want to
document how and when the DBA group must communicate with the systems
programming group when a new DBMS release is being installed.

Developing robust communication standards can simplify a DBA’s job
during the inevitable downtime that occurs due to system, application, or
even hardware errors. For example, consider adopting a standard whereby the
DBA communicates only with the manager during troubleshooting and

emergency remediation. This keeps the manager informed and enables the
DBA to dodge the dozens of phone calls that come in from angry users, the
help desk, and so on. The manager can communicate the status outward while
the DBA focuses exclusively on troubleshooting and getting the systems back
up and running again.
Data Administration Standards

If a DA group exists within your organization, they should develop a basic
data administration standards guide to outline the scope of their job role. If a
DA group does not exist, be sure to include DA standards in the DBA
standards as appropriate.

Include DA standards in the DBA standards as appropriate.

The data administration standards should include the following items:
• A clear statement of the organization’s overall policy with regard to

data, including its importance to the company
• Guidelines for establishing data ownership and stewardship
• Rules for data creation, data ownership, and data stewardship
• Metadata management policy
• Conceptual and logical data modeling guidelines
• The organization’s goals with regard to creating an enterprise data

model
• Responsibility for creating and maintaining logical data models
• Guidelines for tool usage and instructions on how data models are to be

created, stored, and maintained
• Organizational data-sharing policies
• Instructions on how to document when physical databases deviate from

the logical data model
• Guidelines on communication between data administration and

database administration to ensure effective database creation and usage
Database Administration Standards

A basic set of database administration standards should be established to
ensure the ongoing success of the DBA function. The standards serve as a
guide to the DBA services offered and to specific approaches to supporting

the database environment. For example, standards can be developed that
outline how requests are made to create a new database or make changes to
existing databases, and that specify which types of database objects and
DBMS features are favored and under which circumstances they are to be
avoided. Standards can establish backup and recovery procedures (including
disaster recovery plans) and communicate the methods used to transform a
logical data model into a physical database implementation. An additional set
of DBA standards that cover database performance monitoring and tuning
may be useful to document procedures for overcoming performance
problems.

The DBA standards serve as a guide to specific approaches to
supporting the database environment.

Although the DBA standards will be most useful for the DBA staff, the
application development staff will need them to learn how best to work with
the DBA staff. Furthermore, any performance tuning tricks that are
documented in the DBA standards should be shared with programmers. The
more the application programmers understand the nuances of the DBMS and
the role of the DBA, the better the working relationship between DBA and
development will be—resulting in a more efficient database environment.
System Administration Standards

Once again, standards for system administration or systems programming are
required only if your organization separates the SA function from the DBA
function. System administration standards are needed for many of the same
reasons that DBA standards are required. Standards for SA may include

• DBMS installation and testing procedures
• Upgrade policies and procedures
• Bug fix and maintenance practices
• A checklist of departments to notify for impending changes
• Interface considerations
• DBMS storage, usage, and monitoring procedures

Database Application Development Standards

The development of database applications differs from typical program
development. You should document the special development considerations

required when writing programs that access databases. The database
application development standards should function as an adjunct to any
standard application development procedures within your organization. This
set of standards should include

• A description of how database access differs from flat file access
• SQL coding standards
• SQL performance tips and techniques
• Program preparation procedures and guidance on how to embed SQL in

an application program
• Interpretations of SQLSTATEs and error codes
• References to other useful programming materials for teleprocessing

monitors, programming languages, and general application
development standards

Database Security Standards

The DBA group often applies and administers DBMS security. However, at
some shops the corporate data security unit handles DBMS security. A
resource outlining the necessary standards and procedures for administering
database security should contain the following information:

• Details on what authority to grant for specific types of situations; for
example, if a program is being migrated to production status, what
DBMS authorization must be granted before the program will operate
successfully in production

• Specific documentation of any special procedures or documentation
required for governance- and compliance-related requests

• A definitive list of who can approve what types of database
authorization requests

• Information on any interfaces being used to connect DBMS security
with operating system security products

• Policies on the use of the WITH GRANT OPTION clause of the SQL
GRANT statement and how cascading REVOKEs are to be handled

• Procedures for notifying the requester that database security has been
granted

• Procedures for removing security from retiring, relocating, and

terminated employees

Outline necessary standards and procedures for administering
database security.

Application Migration and Turnover Procedures

As discussed earlier, the minimum number of environments for supporting
database applications is two: test and production. Some organizations,
however, create multiple environments to support, for example, different
phases of the development life cycle, including

• Unit testing—for developing and testing individual programs
• Integration testing—for testing how individual programs interoperate
• User acceptance testing—for end user testing prior to production status
• Quality assurance—for shaking out program bugs
• Education—for training end users how to work the application system

When multiple environments exist, procedures are required for migrating
database objects and programs from environment to environment. Specific
guidelines are needed to accomplish migration in a manner conducive to the
usage of each environment. For example, what data volume is required for
each environment and how is data integrity to be assured when testing
activity occurs? Should data be migrated, or just the database structures?
How should existing data in the target environment be treated—should it be
kept, or overlaid with new data? Comprehensive migration procedures should
be developed to address these types of questions.

Procedures are required for migrating database objects and
programs from environment to environment.

The migration and turnover procedures should document the information
required before any database object or program can be migrated from one
environment to the next. At a minimum, information will be required about
the requester, when and why the objects should be migrated, and the
appropriate authorization to approve the migration. To ensure the success of
the migration, the DBA should document the methods used for the migration
and record the verification process.
Design Review Guidelines

All database applications should be subjected to a design review at various
stages of their development. Design reviews are important to ensure proper
application design, construction, and performance. Design reviews can take
many forms. Chapter 6, “Design Reviews,” offers a comprehensive
discussion.
Operational Support Standards

Operational support is defined as the part of the IT organization that oversees
the database environment and assures that applications are run according to
schedule. Sufficient operational support must be available to administer a
database environment effectively. The operational support staff is usually the
first line of defense against system problems. Program failures, hardware
failures, and other problems are first identified by operational support before
specialists are called to resolve the problems.

Operational support assures that applications are run according
to schedule.

Standards should be developed to ensure that the operational support staff
understands the special requirements of database applications. Whenever
possible, operational support personnel should be trained to resolve simple
database-related problems without involving the DBA because the DBA is a
more expensive resource.

DBMS Education
Organizations using DBMS technology must commit to ongoing technical
education classes for DBAs, programmers, and system administrators.
Provide a catalog of available courses covering all aspects of DBMS usage.
At a minimum, the following courses should be made available:

• DBMS Overview: a one-day management-level class that covers the
basics of DBMS

• Data Modeling and Database Design: a thorough course covering
conceptual, logical, and physical database design techniques for DAs
and DBAs

• Database Administration: in-depth technical classes for DBAs, SAs,
and systems programmers

• Introduction to SQL: an introductory course on the basics of SQL for

every DBMS user
• Advanced SQL: an in-depth course on complex SQL development for

DBAs and programmers
• Database Programming: an in-depth course for application

programmers and systems analysts that teaches students how to write
programs that use the DBMS

Each of these courses should be available for each DBMS installed in your
organization. Furthermore, provide training for any other database-related
functionality and software such as proper use of database utilities, query and
reporting tools, and DBA tools.

Commit to ongoing technical education classes.

DBMS education can be delivered using a variety of methods, including
instructor-led courses, computer-based training, Web-based training, and
distance learning. Sources for DBMS education include DBMS vendors,
ISVs, consultants (large and small, international and local), and training
specialists (such as Themis and ProTech).

Finally, be sure to make the DBMS reference material available to every
user. Most vendors offer their DBMS reference manuals in an online format
using Adobe Acrobat files or Windows Help. Be sure that each user is given
a copy of the manuals or that they are available in a central location to
minimize the amount of time DBAs will have to spend answering simple
questions that can be found in the DBMS documentation.

Summary
Comprehensive advance planning is required to create an effective database
environment. Care must be taken to select the correct DBMS technology,
implement an appropriate DBMS upgrade strategy, develop useful database
standards, and ensure the ongoing availability of education for database
users. By following the guidelines in this chapter, you can achieve an
effective database environment for your organization.

Nevertheless, setting up the database environment is only the beginning.
Once it is set up, you will need to actively manage the database environment
to ensure that databases are created properly, used correctly, and managed for
performance and availability. Read on to discover how the DBA can

accomplish these tasks.

Review
1. Why should database standards be implemented and what are the risks

associated with their lack?
2. What are the potential risks of upgrading to a new DBMS release

without a plan?
3. What is the difference between a version and a release of a DBMS?
4. Name the three TPC benchmarks and describe how they differ from

one another.
5. Describe the four levels of DBMS architecture in terms of the type and

nature of processing to which each is best suited.
6. What are the factors to be considered when calculating total cost of

ownership (TCO) for a DBMS?
7. Name five requirements that must be planned for when installing a new

DBMS.
8. Describe the difference between software that supports a DBMS

release and software that exploits a DBMS release.
9. How many standard abbreviations should be supported for a single

term? Why?
10. What is wrong with the following SQL code for creating a relational

table? (Do not approach this question from a syntax perspective;
consider it, instead, in terms of database naming standards.)
CREATE TABLE tg7r5u99_p
(c1 INTEGER NOT NULL,
 c2 CHAR(5) NOT NULL,
 c9 DATE)
;

Bonus Question
Your DBMS vendor, MegaDataCorp, just announced the general availability
of the latest and greatest version of MDC, the DBMS you use. MDC Version
9 supports several new features that your users and developers have been
clamoring for over the past year. You are currently running MDC Version
7.3. Prepare a short paper discussing your plans for upgrading to MDC

Version 9, and outline the potential benefits and risks of your upgrade plan.

Suggested Reading
Blaha, Michael R. A Manager’s Guide to Database Technology. Upper

Saddle River, NJ: Prentice Hall (2001). ISBN 0-13-030418-2.
Connolly, Thomas, and Carolyn Begg. Database Systems: A Practical

Approach to Design, Implementation, and Management. 4th ed. Harlow,
England: Addison-Wesley (2004). ISBN 978-0-321-29401-2.

3. Data Modeling and Normalization

Data modeling is the process of analyzing the things of interest to your
organization and how these things are related to each other. The data
modeling process results in the discovery and documentation of the data
resources of your business. Data modeling asks the question “What?” instead
of the more common data-processing question “How?”

Data modeling asks the question “What?”

Before implementing databases of any sort, a DBA needs to develop a
sound model of the data to be stored. Novice database developers frequently
begin with the quick-and-dirty approach to database implementation. They
approach database design from a programming perspective. Because novices
often lack experience with databases and data requirements gathering, they
attempt to design databases like the flat files they are accustomed to using.
This is a major mistake. Indeed, most developers using this approach quickly
discover problems after the databases and applications become operational in
a production environment. At a minimum, performance will suffer and data
may not be as readily available as required. At worst, data integrity problems
and/or performance problems1 may arise, rendering the entire application
unusable.

A proper database design cannot be thrown together quickly by novices.
What is required is a practiced and formal approach to gathering data
requirements and modeling the data, that is, the discovery and identification
of entities and data elements. Data normalization is a big part of data
modeling and database design. A normalized data model reduces data
redundancy and inconsistencies by ensuring that the data elements are
designed appropriately.

It is actually quite simple to learn the basics of data modeling, but it can
take a lifetime to master all its nuances. This chapter introduces the concepts
of data modeling and normalization and provides some general guidelines to
their proper use.

Experienced data modelers and DAs will probably find the material in this
chapter incomplete. This is by design: The intent is to introduce the concept

to DBAs and guide them down the right path to producing databases from
properly developed data models. A complete treatment of data modeling
requires an entire text. Numerous books exist that provide an exhaustive
treatment of data modeling and normalization. Consult the suggested
references at the end of this chapter for additional details on data modeling.

Data Modeling Concepts
A popular folk story about four blind men and an elephant helps to illustrate
the purpose of data modeling:

Four blind men happened upon an elephant during the course of their
journey. The blind men had never encountered an elephant before, but
they were a curious group. Therefore, each blind man attempted to learn
about the elephant by touching it. The first blind man grabbed the
elephant by the trunk and exclaimed, “Oh! An elephant is like a snake—a
long, slithery tube.” The second blind man reached out, touched the side
of the elephant, and remarked, “No, no, the elephant is more like a wall
—very flat and solid.” The third blind man was confused, so he reached
out to touch the elephant but poked his hand on a tusk and said, “No,
you’re both wrong, the elephant is more like a spear than anything else!”
The fourth blind man grabbed the elephant by the leg and shouted,
“You’re all wrong, an elephant is very much like a tree—round and
solid.”

Well, each blind man was right, but he was also wrong. The problem was
not with the experience of each blind man, but with the scope of that
experience. To be a successful data modeler you must learn to discover the
entire “truth” of the data needs of your business. You cannot rely on the
requirements of a single user, or even a single expert, because that person’s
scope of experience will not be comprehensive. The goal of a data model is to
record the data requirements of a business process. The scope of the data
model for each line of business must be comprehensive. If an enterprise data
model exists for the organization, each individual line-of-business data model
must be verified for correctness against the overall enterprise data model.

The goal of a data model is to record the data requirements of
a business process.

Data modeling, at the most basic level, begins as a conceptual venture. The
first objective of conceptual data modeling is to understand the requirements.
A data model, in and of itself, is of limited value. Of course, a data model
delivers value by enhancing communication and understanding, and it can be
argued that these are quite valuable. However, the primary value of a data
model is its ability to be used as a blueprint to build a physical database.

When databases are built from a well-designed data model, the resultant
structures provide increased value to the organization. The value derived
from the data model exhibits itself in the form of minimized data redundancy,
maximized data integrity, increased stability, better data sharing, increased
consistency, more timely access to data, and better data usability. These
qualities are achieved because the data model clearly outlines the data
resource requirements and relationships in a clear, concise manner. Building
databases from a data model will result in a better database implementation
because you will have a better understanding of the data to be stored in your
databases.

The Enterprise Data Model
An enterprise data model is a single data model that describes
comprehensively the data needs of the entire organization. This chapter
discusses data models as they pertain to individual projects or applications,
but not the relatively advanced topic of the enterprise data model.
Managing and maintaining an enterprise data model is fraught with many
non-database-related distractions such as corporate politics and ROI that
are hard to quantify.

If your organization has committed to developing and maintaining an
enterprise data model, you should definitely take the time to read more
about the topic by consulting the books referenced at the end of this
chapter.

Another benefit of data modeling is the opportunity to discover new uses
for data. A data model can clarify data patterns and potential uses for data
that might otherwise remain hidden. Discovery of such patterns can change
the way your business operates and can potentially lead to a competitive
advantage and increased revenue for your organization.

A data model can clarify data patterns and potential uses for
data.

Data modeling requires a different mindset from requirements gathering
for application development and process-oriented tasks. It is important to
think “what” is of interest instead of “how” tasks are accomplished. To
transition to this alternative way of thinking, follow these three rules:

• Don’t think physical; think conceptual. Concern yourself with business
issues and terms rather than physical storage issues and DBMS
constraints.

• Don’t think process; think structure. How something is done, although
important for application development, is not important for data
modeling. The things to which processes are being applied are what are
important to data modeling.

• Don’t think navigation; think relationship. The way that things are
related to one another is important, because relationships map the data
model. The way in which relationships are traversed is unimportant to
conceptual and logical data modeling.

Keep in mind that as you create your data models, you are developing the
lexicon of your organization’s business. Much as a dictionary functions as the
lexicon of a given language, the data model functions as the lexicon of
business terms and their usage.

Entity-Relationship Diagramming
Data models are typically rendered in a graphical format using an entity-
relationship diagram, or E/R diagram for short. An E/R diagram graphically
depicts the entities and relationships of a data model. Figure 3.1 shows a
sample E/R diagram. This diagram was produced using ERwin, from
Computer Associates, a leading data modeling and design tool. Many popular
data modeling tools are available from a variety of vendors. Consult
Appendix C for a list of data modeling tools and vendors.

Figure 3.1. A sample E/R diagram

An E/R diagram graphically depicts the entities and
relationships of a data model.

Multiple diagramming methods and techniques are available for E/R
diagramming. Regardless of the method used, an E/R diagram will show the
entities in boxes and use lines or arrows to show relationships. The format of
the boxes and lines differs with the diagramming method. Several of the most
common E/R diagramming methods are shown in Figure 3.2. There is
nothing that really makes one method superior to the others, so choose one
and try to stick to it to minimize confusion. Allowing different modeling
teams to use different diagramming techniques will make sharing the

knowledge contained in the data models more difficult. Furthermore, it
complicates the consolidation of the data models into an enterprise data
model, if one is maintained.

Figure 3.2. E/R diagramming methods: (1) Ross, (2) Bachmann, (3)
Martin, (4) Chen, (5) Rumbaugh

Refer to Figure 3.2 again. The major difference among the diagramming
methods is the way in which cardinality is shown. Cardinality refers to the
maximum number of instances an entity can take on. Each row of Figure 3.2
shows how a different E/R diagramming style handles one-to-one, one-to-
many, and many-to-many relationships. The E/R diagramming methods are
named after the originator of the technique. By row, the names of the
diagramming techniques depicted in Figure 3.2 are Ross, Bachmann, Martin,
Chen, and Rumbaugh.

Most modeling tools support one or more of these diagramming
techniques. The most popular diagramming techniques are Martin (also
known as Information Engineering) and Ross. The E/R diagram in Figure 3.1
was developed using the Martin technique. Popularity aside, each of these
techniques is used by many data modelers, and you should select the
technique that is easiest for those in your organization to use and understand.

Another popular modeling technique is Unified Modeling Language. UML
is a consolidation of several popular object-oriented notations and concepts.
It originated from the work of Grady Booch, James Rumbaugh, and Ivar
Jacobson. UML provides a standard set of diagrams and notations for
modeling object-oriented systems. UML actually defines nine types of

diagrams for modeling different types of systems. The UML class diagram
can be used to model data, but traditional E/R diagrams capture more
information about pure data and are better suited than UML to data modeling
and relational database design tasks. Figure 3.3 shows a sample UML class
diagram depicting a data model for an airline. Because objects comprise both
data and process, UML is more than a data modeling diagramming technique.

Courtesy Lou Varveris, IBM. Diagram created with IBM Rational
System Architect.

Figure 3.3. Sample UML class diagram

The Components of a Data Model
A data model is built using many different components that act as
abstractions of real-world things. The simplest data model consists of entities
and relationships. As work on the data model progresses, additional detail
and complexity are added. Let’s examine the many different components of a
data model and the terminology used for data modeling.

Entities
An entity, at a very basic level, is something that exists and is capable of
being described. It is a person, place, thing, concept, or event about which
your organization maintains facts. For example, STUDENT, INSTRUCTOR,
and COURSE are specific entities about which a college or university must
be knowledgeable to perform its business.

An entity is a person, place, thing, concept, or event.

Entity Naming Guidelines

It is important to follow a rigorous standard for naming entities within a data
model. If developers attempt to communicate using poorly defined and
nonstandard names, confusion will result. A good standard to follow is to
always name entities in singular form using capital letters. An entity should
be viewed as a pattern for the occurrences therein, instead of the set of all
occurrences for that type of entity. For example, an entity that contains data
about your company’s employees should be named EMPLOYEE rather than
EMPLOYEES.

Furthermore, an entity should always be a noun, or a combination of an
adjective with a noun. However, use of adjectives should be minimized
whenever possible. At times, the adjective can be an attribute in disguise. For
example, an entity named CONTRACT EMPLOYEE is better expressed as
an entity named EMPLOYEE with an attribute describing the status of the
employee (where the value of Status can be FULLTIME or CONTRACT).

An entity should always be a noun, or a combination of an
adjective with a noun.

Promote consistency in the choice of terminology used for entities. In
general, use the term favored by the business users. When the business uses
multiple terms (synonyms) for the same entity and there is no clear
consensus, choose one and use it consistently. For example, if some users
prefer VENDOR but others prefer SUPPLIER, choose one and use it
consistently throughout the data model. In some cases, common sense may
dictate a choice when the business cannot express a preference. For example,
CLIENT is perhaps a better term than USER, given the negative connotation
sometimes given this word (“drug user”).

Finally, remove process-specific artifacts from the entity name. For
example, AGENT is better than SELLING AGENT. Remember, the data
model should capture the “what,” not the “how,” and “selling” describes a
process.
Entity Occurrences

An occurrence is an instance of an entity. For example, AUTHOR is an
example of an entity. Craig S. Mullins, along with all my descriptive details,

is an occurrence of the AUTHOR entity. It is important to differentiate the
abstract entity from the concrete occurrences of the entity. Entity instance is
an equivalent term for occurrence.

An occurrence is an instance of an entity.

Attributes
An attribute is a characteristic of an entity. Every attribute does one of three
things:

Every attribute does one of three things: It identifies, relates,
or describes.

• Identifies. An attribute that identifies is a candidate key. If the value of
an identifying attribute changes, it should identify a different entity
occurrence. An attribute that identifies should be immutable.

• Relates. An attribute that relates entities is a foreign key. The attribute
refers to the primary key attribute of an occurrence of another (or the
same) entity.

• Describes. An attribute is descriptive if it depicts or expresses a
characteristic of an entity occurrence but does not identify or relate.

As a rule of thumb, nouns tend to be entities and adjectives tend to be
attributes. Nevertheless, this is not a hard-and-fast rule: Be sure to apply
knowledge of the business to determine which nouns and attributes are
entities and which are attributes. Every attribute must identify the entity
occurrence, relate the entity occurrence to another entity occurrence (in the
same or another entity), or describe the entity occurrence.

An attribute must definitively reflect its specific, intended meaning. The
instances of an attribute must be atomic in nature—that is, an attribute
represents a singular fact that cannot be further decomposed. For that reason,
using Name as an attribute for, say, the entity PERSON would not be good
practice because Name can be decomposed into FirstName, Middle-Initial,
and LastName.
Domains

Each attribute is assigned a valid domain. The domain defines the universe of
valid values for the data element. An example of a domain would be “valid

positive integer values between 1 and 10.” Data type is a component of the
domain. The data type specifies, appropriately enough, the type of data that
comprises the domain; some examples are Integer, Decimal, Character, Date,
Time, and so on.

The domain defines the universe of valid values for the data
element.

When an attribute is defined that represents a code, the domain for the
code should, if possible, consist of self-documenting values. For example, the
domain for an attribute defining a periodic frequency of weekly, monthly,
quarterly, and yearly is better defined as (“W,” “M,” “Q,” “Y”) than as (“1,”
“2,” “3,” “4”). The first domain is self-documenting and easy to remember.
The second is not so easy to remember.
Attribute Naming Guidelines

Develop and adhere to a standard format for naming attributes. For example,
if you name the attributes in singular form with InterCaps (“FirstName”),
don’t switch back and forth to all lowercase (“first_name”). Choose one form
and stick to it. Some potential attribute names for the EMPLOYEE entity
might be StreetAddress (or street_address), ZipCode (or zip_code), and
EmployeeId (or employee_id). The point is not to spend a lot of time
agonizing over the exact standard for naming attributes, but to choose a
standard and stick to it to minimize confusion and clarify communication.

Adhere to a standard format for naming attributes.

An attribute name should consist of a prime descriptive word coupled with
a class word. A class describes a particular subset of attributes that are
common to most information systems. Additional qualifying words can be
used if necessary to define the attribute accordingly. The prime descriptive
word can be the entity name or another descriptive word. For the class word,
establish a valid list of classes for the types of domains in use. A sample list
of possible classes is shown in Table 3.1. You may decide to use the entire
class name or a standard abbreviation. The following are some sample
attribute names:

• VendorID—where Vendor is the entity, and the attribute is an
identifier.

• ProductName—where Product is the entity, and the domain of the
attribute is an alphabetic, character name.

• ProductYearlySalesAmount—where Product is the entity, and the
domain is an amount. However, there may be multiple amounts for
each product instance. This particular attribute is further qualified by
Yearly, which indicates the period, and Sales, which indicates that the
amount is an amount sold, as opposed to, say, an amount purchased.

Table 3.1. Sample Attribute Class Words

Homonyms and Synonyms
According to Merriam-Webster’s Dictionary of English Usage (online):

Homonym, noun
1: one of two or more words spelled and pronounced alike but different
in meaning (as the noun quail and the verb quail)
Synonym, noun

1. one of two or more words or expressions of the same language that
have the same meaning or nearly the same meaning in some or all senses
Using homonyms and synonyms in your data modeling can cause

confusion. A homonym must be used in context for its meaning to be
understood. When two words are spelled and pronounced identically, the
only way to differentiate them is to examine how each is being used. For
example, if I just say the word watch, am I referring to a timepiece, or
am I requesting that you look at something? Devoid of context, it is
impossible to tell.

Synonyms cause confusion for a different reason. When the same
thing is referred to in different ways, it can become unclear that more
than one word is being used to refer to the same thing. For example, are
clients and customers the same thing?

Although homonyms and synonyms cannot be banned during the
course of conducting business, they can be banned within the scope of
data modeling and database design. Be sure that as a data modeler you
do so. However, don’t attempt to force the line-of-business users to
adopt the terminology in place of their current usage habits. Instead, be
consistent within the data model and allow the users to continue their
current practices without demanding a change of their lexicon.
Nevertheless, be sure to capture and document all business usage of
homonyms and synonyms.

Your list of class words may differ. On the other hand, the list might be the
same, with different abbreviations. Either is fine, as long as you develop a list
of class words and enforce their usage. Class words should not have multiple
meanings. One, and only one, class word should be defined for each domain.
Also, avoid homonyms and synonyms when defining your class words (see
the sidebar). Keep in mind that these class words are important for the logical
data model only and might not be used in the physical database due to sizing
limitations for DBMS object names.

Class words should not have multiple meanings.

Attribute Values

An attribute value is an instance of an attribute. The value “Craig” is an

example of an attribute value for the FirstName attribute within the
AUTHOR entity. It is important to differentiate the abstract attribute from the
concrete values for the attribute.
Nulls and Lack of Value

A null represents missing or unknown information at the attribute level. If an
attribute “value” can be null, it means one of two things: The attribute is not
applicable for certain occurrences of the entity, or the attribute applies to all
entity occurrences, but the information may not always be known. Of course,
it could be a combination of these two situations, too.

A null represents missing or unknown information.

For example, suppose that an entity, STUDENT, contains an attribute
HairColor. Further, the HairColor attribute can be null. But what does a null
HairColor indicate? Consider three potential entity occurrences: a man with
black hair, a woman with unknown hair color, and a bald man. Both the
woman with the unknown hair color and the bald man could be assigned a
null HairColor, but for different reasons. The woman’s HairColor would be
null, meaning “presently unknown”; the bald man’s HairColor would be null,
meaning “not applicable.”

Of course, the HairColor of a bald man can be expressed by extending the
domain of colors to include the value “bald.” But what of a domain that is not
feasibly extensible? For example, consider a Date such as a TerminationDate
attribute in an EMPLOYEE entity. The domain of a Date is potentially all
valid calendar dates. It might not be practical to assign a special date value to
mean “unknown.” Consider the value you would like in the TerminationDate
of your EMPLOYEE occurrence. Null, meaning unknown, is far preferable to
a valid date, regardless of how far in the future, isn’t it?

“Not Applicable” Nulls May Signal a Design Problem
Using null to indicate “not applicable” can be an indication of improper
data design. By properly modeling and normalizing your data structures,
you can usually eliminate the need to use nulls to indicate that a column is
inapplicable for a specific row.

A properly normalized data model should result in each attribute
value depending upon the primary key of the entity occurrence. If a

particular attribute is “not applicable,” arguably the design is improperly
normalized. For more information on normalization consult the
information in this chapter beginning with the section “What Is
Normalization?”

Be sure to consider the nuances of nulls as you develop your data model.
Be sure to determine the nullability for every attribute.

Nulls are sometimes inappropriately referred to as null values. Using the
term value to describe a null is inaccurate because the term null implies the
lack of a value.

Keys
A key consists of one or more attributes, the values of which uniquely
identify an entity occurrence and define relationships between entities. Well,
more precisely, candidate keys and primary keys identify the entity. A
combination of the primary key value of one entity and the foreign key value
of another entity identifies a relationship. For example, if CustNo is the
primary key of the CUSTOMER entity, CustNo will be used as the foreign
key in a related entity, such as CUSTOMER_CONTACT. A customer can
have multiple contacts, so the same CustNo would be registered for each
contact for the customer.

Keys consist of the attributes that identify entity occurrences
and define the relationships between entities.

A key should contain no embedded meaning. The key’s purpose is to
identify, not to describe. The other attributes in the entity serve a descriptive
purpose. When a key contains an embedded meaning, problems can arise if
the meaning changes. Furthermore, the values for any embedded meaning are
likely to be outside your immediate control, which can also cause data
integrity and modification problems.
Candidate Keys

Each entity can have multiple candidate keys, but it must have at least one. A
candidate key is an attribute, or set of attributes, that can be used to uniquely
identify an occurrence of the entity. If the value of the attribute cannot be
used to identify a specific occurrence of the entity, it does not represent a

candidate key.
Primary Key

Each entity will have one, and only one, primary key. The primary key is
chosen from the set of candidate keys and is used to identify an entity
occurrence. Choosing an appropriate primary key is important because the
primary key will be used to define the foreign keys in related, dependent
entities.

Characteristics of good primary keys include the following:
• The primary key must guarantee the uniqueness of an entity

occurrence.
• The value of any component of the primary key cannot be null.
• Primary keys of basic entities should not have embedded meaning.
• Primary keys should be immutable—that is, not capable of or

susceptible to change.
Furthermore, you should have control over primary key values. When

values are assigned externally, you lose control, causing potential data
problems. For one, it is impossible to ensure that the key values will always
be unique. As an example, a Social Security number is a bad primary key
choice to identify employees because it is assigned outside of your control. A
numeric identifier assigned by your organization is a better choice.
Foreign Keys

Foreign keys reside in dependent entities to establish relationships. The
primary key identifies an entity occurrence; foreign keys identify
relationships between entity occurrences. For one-to-many relationships, the
foreign key will always be on the many side of a relationship. For one-to-one
relationships, determination of foreign key placement is more difficult. The
basic rule is to analyze the attributes and assign the key to the entity for
which it is most characteristic. If one end of the one-to-one relationship is
optional, the entity at the optional end should contain the foreign key and the
entity at the mandatory end should contain the primary key.

Relationships
Relationships define how the different entities are associated with each other.
A relationship name should describe the role played by an entity in its

association with another (or perhaps the same) entity. The keys define a
relationship: the primary key in the parent entity and the foreign key in the
dependent entity.

Relationships define how the different entities are associated
with each other.

Relationships are not just the “lines” that connect entities but provide
meaning to the data model and should be assigned useful names. The
relationship name makes a factual statement about the association between
entities. For example, consider the one-to-many relationship between the
COURSE and INSTRUCTOR entities: Each COURSE is taught by one, and
only one, INSTRUCTOR, but an INSTRUCTOR teaches many COURSEs.
The name of the relationship, in this case “is-taught-by,” coupled with the
names of the entities participating in the relationship should form a
meaningful sentence.

In an E/R diagram, the relationships should be read clockwise from right to
left over the line. Following this convention will assure the legibility of your
data models.
Cardinality

Cardinality is the number of occurrences that can exist between a pair of
entities. Another way of looking at cardinality is as the number of entity
occurrences applicable to a specific relationship. Sometimes the term degree
is used instead of cardinality. Each end of a relationship has a cardinality, or
degree, associated with it.

Cardinality is the number of occurrences that can exist
between a pair of entities.

At the simplest level, cardinality is expressed by the way relationships are
drawn in the E/R diagram. Recall the diagramming techniques displayed in
Figure 3.2. The notion of cardinality is expressed as either “one” or “many.”
Using the Martin technique (line 3 in the figure), a cardinality of one is
expressed as a straight line and a cardinality of many is expressed using
crow’s feet.

At a more complex level, the data model should capture more information
about the specific cardinality of each relationship. A complete data model

will record the minimum and maximum cardinality for each end of the
relationship as integer values. However, such detailed cardinality information
need not be represented on the diagram, especially at the conceptual level.
Optionality

The data model must also capture whether relationships are mandatory or
optional. This is commonly referred to as the optionality of the relationship.
Once again, each end of the relationship will have an optionality
characteristic.

Each end of the relationship will have an optionality
characteristic.

For the Martin diagramming technique, drawing a bar at the end of the
relationship indicates that the relationship is mandatory; a small circle
indicates an optional relationship. Refer to the relationship diagrammed in
Figure 3.4. This data model fragment clearly states that an EMPLOYEE is
employed by a STORE. The STORE can have zero, one, or multiple
EMPLOYEEs. If an EMPLOYEE exists, a relationship to a STORE is
mandatory. Furthermore, an EMPLOYEE can work for only one store.

Figure 3.4. Data model fragment

Other diagramming techniques use different methods—perhaps different
shapes or specific integer values.

So, you can see how a graphical data model that uses well-defined
diagramming techniques and notations can clearly communicate the business
requirements of data. Knowing nothing more than data modeling techniques,
an individual who is unfamiliar with the business can quickly learn and

communicate the organization’s fundamental business rules.

Discovering Entities, Attributes, and Relationships
At a very high level, the data modeling process can be thought of as the
discovery of entities and their attributes along with the relationships between
the entities. The process of discovering and documenting these items for your
business is data modeling. Now, data modeling may sound simple enough,
but it takes practice to learn how to listen to business speech and be able to
identify and differentiate among entities, attributes, and relationships.

Track the nouns, noun phrases, verbs, and adjectives used by
the business experts.

The first trick is to keep track of the nouns, noun phrases, verbs, and
adjectives used by the business experts. Nouns are potential entities and
attributes, or perhaps entity occurrences and attribute values. Adjectives and
prepositional phrases are usually potential attributes. Verbs indicate potential
relationships.

Of course, developing a data model is more difficult than merely listening
for nouns, adjectives, and the like and transforming them into the entities,
attributes, and relationships of a data model. Every noun is not necessarily an
entity of interest—likewise for adjectives, verbs, and prepositional phrases.
You will need to use your experience to filter the business speech to identify
the appropriate entities, attributes, and relationships.

When analyzing business descriptions, you will need to place the words in
context and ask questions to clearly differentiate between entities and
attributes. Remember, attributes identify, relate, or describe entities. Entities
are the most important and general “things” the business expert will discuss
—the people, places, things, concepts, and events of interest to the business.

Often the terminology used by the business experts will not be appropriate
for the data model. You may need to generalize terms, or make them more
abstract. For example, business users may speak of doing business with
corporations, but business is also conducted with individuals. For the purpose
of the data model you may need to create an abstract entity such as PARTY,
or some other abstract term that encompasses corporations, other types of
organizations, and individuals.

No one individual understands all the data needs of the
organization.

When developing a data model, be sure to solicit input from multiple
sources. A data model built on the advice of a single expert is sure to be
inaccurate. Remember the blind men and the elephant: No one individual
understands all the data needs of the organization (or indeed, of any single
aspect of the organization). When you talk to multiple experts on multiple
occasions, the true nature and definition of the data will become clearer.

Keep in mind that patterns in data models tend to repeat. As you work on
data modeling projects, you will begin to notice certain patterns that reappear
in multiple subject areas. Learning to recognize these patterns can simplify
the creation of data models. However, don’t make the mistake of jumping to
a pattern that you think you recognize, without consulting multiple business
experts. Sometimes what appears to be a recognizable pattern is, in actuality,
a completely new pattern.

As with most things, practice will improve your data modeling skills.
Don’t be discouraged if your initial attempts at creating data models are
difficult or error prone. The more you model, the better you will become at
data modeling.

Finally, to further clarify the flexibility and usefulness of data modeling,
let’s look at a data model that incorporates the data modeling terms we just
learned. Consult the E/R diagram in Figure 3.5. This E/R diagram shows
clearly the relationships among the components of a data model.

Figure 3.5. Relationships of data modeling terms

Conceptual, Logical, and Physical Data Models
Up until now, we have discussed data modeling in general. But there are
really three types of data modeling: conceptual, logical, and physical.

Conceptual and logical are loose terms that describe different phases of
data modeling. A conceptual data model is generally more abstract and less
detailed than a complete logical data model. There is no hard-and-fast
boundary separating a conceptual data model from a logical data model. But
the following generalities are largely accepted in the modeling community.

A conceptual data model depicts a high-level, business-oriented view of
information. Noncritical details can be left out of the conceptual data model
in order to emphasize the most important entities, attributes, and
relationships. The conceptual data model may contain many-to-many
relationships. The goals of conceptual modeling are clarity and simplicity. It
is not necessary to discover and document every attribute of each entity at the
conceptual level. Furthermore, issues such as cardinality, optionality, and
data types can be skipped at the conceptual level. Some simple candidate
keys may be recorded, but the conceptual data model will not identify most

keys because the high level of abstraction makes useful key identification
impractical or impossible. Furthermore, every relationship need not be named
on the conceptual data model. Remember, the goal of a conceptual data
model is clarity at a high level. If the relationship names clutter up the data
model diagram, they work against that goal.

A conceptual data model depicts a high-level, business-
oriented view of information.

A logical data model consists of fully normalized entities with all
attributes defined. Furthermore, the domain or data type of each attribute
must be defined. A logical data model requires the specification of candidate
keys for unique identification of each occurrence in every entity. For those
entities having multiple candidate keys, the logical data model must indicate
which candidate key to use for identification, that is, the primary key. Foreign
key definitions should be clearly defined or implied by the data relationships.
Many-to-many relationships should be translated into associative entities
(refer to the sidebar), which may acquire additional attributes and identifiers.
Additional details, such as cardinality and whether relationships are optional
or mandatory, must be documented in the logical data model. All
relationships should be clearly and explicitly named. A logical data model
should be a complete document from which a physical database can be
developed.

The logical data model offers a comprehensive formal
structure that serves as a blueprint for business data.

The physical data model is created to transform the logical data model into
a physical implementation using a specific DBMS product such as DB2,
Oracle, or SQL Server. The specifics of the physical data model are covered
in Chapter 4, “Database Design.”

The physical data model transforms the logical data model
into a physical implementation using a specific DBMS.

Associative Entities
An associative entity provides additional information about a
relationship, if needed. In other words, an associative entity enables

attributes to be associated with a relationship. Associative entities also
make it possible for many-to-many relationships to be implemented using
a relational database.
Every many-to-many relationship can be resolved to a pair of one-to-

many relationships between each of the two existing entities, and a new
entity—an associative entity, as shown in Figure 3.6.

Figure 3.6. From many-to-many to associative entity

In the example shown at the top of the figure, a STUDENT can
register for many COURSEs, and a COURSE can contain many
STUDENTs. This classic many-to-many relationship can be resolved as
shown at the bottom of Figure 3.6. A new associative entity is created,
in this case, the ENROLLMENT entity. The primary key from each of
the previously existing entities is copied to the new entity. And the
many-to-many relationship is replaced with two one-to-many
relationships, with the many side, in each case, placed on the new
associative entity. Now attributes can be assigned to the new entity,
which was not possible for a relationship.

So, a conceptual data model focuses on providing a real-world view of a
particular business subject. The conceptual data model makes it easier to
understand the business at an abstract level. The logical data model offers a
comprehensive formal structure to be used as a blueprint for business data
and as input to define databases. And the physical data model specifies
exactly how the logical data model will be implemented using a particular
DBMS.

What Is Normalization?
In simple terms, normalization is the process of identifying the one best place
where each fact belongs. Normalization is a design approach that minimizes
data redundancy and optimizes data structures by systematically and properly
placing data elements into the appropriate groupings. A normalized data
model can be translated into a physical database that is organized correctly.

Normalization identifies the one best place where each fact
belongs.

Normalization was created by Dr. E. F. Codd, the developer of the
relational model, in the early 1970s. Like the relational model of data,
normalization is based on the mathematical principles of set theory. Although
normalization evolved from relational theory, the process of normalizing data
is generally applicable to any type of data.

It is important to remember that normalization is a logical process and does
not necessarily dictate physical database design. A normalized data model
will ensure that each entity is well formed and that each attribute is assigned
to the proper entity. Of course, the best situation is when a normalized logical
data model can be physically implemented without major modifications.
However, as we will learn in Chapter 4, there are times when the physical
database must differ from the logical data model due to physical
implementation requirements and deficiencies in DBMS products.

The Normal Forms
As previously mentioned, Dr. Codd was the first to describe data
normalization. Codd published several papers in 1971 and 1972 that
described the first three normal forms. Subsequent work by Codd and others
defined additional normal forms.

First Normal Form
The objective of first normal form (1NF) is to eliminate repeating groups and
nonatomic data from an entity. When data conforms to 1NF, each attribute of
the entity is a single discrete fact—in other words, atomic. The term atomic
derives from atom, the smallest indivisible particle that can exist on its own.

First normal form eliminates repeating groups and non-atomic
data from an entity.

Definition
A row is in first normal form if and only if all underlying domains
contain atomic values only.

To normalize a data model into 1NF, eliminate repeating groups by
splitting them into individual entities. In other words, do not use multiple
attributes in a single entity to store similar data. Consider the sample data
shown in Table 3.2 for a STUDENT information system for a college or
university.

Table 3.2. Unnormalized STUDENT Data

This data contains several violations of 1NF. First, we are tracking courses
that really represent a repeating group for STUDENTs. So, the course
information should be moved into a separate entity. Furthermore, we need to
specify identifiers for both entities. The identifier is the primary key for the

entity.
Be careful to choose an appropriate primary key for each entity. This can

be tricky. Your initial impulse may be to choose CourseNum for the
COURSE entity. But in the case of this data, more information is required to
identify the course information. The course completion date applies to a
combination of STUDENT and COURSE—a course cannot be completed
unless a student has enrolled in the course and is taking it.

A second violation of 1NF is the nonatomic data shown in the Student-
Name attribute. A student name can be broken down into pieces: first name,
middle initial, and last name. It is not indivisible and therefore violates first
normal form. The end result in 1NF is depicted in Tables 3.3 and 3.4.

Table 3.3. STUDENT Entity in 1NF

Table 3.4. COURSE Entity in 1NF

Second Normal Form

Second normal form (2NF) ensures that all the attributes of each entity are
dependent on the primary key. To transform 1NF data into 2NF, create
separate entities for sets of attributes that apply to multiple records and assign
a foreign key to the new entity to relate it to its previous entity. Simply stated,
entity occurrences should not depend on anything other than the entity’s
primary key.

Second normal form ensures that all the attributes of each
entity are dependent.

Definition
A row is in second normal form if and only if it is in first normal
form and every non-key attribute is fully dependent on the key.

Let’s once again turn our attention to Tables 3.3 and 3.4. Notice that
certain courses repeat in the COURSE entity, namely, “English Classics I”
and “Ascent of Man.” This situation indicates a violation of 2NF. To correct
the problem, we need to identify the attributes that do not depend on the
entire key and remove them. The removed attributes, along with the portion
of the primary key on which they depend, are placed in a new entity,
ENROLLMENT. The entire primary key of the original entity remains with
the original entity.

Another benefit of the normalization process is that you will frequently
encounter new attributes that need to be specified for the new entities that are
created. For example, perhaps the new COURSE entity causes us to
remember that each course is assigned a number of credits that count toward
graduation. So, we create a new attribute to store the number of credits for
each specific course. Of course, we may also decide we need more details on
students such as address, phone number, and birth date, but we will omit
these from our example to keep it simple.

The end results of normalization to 2NF are depicted in Tables 3.3 (no
changes were required for the STUDENT entity), 3.5, and 3.6.

Table 3.5. ENROLLMENT Entity in 2NF

Table 3.6. COURSE Entity in 2NF

Third Normal Form
Third normal form (3NF) ensures that no relationships between attributes
exist within an entity. Every attribute in the entity should depend only on the
primary key. A tongue-in-cheek expression used to describe a data model in
third normal is “Every attribute depends upon the key, the whole key, and
nothing but the key, so help me Codd.”

Third normal form ensures that no relationships between
attributes exist within an entity.

Definition
A row is in third normal form if and only if it is in second normal
form and every non-key attribute is nontransitively dependent on
the primary key.

A rule of thumb for identifying 3NF violations is to look for groups of
attributes whose values can apply to more than a single entity occurrence.
When you discover such attributes, move them to a separate entity.

It is time to review our STUDENT information again, this time looking for
3NF violations. Examine the STUDENT data in Table 3.3 closely. Notice
that students can have the same major and, as such, certain major information
can be repeated; specifically, two students in our small sample are English
Literature majors. To correct the problem, we need to remove major
attributes that transitively depend on the key and create a new entity for them.
Tables 3.7 and 3.8 show the corrected data, now in 3NF.

Table 3.7. STUDENT Entity in 3NF

Table 3.8. MAJOR Entity in 3NF

A Normalized Data Model
To be complete, a diagram should be developed for the 3NF data model we
just created for the STUDENT data. Figure 3.7 shows such a data model.
Notice that we have not filled in the optionality of the relationships. We
could do this based on the sample data we used, but we really need to ask
more questions before we can answer questions such as “Does every student
have to have a major?” The current data shows this to be the case, but in
reality, we know that most freshmen, and even upperclassmen, may attend
college without having a formally declared major.

Figure 3.7. The STUDENT data model

Further Normal Forms
Normalization does not stop with 3NF. Additional normal forms have been
identified and documented. However, normalization past 3NF does not occur
often in normal practice. The following are additional normal forms:

Normalization past 3NF does not occur often in normal
practice.

• Boyce Codd normal form (BCNF) is a further refinement of 3NF.
Indeed, in his later writings Codd refers to BCNF as 3NF. A row is in
Boyce Codd normal form if and only if every determinant is a
candidate key. Most entities in 3NF are already in BCNF.

• Fourth normal form (4NF) states that no entity can have more than a
single one-to-many relationship if the one-to-many attributes are
independent of each other. An entity is in 4NF if and only if it is in 3NF
and has no multiple sets of multivalued dependencies.

• Fifth normal form (5NF) specifies that every join dependency for the
entity must be a consequence of its candidate keys.

Definition
A determinant is any attribute whose value determines other values
within an entity occurrence.

Normalization in Practice
Our data models should be normalized as we move from the conceptual level
to the logical level. By normalizing our data models, we ensure that we are
creating a data blueprint for the best database design possible.

Normalization is a logical process.

But remember, normalization is a logical process. Many times data
modelers try to mandate that the logical model become the physical database
design with no changes. But it is not wise to force DBAs and technicians to
forgo physical design. In the best of all worlds, a one-to-one logical-to-
physical translation would work, but for many reasons this strict one-to-one
mapping is not practical. We’ll discuss the reasons for this in the next

chapter.

Relational Requires 1NF
The only normal form that is absolutely required for implementing a data
model as a relational database is 1NF. 1NF ensures tabular data. Of course,
further normalization to 3NF will make it easier to manage and maintain
the data integrity for a relational database, but 3NF is not a hard-and-fast
requirement for relational implementation.

Additional Data Modeling Issues
Please keep in mind that this chapter is intended as a broad overview of data
modeling concepts for DBAs. Data modeling can be a full-time occupation
for organizations that truly treat their data as a corporate asset. The
information in this chapter should be sufficient for DBAs to work toward
creating appropriate data models before creating databases. However,
organizations that implement data administration will need to tackle more
advanced data modeling issues such as the following:

• How should subtypes be handled? Subtypes can be created when a
single entity has attributes that apply to only certain entity occurrences.
For example, PART-TIME EMPLOYEE and FULL-TIME
EMPLOYEE could be subtypes of the EMPLOYEE supertype entity.
Subtypes may be needed if different relationships exist for the sub-
types or if a sufficient number of attributes apply to only one of the
subtypes.

• How is derived data to be treated for the purposes of a logical data
model? If it is derived from other data, is it necessary to model it or
document it?

• When should a domain become an entity? For example, business users
in the United States typically know the abbreviations for states by heart.
It is usually unnecessary to create an entity to map the state
abbreviations to the state names. But not all such decisions are this
simple.

• When time is a determining factor for data, how should it be handled in
the data model? For example, perhaps a CUSTOMER can purchase
only a single BASKET of goods at one time. But over time, the

CUSTOMER will purchase multiple BASKETs of goods; a new
BASKET is purchased upon each visit.

• When should one-to-one relationships be allowed? Entities
participating in a one-to-one relationship may be better collapsed into a
single entity. But other issues such as relationships to other entities may
impede this practice.

These and other issues will need to be studied and understood by data
modelers and DAs in progressive, data-focused organizations.

Summary
Data modeling and normalization provide the foundation for database design.
Data modeling is the practice of analyzing the things of interest to your
organization and how these things are related to each other. Furthermore, the
output is a data model that can be used as a blueprint for the data
requirements of the business.

For data to be normalized, each entity must have a primary key for
identification. All attributes of every entity must be atomic, indivisible, and
not part of a repeating group. Furthermore, each entity contains attributes that
apply to that entity only and depend on the full primary key for that entity
only.

When data is normalized, facts are grouped into entities that make logical
sense. No fact is associated with the wrong entity. The primary key wholly
and completely identifies each attribute value of each entity occurrence. In
other words, a normalized data model is a correct blueprint of the data.

The next phase is to implement a physical manifestation of the logical data
model. To do so requires a thorough understanding of the DBMS you plan to
use, as well as DBMS and database fundamentals.

Review
1. What is the difference between a conceptual data model and a logical

data model?
2. Why is data modeling important for database development?
3. Describe the proper naming guidelines for entities and attributes.
4. Please provide a broad description of the goals of normalization.

5. What is the difference between an entity and an entity occurrence?
6. Review Table 3.9 and explain why the data shown there violates 1NF.

Table 3.9. Sample Data

7. Is the LastName attribute a good choice to be the primary key for the
CUSTOMER entity? Please elaborate why or why not.

8. How is a relationship specified between two entities?
9. Every attribute will do one of three things. Name those things and

describe them.
10. An attribute, or set of attributes, that identifies an entity occurrence is

called what?

Bonus Question
Read the following paragraph and create a data model for the business under
discussion.

“My partner and I own an independent record store. Well, I guess record
store is really the wrong term these days since we really don’t sell a lot of
records anymore. We sell mostly CDs, but also some tapes. And yes, we do
stock vinyl records, too. Regardless of format (that is, CD, tape, or record),
we sell long-playing albums as well as singles. Every item we sell is priced,
and we keep track of the number of each individual title in stock on a daily
basis. We like to track sales by both title and recording artist. The sales
information by title needs to be tallied weekly to send to external ratings
services so they can compile their best-seller charts. We often get customers
who ask us to find certain songs for them. For singles, this is fairly easy
because the title of the single is the title of the song. Some singles have
multiple songs on them, though. Albums, on the other hand, comprise

multiple songs. We need the ability to search for titles by song to let
customers know which titles (both singles and albums) contain the songs they
are looking for.”

Suggested Reading
Allen, Sharon, and Evan Terry. Beginning Relational Data Modeling. 2nd

ed. Berkeley, CA: Apress (2005). ISBN 1-59059-463-0.
Ambler, Scott W. Agile Modeling. New York, NY: John Wiley & Sons

(2002). ISBN 0-471-20282-7.
Batini, Carlo, et al. Conceptual Database Design: An Entity-Relationship

Approach. Redwood City, CA: Benjamin Cummings (1992). ISBN 0-
8053-0244-1.

Bruce, Thomas A. Designing Quality Databases with IDEF1X Information
Models. New York, NY: Dorset House (1992). ISBN 0-932633-18-8.

Carlis, John, and Joseph Maguire. Mastering Data Modeling: A User-Driven
Approach. Boston, MA: Addison-Wesley (2001). ISBN 0-201-70045-X.

Chmura, Alan, and J. Mark Heumann. Logical Data Modeling: What It Is
and How to Do It. New York: Springer Science + Business Media (2005).
ISBN 0-387-22950-7.

Codd, E. F. “Further Normalization of the Database Relational Model.” In
Data Base Systems, Courant Computer Science Symposia Series, vol. 6.
Englewood Cliffs, NJ: Prentice Hall (1972).

Durell, William R. The Complete Guide to Data Modeling. Princeton, NJ:
Data Administration, Inc. (1993). No ISBN.

Halpin, Terry, and Tony Morgan. Information Modeling and Relational
Databases. 2nd ed. Burlington, MA: Morgan Kaufmann (2008). ISBN
978-0-12-373568-3.

Hay, David C. Data Model Patterns. New York, NY: Dorset House (1996).
ISBN 0-932633-29-3.

Hoberman, Steve. Data Modeling Made Simple. Bradley Beach, NJ:
Technics Publications (2005). ISBN 0-9771400-0-8.

Modell, Martin E. Data Analysis, Data Modeling, and Classification. New
York, NY: McGraw-Hill (1992). ISBN 0-07-042634-1.

Muller, Robert J. Database Design for Smarties: Using UML for Data
Modeling. San Francisco, CA: Morgan Kaufmann (1999). ISBN 1-55860-
515-0.

Pilone, Dan, with Neil Pilman. UML 2.0 in a Nutshell. Sebastopol, CA:
O’Reilly (2005). ISBN 0-596-00795-7.

Ross, Ronald G. Entity Modeling: Techniques and Application. Boston, MA:
Database Research Group (1988). ISBN 0-941049-00-0.

Sanders, G. Lawrence. Data Modeling. Danvers, MA: Boyd & Fraser
Publishing Company (1995). ISBN 0-87709-066-1.

Schmidt, Bob. Data Modeling for Information Professionals. Upper Saddle
River, NJ: Prentice Hall (1999). ISBN 0-13-080450-9.

Silverston, Len, et al. The Data Model Resource Book. New York, NY: John
Wiley & Sons (2002). ISBN 0-471-15264-8.

Simsion, Graeme C., and Graham C. Witt. Data Modeling Essentials. 3rd
ed. San Francisco, CA: Morgan Kaufmann (2005). ISBN 0-12-644551-6.

Weilkiens, Tim, and Bernd Oestereich. UML 2 Certification Guide. San
Francisco, CA: Morgan Kaufmann (2007). ISBN 978-0-12-373585-0.

4. Database Design

Database design is the process of transforming a logical data model into a
physical database design and then implementing the physical model as an
actual database. More precisely, database design requires up-front data
modeling and normalization as discussed in Chapter 3. A logical data model
is required before you can even begin to design a physical database. This
chapter assumes that the logical data model is complete. The focus of
discussion, therefore, will be on producing a physical database from the
logical data model.

From Logical Model to Physical Database
The physical data model is created by transforming the logical data model
into a physical implementation based on the DBMS to be used for
deployment. To successfully create a physical database design you will need
to have a good working knowledge of the features of the DBMS, including

• In-depth knowledge of the database objects supported by the DBMS
and the physical structures and files required to support those objects

• Details regarding the manner in which the DBMS supports indexing,
referential integrity, constraints, data types, and other features that
augment the functionality of database objects

• Detailed knowledge of new and obsolete features for particular versions
or releases of the DBMS

• Knowledge of the DBMS configuration parameters that are in place
• Data Definition Language (DDL) skills to translate the physical design

into actual database objects

The physical data model is created by transforming the logical
data model into a physical implementation.

Armed with the correct information, you can create an effective and
efficient database from a logical data model. The first step in transforming a
logical data model into a physical model is to perform a simple translation
from logical terms to physical objects. Of course, this simple transformation
will not result in a complete and correct physical database design—it is

simply the first step. Let’s address the transformation step by step.

Transform Entities to Tables
The physical counterpart of an entity is a table. Therefore, the first step in
transforming a logical data model into a physical database is to map each
entity in the data model to a table in the database. The final database that you
implement need not adhere to this strict one-to-one entity-to-table mapping.
For example, you may need to consolidate or break apart tables—a process
called denormalizing—for performance reasons. Denormalization will be
covered in detail later in this chapter.

Map each entity in the data model to a table in the database.

In general, though, do not initially deviate from the simple rule of creating
a table for each entity in the logical data model. The logical data model
represents the “things” of interest to the business. During the data modeling
process, these things were analyzed and designed as entities, each having a
specific identity and purpose for existence. The only reason to deviate from
this process is if application performance or data availability would be
unacceptable without a change.

Transform Attributes to Columns
The physical counterpart of an attribute is a column within a table. When you
map entities to tables, map the attributes of each entity to the columns of each
respective table. At least initially, do not change the basic definition of the
columns. For example, do not group attributes together into a composite
column.

The attributes of each entity should be mapped to the columns
of each respective table.

Try to maintain the same naming convention for physical columns as was
used for logical attribute names. However, you must understand that the
physical constraints of the DBMS being used may limit your ability to do so.
Always take into account the capabilities and limitations of the DBMS when
creating the physical database from the logical data model.
Transform Domains to Data Types

To support the mapping of attributes to table columns you will need to map

each logical domain of the attribute to a physical data type, perhaps coupled
with additional constraints. Each column must be assigned a data type.
Certain data types require you to specify a maximum length. For example,
you could specify a character data type as CHAR(20), indicating that up to 20
characters can be stored for the column. You may need to apply a length to
other data types as well, such as graphic, floating-point, and decimal (which
also require a scale).

Map each logical domain to a physical data type, perhaps
coupled with additional constraints.

Commercial DBMS products do not support domains, so the domain
assigned in the logical data model must be mapped to a data type supported
by the DBMS. You may need to adjust the data type based on the DBMS you
use. For example, what data type and length will be used for monetary values
if no built-in currency data type exists? Many of the major DBMS products
support user-defined data types, so you might want to consider creating a data
type to support the logical domain if no built-in data type is acceptable.

There may be multiple physical data types that can be used successfully for
a domain. Consider a logical domain whose valid values are integers between
1 and 10. You could choose an integer data type, of which there may be
several (e.g., BIGINT, INTEGER, SMALLINT, TINYINT). Alternatively,
you could choose a decimal data type with a zero scale. You might even
choose to store the data in a 2-byte character column if no mathematical
operations are required. Any of these can work. As the DBA, you will need to
determine which data type can be most efficiently accessed, stored,
maintained, and processed by the applications accessing the data. To make
such a decision requires in-depth technical knowledge of the way in which
your DBMS physically stores each type of data, as well as knowledge of
application processing details. Data typing should not be undertaken hastily.
Choosing an inappropriate data type could have ramifications in terms of
both storage space and disk I/O.

In addition to a data type and length, you may also need to apply a
constraint to the column. Consider, once again, the domain of integers 1
through 10. Simply assigning the physical column to an integer data type is
insufficient to match the domain. A constraint must be added to restrict the
values that can be stored for the column to the specified range of 1 through

10. Without a constraint, negative numbers, zero, and values greater than 10
could be stored. Using check constraints, you can place limits on the data
values that can be stored in a column or set of columns. Check constraints are
covered in detail in Chapter 13, “Data Integrity.”

The nullability of each column in the table must also be specified. The
logical data model should contain information on the nullability of each
attribute, and this information can be copied for each requisite column in the
physical database. Some DBMS software enables you to assign a default
value to be used when a row is to be inserted and no value has been provided
for the column. You must assign column default values when you create the
table.

Specify the nullability of each column.

For text or character data, you need to make an additional decision: Should
the column be fixed length or variable length? A fixed-length column
occupies a preset and unchanging amount of storage for each row. A
variable-length column specifies a maximum size, but the actual length used
by the column can vary for each row. Variable-length columns can save
storage space but usually require additional manipulation by application code
to insert and maintain them. Another negative aspect is that variable-length
columns can cause the table to require more frequent attention. Changes
made to row size will have the effect of moving rows within the database. If
the DBMS offers a compression option, you may be able to save more space
by compressing the database than by implementing variable-length columns.
Primary Keys

Specification of a primary key is an integral part of the physical design of
entities and attributes. When designing the logical data model, you assigned a
primary key for every entity, and as a first course of action you should try to
use that primary key. However, multiple candidate keys are often uncovered
during the data modeling process. For physical implementation you may
decide to choose a primary key other than the one selected during logical
design—either one of the candidate keys or another surrogate key.

If the primary key is unwieldy, you may need to choose another primary
key. Perhaps the key is composed of several columns or is a nonstandard data
type. In either of these cases it may be better to choose a surrogate primary

key. Most DBMS products provide built-in features that can assist in the
definition of primary keys. Some examples include support for default
values, ROWID data types, SEQUENCE objects, and the identity property
(see the sidebar).

Most DBMS products provide built-in features to help define
primary keys.

As a rule of thumb, though, be sure to identify a primary key for each
physical table you create. Failure to do so will make processing the data in
that table more difficult. If there is no key to uniquely identify rows of the
table, it will be difficult for programs to specifically select, modify, and
delete individual rows. Furthermore, without a primary key, dependent
relationships cannot be defined for that table.

Be sure to identify a primary key for each physical table you
create.

There are, of course, exceptions to the general rule. For example, a table
implemented for logging or that serves as a generic queue may not require a
primary key. Before creating any table without a primary key, though, be sure
that you have a solid reason for deliberately defining a table without a unique
primary key.

The Identity Property
The identity property is a feature supported by several of the most popular
relational DBMS products. It can be assigned to a column that has a
numeric (usually integer) data type. When the identity property is assigned
to a column, the DBMS treats that column in a special way. The database
user does not provide values for the column when rows are inserted into
the table in which the column exists. Instead, the DBMS increments a
counter and automatically uses that value for the column. Usually only one
column per table can be assigned the identity property.

The identity property provides an efficient way for ever-increasing
sequential values to be populated into a relational table. Before using
this feature, make sure that your DBMS supports the identity property
and that you completely understand how the feature works and its
impact on functionality and performance. For example, does the DBMS

provide a way to reset the identity property counter on a table-by-table
basis?

Column Ordering

Before implementing a physical table, be sure to review the order of the
columns. The order in which columns are specified is irrelevant from an
operational perspective—that is, the DBMS will produce the same results
regardless of the sequence of the columns in the table. Nevertheless, the
efficiency of how those results are obtained can vary greatly. Column
sequencing can impact performance; therefore, for physical implementation
you may need to change the sequence recorded in the logical data model.

Let’s take a closer look. The way in which the DBMS logs changes can
impact performance. DB2, for example, logs database modifications from the
first byte changed to the last byte changed. The exception is variable-length
rows, in which case DB2 logs a change from the first byte changed to the end
of the row.

So, to take advantage of this knowledge about DB2’s physical
implementation, we should sequence the columns based on how DB2 logs.
Infrequently updated nonvariable columns should be grouped together at the
beginning of the table, followed by static (infrequently updated) variable
columns and then frequently updated columns. This structure will ensure that
the least amount of data required is logged, thereby speeding up any data
modification processes. Another good idea would be to group together any
columns that are frequently modified. This can also reduce the amount of
data logged. Because each DBMS logs data differently, you will need to
understand how your DBMS logs and how column ordering can impact
performance.

Build Referential Constraints for All Relationships
The physical counterpart of a relationship is a referential constraint. To
define a referential constraint you must create a primary key in the parent
table and a foreign key in the dependent table. The referential constraint ties
the primary key to the foreign key.

The referential constraint ties the primary key to the foreign
key.

Referential Integrity

It is not sufficient merely to identify primary and foreign keys that make up
relationships between tables. The functionality of each relationship is greatly
affected by the parameters chosen for the referential constraint and the values
in the foreign key column(s). A set of rules, which is applied to each
relationship, determines the status of foreign key columns when inserted or
updated, and of dependent rows when a primary key row is deleted. For
example, when a primary key is deleted that refers to existing foreign key
values, the rule specifies whether the DBMS should void the primary key
deletion, delete the foreign key values too, or set the foreign key values to
null.

In general, a foreign key should either contain a value within the domain of
foreign key values or be null. Any other value is unacceptable, and the
referential constraint will cause the DBMS to reject such values during
operation. Referential integrity, or RI for short, guarantees that an acceptable
value is always in each foreign key column.

Referential integrity guarantees that an acceptable value is
always in each foreign key column.

It is a good physical design practice to implement referential integrity
using database constraints instead of trying to program integrity into
application programs. Using database RI will ensure that integrity is
maintained whether data is changed in a planned manner through an
application program or in an ad hoc manner through SQL statements or query
tools.

Of course, there are exceptions to every rule. Cases where you should
avoid using database-enforced RI constraints include code tables where the
codes do not change frequently and data warehouse implementations where
the data is propagated from a referentially intact source. Basically, do not use
RI as a substitute for performing data validation and edit checks. Listing valid
values in a check constraint can be a better solution than RI for static data
with a small number of valid values.

Chapter 13, “Data Integrity,” discusses referential integrity in more detail.

Build Physical Data Structures
Designing and implementing a physical database from a logical data model is

not just a simple matter of mapping entities to tables, attributes to columns,
and relationships to referential constraints. Quite a few other database design
issues must be addressed. One of these issues is preparing for the physical
storage of data.

Although relational data is expressed to the user by means of a table,
underlying files or data sets must exist to store the actual data—and those
files are not necessarily stored as a simple grid of rows and columns. During
the physical design process, the DBA must map each table to a physical
structure to store the table’s data. These physical structures are commonly
called tablespaces (or data spaces). As shown in Figure 4.1, a database
comprises one or more tablespaces, and each tablespace contains one or more
tables. Depending on the DBMS, a table may be able to span multiple
tablespaces, too. The DBA decides how to map tables to tablespaces based on
the anticipated usage of the data, the type of tablespace, and the features of
the DBMS. Please see the sidebar “SQL Server Filegroups” for information
on a similar file structure used by Microsoft SQL Server.

Figure 4.1. Mapping files to database structures

An additional physical design process is the effective planning for storage
and space usage. To calculate the amount of storage required to store a table,
the DBA must first establish the row size. This is accomplished by adding up

the maximum size of all the columns, based on their assigned data type and
length. An average size can be substituted for variable-length columns. An
estimate for the number of bytes required can be calculated by multiplying
the row size by the number of rows planned to be stored in the table. Of
course, the DBA must also factor in any storage overhead required by the
DBMS for row and page headers, pointers, and the like. Because each DBMS
uses different techniques, each DBMS will have different overhead
requirements.

SQL Server Filegroups
Microsoft SQL Server provides filegroups to group together the operating
system files containing data from a single database. By using a filegroup,
the DBA can simplify certain administration tasks. A filegroup is a
property of a SQL Server database. A filegroup cannot contain the
operating system files of more than one database, though a single database
can contain more than one filegroup.

Every database is created on a single filegroup named PRIMARY.
After the database is created, additional filegroups can be added. If your
database is very large and active, multiple files can be used to improve
performance.

When using SQL Server with very large databases (VLDBs),
filegroups are useful for dividing the database into components for
backup and restore. It can be difficult to manage VLDB backups and
restores without using filegroups.

In a nutshell, SQL Server filegroups can be used to provide greater
control over the I/O of a given database.

The DBA must also determine the type of files to be used, based on the
operating system being used as the database server. In some cases, database
files that do not use the file system of the operating system can be more
efficient. Such files are sometimes referred to as raw files. Because a raw file
can prevent operating system overhead, it is often a better choice for database
implementation. The trade-off is that it requires more administrative support
from the DBA.

To prepare storage devices for the database, though, the DBA must

determine the size of not only table structures but also index structures.
Indexes are covered in more depth in the next section.

The DBA must determine the size of not only table structures
but also index structures.

The DBA will also build some free space into the database design. When
free space is assigned within the database, the DBMS can add data more
efficiently and with fewer outages for reorganizing and restructuring.

Solid-state devices can be helpful, too. Storing databases that have extreme
performance requirements on solid-state devices instead of disk can improve
the performance of many database operations.

A final storage consideration is whether to use compression. Most DBMS
products provide methods for compressing data. If the DBMS provides no
compression option, third-party compression products can be purchased.
With compression, less storage is required to store the same amount of data.
A compression routine will algorithmically compress data as it is added to the
database and decompress the data as it is retrieved. Compression adds CPU
overhead1 to database processing because access requires the DBMS to
compress or decompress the data. However, I/O may be more efficient with
compression: Because the data takes up less space on disk, more data can be
read with a single I/O operation.

Database Performance Design
When implementing a physical database from a logical data model, you must
begin to consider how the database will perform when applications make
requests to access and modify data. A basic fact of database processing is that
disk access is slower than memory access—slower by orders of magnitude. If
the DBMS were required, in every instance, to scan through the database row
by row, or block by block, looking for the requested data, no one could afford
to use databases. Fortunately, several good techniques exist to allow data in
the database to be accessed more rapidly.

Designing Indexes
One of the best techniques for achieving acceptable query performance is the
creation of appropriate indexes on your database tables. Of course, the trick is
in determining how many indexes to create and how exactly to define each

index. First, let’s cover some index basics.
An index is an alternate path to data in the database. The structure of an

index makes it easier to find data in the database, with fewer I/O operations.
Therefore, queries can perform faster when using an index to look up data
based on specific key values.

Many types of indexes are supported by the major DBMS products.
Indexes can be unique or nonunique, clustering or nonclustering, single
column or multicolumn. An index can be structured as a b-tree or a bitmap.
Some DBMS products even support hashing indexes. However, the basic
goal of every index is to optimize query processing.

An index is an alternate path to data in the database.

In a relational system, the DBMS—not the programmer—decides whether
to use an index. Therefore, the DBA must design indexes based on the types
of queries that will be run against the database. The DBA must understand
the operation of the relational optimizer and design indexes that are likely to
be used during application processing. In the absence of an appropriate index
for a query, the DBMS will most likely revert to a table scan—every row of
the table will be read to determine whether the data matches the query
specifications. Table scans are costly if the intent of the query is not to
process every row in the table.

In general, try to build indexes on large tables to support the most
frequently run queries. Queries that access 25 percent or fewer of the table’s
rows are good candidates for indexing. When more than 25 percent of the
table’s rows are to be selected, you should determine whether an index would
be more efficient than a table scan. This will differ from query to query, and
from DBMS to DBMS. Use the tools provided by the DBMS to determine
the effectiveness of your indexes. (The SHOWPLAN or EXPLAIN command
will show whether an index is used for a particular query.)

Furthermore, you should create indexes on the most-referenced columns in
frequently run queries in your application. The order in which columns
appear in an index is important. By choosing the right order, you may be able
to make a particular index available to many other queries. For example, if
quite a few application queries look for items based on ItemType and a few
other queries look for items by ItemType and ItemColor, a single composite
index on the combination of (ItemType, ItemColor) can satisfy the needs of

both types of queries.

Create indexes on the most-referenced columns in frequently
run queries in your application.

A single table can have multiple indexes defined for it; you are not limited
to a single index. Plan on creating indexes for the most common access
requirements in each application’s SQL WHERE and JOIN clauses. The
following situations should prompt you to consider creating an index:

• Foreign keys. Even if the DBMS does not require foreign key columns
to be indexed, it is a good idea to do so. Creating an index on foreign
key columns can enhance the performance of joins based on the
relationships between the tables, but it may also speed up the DBMS’s
internal processing to enforce referential integrity.

• Primary keys. An index is usually required on the primary key columns
to enforce uniqueness.

• Candidate keys. Even though indexes are not required on candidate
keys, it is a good idea to index them if processes will look up data
based on the candidate key.

• Index-only access. If all of the columns in a data retrieval request exist
in an index, it may be possible to satisfy the request using only the
index. Avoiding I/O to the table can enhance performance. Therefore, it
is sometimes a good idea to overload an index with columns to
facilitate index-only access for certain requests. Such an index is
sometimes called a “covering index” because the index “covers” all of
the data required by certain queries. Additionally, some DBMS
products provide the capability to add columns to a unique index
without having the column enforced for uniqueness. This technique can
be used to pack additional columns into a single index instead of
requiring multiple indexes.

• Sorting. Another reason for building indexes is to minimize sorting.
Queries that use JOINs, ORDER BY, GROUP BY, UNION, and
DISTINCT can cause the DBMS to sort the intermediate or final results
of that query. If indexes are created to support these features, the
DBMS may be able to use the index for ordering and avoid invoking a
costly sort.

A frequent error made by DBAs and performance analysts is to index by
object instead of indexing by workload. Indexing by object means creating
indexes as you create your tables. Oftentimes, during the physical database
implementation process, a DBA will create a database, then groups of
tablespaces and tables. And every time a new table is created, the DBA will
attempt to create the indexes on that table. This approach is not optimal.

Instead, DBAs should build indexes based on workload. Indexes should
support the predicates in the SQL that is written to access your tables.
Building indexes to support predicates of the most frequently executed
queries and most important queries should be your first indexing step after
building the unique indexes required to support primary keys and unique
constraints.

Of course, this requires knowledge of how your tables will be accessed.
And when you are first creating tables, you will not have any SQL.
Sometimes you may have vague pseudo code descriptions of potential
queries, but you won’t have an accurate picture of access. Therefore,
indexing has to be an incremental task, performed on an ongoing basis as
code is written against your databases.

As you continually monitor and build new indexes, be sure to review the
old ones that were created. Sometimes a new index can render an existing
index obsolete. It is a good idea to drop indexes that are not used for query
optimization because each index must be maintained as data is modified. This
can negatively impact database and application performance.

Exercise great care in the creation of an indexing scheme for your
databases. Be sure to analyze all of the data access requirements of your
applications to ensure optimal indexing. You simply cannot design proper
indexes without knowledge of how tables are to be accessed. Furthermore,
you need a comprehensive view of the access requirements. An index that is
the best solution for a particular query can potentially adversely affect the
performance of other queries in the system.

Exercise great care in the creation of an indexing scheme for
your databases.

Additionally, be aware that indexes do not come for free. The DBMS must
keep the indexes updated as the table’s data is inserted, updated, and deleted.
For that reason, you may want to avoid building indexes on columns that are

frequently modified, if you can. Make sure that every index you create
provides benefit to the performance of a query or set of queries without
significantly degrading the overall performance of the applications accessing
the database. Here are some things to consider when determining the cost of
an index:

• Additional overhead is incurred to update the index when rows are
inserted and deleted, or when indexed columns are updated in the base
table.

• Additional disk space is required to store indexes. Some DBMS
products offer index compression as an option. For very large
databases, index compression can be worthwhile.

• Utilities such as LOAD and REORG may take longer to run against a
table with many indexes because the indexes must also be maintained
during the utility processing.

• Additional files are required to store the indexes, which could
potentially cause operating system problems if the number of files that
can be open at one time is exceeded.

When building indexes, keep in mind that they will be used in conjunction
with the base table data. Consider allocating separate DBMS buffer areas for
caching index reads instead of using the same buffers used for data. Index
entries will be smaller than a full table row, and thus more index entries can
be kept in memory longer if they are not combined with table data in the
database buffers. You might also consider placing the indexes and the table
data on different disk drives to minimize disk seek time.

DBAs must learn how each DBMS supports indexing so they can create
indexes to support the data access requirements of their database applications.
Let’s learn a little bit more about the types of indexes that your DBMS may
support: b-tree, bitmap, reverse key, partitioned, and ordered.
B-Tree Indexes

The basic indexing technique supported by most relational database systems
is the b-tree index. A b-tree is a keyed, treelike index structure. A b-tree
index begins at the root page and fans out down to the leaf pages. Figure 4.2
shows the basic structure of a b-tree index.

Figure 4.2. B-tree index structure

A b-tree is a keyed, treelike index structure.

The pages of a b-tree index are referred to as nodes. Nodes exist in levels
in the b-tree, with nodes above the leaf level containing directory entries and
pointers to lower-level b-tree nodes. Nodes at the lowest level are called leaf
pages. Leaf pages contain entries with the key value and a pointer to
individual data rows in the table. As data is added to the table, the b-tree
index is updated by storing the new key values in the appropriate location in
the index structure. To access data using the index, the DBMS begins at the
root page and follows the pointers through the index until the key value is
located at the leaf level, where a pointer leads to the actual table data. Each
parent node contains the highest key value that is stored in its direct
dependent nodes. The leaf pages of a b-tree index can be scanned for ranges
of values once the key has been looked up.

Refer to Figure 4.2 again. Suppose a query is run with a search condition

requesting data where the key value is equal to 53. The DBMS can traverse
the index and in this case will wind up on the second leaf page. This leaf page
contains a pointer to the actual row in the table containing the requested key
value. A maximum of five I/O requests is required to satisfy this query: one
for a page at each level of the index and an additional request for the table
page.

An access request using an index can perform better than a table scan
because the requested data can be accessed directly using the pointers from
the leaf node of the index. This reduces I/O and enhances performance for
most data access requests.
Bitmap Indexes

Bitmap indexes are a different type of index supported by some DBMS
products. A bitmap index solves only a narrow range of problems but
provides superb performance. A bitmap index is most useful for query-heavy
tables that are infrequently modified. Furthermore, bitmap indexes are most
useful where the columns to be indexed have a very small number of distinct
values, such as sex (Male/Female) or Boolean (True/False) data. Data
warehouses and data marts can often benefit from bitmap indexes.

A bitmap index solves only a narrow range of problems but
provides superb performance.

A bitmap index is really quite simple. The implementation of a bitmap
index is, appropriately enough, accomplished using a string of zeroes and
ones, or bits. For each key value of the bitmap index a separate string of
zeroes and ones is stored. The number of distinct key values determines the
number of bit strings. For example, a bitmap index defined for the Sex
column of the EMPLOYEE table might have three strings, one for male, one
for female, and one for unknown. A bitmap index on the State column (for
states within the United States) could have 51 strings—one for each state and
an extra one for unknown.

To elaborate, let’s consider the Sex example again. A bitmap index is
created on the Sex column of an EMPLOYEE table that contains ten rows.
The bitmap index will contain three strings as indicated above, each with 10
bits. The string is positional. Whatever position has a bit turned on (“1”), the
Sex column in that row will contain the value for which that particular string

was built. Examine the following three bitmaps:

'Male' 1000011101
'Female' 0110000010
'Unknown' 0001100000

These strings indicate that rows 1, 6, 7, 8, and 10 are males; rows 2, 3, and
9 are females; and rows 4 and 5 are unknown.

Finding the set of records with any of several values that are bitmap
indexed simply requires adding the strings for those values. Bitmaps can be
much faster than table scans and even b-tree index retrieval under the right
circumstances. The strings of the bitmap index can be small enough to
maintain in memory, minimizing I/O operations. Even for queries that
retrieve large numbers of rows, a complex query using bitmaps can be very
efficient.

The problem with bitmaps is that a separate string is needed for each value
occurring in a field. When a column can take on a large number of different
values, a bitmap index is not practical because too many strings will be
required. Additionally, the zeroes and ones of the bitmap cannot be used for
calculations or be read directly to determine the actual values they represent.
Such limitations make true bitmap indexes impractical for most applications.
Some DBMS products have extended the bitmap index to make it more
practical for columns with higher cardinality. If your DBMS supports bitmap
indexes, make sure you understand the exact nature of the bitmaps being used
and the situations under which bitmap indexes are practical.
Reverse Key Indexes

A reverse key index is basically a b-tree index where the order of bytes of
each indexed column is reversed. The order of the columns within the index
is not reversed, just the bytes within each column. Such indexes can be useful
to eliminate data hot spots in OLTP applications. When the byte order is
reversed, adjacent key values are not physically stored together. So reverse
key indexes help to distribute the otherwise concentrated index data across
leaf nodes, thereby improving performance.

Reverse key indexes can eliminate data hot spots in OLTP
applications.

So, if a reverse key index is created on the FirstName column of the

EMPLOYEE table, and the value “Craig” is inserted, the value “giarC” is
used instead.

If the DBMS you are using does not support reverse key indexes, you
might be able to programmatically duplicate the effect. To do so, you will
need to use program logic (or perhaps an exit routine, if supported by the
DBMS) to reverse the values before inserting them into the columns. Of
course, you will need to programmatically unreverse the values when they
are retrieved. This process does not work well if the data must be queried in
an ad hoc manner, outside the scope of a program.
Partitioned Indexes

Partitioned indexes are basically b-tree indexes that specify how to break up
the index (and perhaps the underlying table) into separate chunks, or
partitions. Partitioning is usually done to enhance performance and increase
availability. When data is spread out across multiple partitions, you may be
able to operate on one partition without impacting others—for example, to
run utilities, to take data offline, or to place the underlying files on separate
disks.

Partitioning is usually done to enhance performance.

Most DBMS products support partitioning, but in different ways. Be sure
to understand the nuances of your particular DBMS implementation before
partitioning.
Ordered Indexes

Most DBMS products provide an option to specify the order in which b-tree
key values are ordered. The order specified, either ascending or descending,
will impact the usability of an index to avoid sort operations or to minimize
I/O requirements for retrieving MIN or MAX values. Create indexes in the
appropriate order to support the types of queries that are to be run against the
table.
Index Summary

Indexing is an important component of a physical database design. Indeed,
the single most important thing a DBA can do to optimize the performance of
database applications is to create effective indexes. In order to do so, the
DBA needs to know what indexing options are available in the DBMS being

used, but more importantly, the DBA must be able to match the DBMS
indexing options to the type of processing to be performed against the table.
Only by examining the SQL statements that operate on the database tables
can an effective indexing strategy be developed. Finally, keep in mind that
special processing requirements may require special indexing needs and that
add-on products are available from ISVs that can augment the indexing
options available to you.

Hashing
Hashing is a technique that uses key values to enable quick direct access to
data. An algorithm is used to transform the key values into a pointer to the
physical location of the rows that have those key values. The algorithm is
typically referred to as a randomizer, because the goal of the hashing routine
is to spread the key values evenly throughout the physical storage.

Hashing uses key values to enable quick direct access to data.

In general, the better the randomizing algorithm, the better the results of
hashing will be. When the randomizer generates the same pointer for two
different key values, a collision occurs. Different techniques can be used to
resolve collisions. Typically, the collision resolution algorithm attempts to
keep the data on the same page to avoid additional I/O. When pages fill up
and collisions force the data to another page, performance rapidly degrades.

Hashing works better with a large amount of free space. A disadvantage of
hashing is the amount of space that must be preallocated for data to be hashed
into.

Hashing has the big advantage that normally only one database I/O request
is needed to retrieve a row of data using the key. Hashing works best for
direct data lookup of one row or a small number of rows. If you need to
retrieve ranges of data, hashing is not optimal because the data will be spread
out instead of clustered and therefore I/O costs will be substantial.
Additionally, hashing requires a unique key to minimize collisions.

So, hashing should be considered only when an overwhelming majority of
the queries against the table are based on lookups using the key and will
return small results sets.

Clustering

Clustering describes a way of storing table data physically. The term refers to
keeping rows in a specific order on the disk. Through clustering, data that is
commonly accessed together can be stored together on the same or
contiguous database pages. Clustering optimizes performance because fewer
I/O requests are required to retrieve data.

Clustering optimizes performance because fewer I/O requests
are required to retrieve data.

Actually, more accurately, for some products clustering indicates that the
DBMS should attempt to maintain rows in the sequence of specific column
values. If insufficient space is available to maintain clustering when data is
inserted or modified, the DBMS typically stores the data without forcing
clustering. Therefore, a clustered table may not actually be 100 percent
clustered by the key value at all times.

Usually an index, called a clustering index, is required to support
clustering. The columns identified as the index key indicate how the table
upon which the index is defined should be clustered.

Consider clustering tables under the following circumstances:
• When a large number of queries retrieve ranges of data based on

specific column values.
• When a foreign key exists in the table. A foreign key typically

represents the “many” end of a one-to-many relationship. It is common
for queries to request data by the foreign key, resulting in large
sequential reads.

• When data is frequently sorted together (ORDER BY, GROUP BY,
UNION, SELECT DISTINCT, JOINs).

When you cluster a table, be sure to consider the frequency of
modification. Inserts and updates can cause data to become unclustered.
Favor clustering infrequently modified data over very frequently modified
data. However, the primary key is almost always a bad choice for clustering
because primary key access tends to be random and clustering optimizes
sequential access.

Be sure to understand how your DBMS implements clustering. Some
DBMS products merge the table and the clustering index into a single
structure, which may require you to modify your administration techniques

and procedures. Other clustering differences exist, too. For example, although
Oracle supports a structure called a cluster, it does not perform clustering as
just described; instead, it interleaves index keys for multiple tables.

Interleaving Data
When data from two tables is frequently joined, it can make sense to use the
join criteria to physically interleave the data into the same physical storage
structure. Interleaving can be viewed as a specialized form of clustering.

To better understand data interleaving, refer to Figure 4.3. The dots
indicate rows in different tables. The data is interleaved on the disk, based on
the join criteria. Notice that the light dots (table 1) are intermixed in the same
file as the dark dots (table 2). When data is interleaved this way, join
performance may improve—but only for the specific join that the data was
interleaved to optimize.

Figure 4.3. Interleaving table data

Different DBMS products support interleaving in different ways. Oracle
uses a cluster to support a form of interleaving. For other DBMSs, you may
need to develop scripts to organize, sort, and interleave the data before
loading it. At any rate, interleaving is useful in a small number of cases and
only when the predominant access to the two tables is by means of particular
join criteria.

Denormalization

Normalization is the process of putting each fact in the most appropriate
place. A normalized database implementation minimizes integrity problems
and optimizes updating, perhaps at the expense of retrieval. When a fact is
stored in only one place, retrieving many different but related facts usually
requires going to many different places. This can slow the retrieval process.
Updating is quicker, however, because the fact you’re updating exists in only
one place.

Most applications require very rapid data retrieval. Some applications
require specific tinkering to optimize performance at all costs. To accomplish
this, sometimes the decision is made to denormalize the physical database
implementation. Just as normalization is the process of assembling data in an
organized manner to eliminate redundancies, denormalization is the process
of deliberately introducing redundancy to your data. In other words,
denormalization can be thought of as the process of putting one fact in
numerous places. This can have the effect of speeding up the data retrieval
process, usually at the expense of data modification.

Denormalization can be thought of as the process of putting
one fact in numerous places.

When to Denormalize
Of course, you should never denormalize data unless a performance need
arises or your knowledge of the way your DBMS operates overrides the
benefits of a normalized implementation. Many DBMS products have
specific deficiencies and inefficiencies that may necessitate denormalizing for
performance reasons. Therefore, denormalization is not necessarily a bad
decision if implemented wisely. You should always consider the following
issues before denormalizing:

• Can the system achieve acceptable performance without
denormalizing?

• Will the performance of the system after denormalizing still be
unacceptable?

• Will the system be less reliable due to denormalization?
If the answer to any of these questions is yes, you should avoid

denormalization because the benefits typically will not exceed the cost. If,
after considering these issues, you decide to denormalize, be sure to adhere to

the general guidelines that follow.
If enough disk space is available, consider creating two sets of tables: one

set fully normalized and another denormalized. Populate the denormalized
versions by querying the data in the normalized tables and loading or
inserting it into the denormalized tables. Your application can access the
denormalized tables in a read-only fashion and achieve performance gains,
while at the same time modifying the normalized version and avoiding
integrity problems in the base data. However, it is important to set up a
controlled and scheduled population function to synchronize the normalized
table with the denormalized.

If sufficient disk space is not available for two complete sets of tables,
implement only the denormalized tables and maintain them
programmatically. Be sure to update each denormalized table representing the
same entity at the same time, or use database triggers to keep the redundant
data synchronized.

When a column is replicated in many different tables, always update it
everywhere simultaneously—or as close to simultaneously as possible—
given the physical constraints of your environment. Once again, triggers can
be helpful to accomplish this. If the denormalized tables are ever out of sync
with the normalized tables, be sure to inform end users that batch reports and
online queries may not contain sound data; if at all possible, this should be
avoided.

Finally, be sure to design the application so that it can easily be converted
from using denormalized tables to using normalized tables.

Every denormalization decision should be documented, including the
reason behind the decision and the exact changes made from the normalized
logical data model. Such a record will help to ensure that future database
changes are made with appropriate knowledge. Documentation will also
make it clear that you didn’t simply make a design or implementation
mistake.

Every denormalization decision should be documented.

Remember that only one valid reason exists for denormalizing a relational
design—to enhance performance. The following criteria can be used to help
identify potential denormalization candidates:

• Numerous critical queries or reports require data from more than one
table—in other words, joins are required. If these types of requests need
to be processed in an online transaction environment, denormalization
may be able to improve performance.

• Repeating groups need to be processed in a group instead of
individually.

• Many calculations need to be applied to one or many columns before
queries can be successfully answered. Storing derived or precalculated
data can reduce I/O and CPU usage upon retrieval and therefore be
more efficient.

• Tables need to be accessed in different ways by different users during
the same time frame.

• Many large primary keys exist that are clumsy to query and consume a
large amount of disk space when carried as foreign key columns in
related tables.

• Certain columns are queried a large percentage of the time, causing
very complex or inefficient SQL to be used.

Of course, these situations do not always require denormalization, but they
can be used as broad indications of when denormalization might be
considered—which raises the question “When should the DBA denormalize a
database design?” Although you might think it would be easier to
denormalize at the very beginning of the physical design process, this is
usually not the case. DBAs and application designers often decide to
denormalize prematurely—before they obtain any concrete evidence for its
necessity. Even though it may be difficult to retrofit a partially completed
system to work on denormalized structures, it is almost never a good idea to
denormalize before you’re sure that a normalized design will not perform
adequately. Of course, sometimes a DBA will have direct experience for the
specific application, DBMS, and version—and in those cases it may be
acceptable to denormalize the physical design immediately. However, such a
case is actually quite rare.

Be aware that each new RDBMS release usually brings enhanced
performance and improved access options that may reduce the need for
denormalization. However, most of the popular RDBMS products will
require denormalized data structures on occasion. There are many different

types of denormalized tables that can resolve the performance problems
caused when accessing fully normalized data. The following sections detail
the different types and advise on when to consider implementing them.

Never, under any circumstances, should you attempt to create a
denormalized logical data model. The logical data model should always be
completely normalized. The physical implementation of the database can
differ from the data model, but the model should always be fully normalized,
and above all, all physical variations from the data model should be
documented.

Never attempt to create a denormalized logical data model.

Prejoined Tables
If two or more tables need to be joined on a regular basis by an application,
but the cost of the join is prohibitive, consider creating prejoined tables. The
prejoined tables should

• Contain no redundant columns
• Contain only those columns absolutely necessary to meet the

processing needs of the application
• Be created periodically, using SQL to join the normalized tables

The benefit of prejoining is that the cost of the join will be incurred only
once—when the prejoined tables are created. A prejoined table can be
queried very efficiently because every new query does not incur the overhead
of the join process.

However, the negative aspect of prejoining, as with most forms of
denormalization, is the difficulty of keeping the data accurate. Prejoined
tables may quickly get out of sync with the independent tables from which
they were created. For this reason, prejoined tables are more useful for
relatively static data than for more dynamic data.

Report Tables
Oftentimes it is impossible to develop an end user report using only SQL.
Such a report may require special formatting or data manipulation. If certain
critical or highly visible reports of this nature are required to be viewed in an
online environment, consider creating a table that represents the report. This
table can then be queried using stand-alone SQL in a query tool or reporting

facility. The data for the report should be created by the appropriate
mechanism (application program, 4GL, SQL, etc.) in a batch environment
and then loaded into the report table in sequence. The report table should

• Contain one column for every column of the report
• Have its rows physically sequenced in the order in which they should

appear on the report so sorting is not required
• Not subvert relational tenets (such as 1NF and atomic data elements)

The report table should contain one column for every column
of the report.

Report tables are ideal for carrying the results of multiple joins and outer
joins, correlated subqueries, or other complex SQL statements. If a complex
query is coded, run, and then loaded into a table, a simple SELECT statement
can be used to retrieve the results, instead of the complex (and perhaps
slower) query that was used to populate the report table.

Mirror Tables
If an application system is very active, it may be necessary to split processing
into two (or more) distinct components. Such a split will result in the creation
of duplicate, or mirror, tables. For example, consider an application system
with very heavy online traffic during the morning and early afternoon hours.
This traffic consists of both queries and data modifications. Decision support
processing is also performed on the same application tables during the
afternoon. The production work in the afternoon always seems to disrupt the
decision support processing, causing frequent time-outs and deadlocks.

These disruptions could be corrected by creating mirror tables—a
foreground set of tables for the production traffic and a background set of
tables for decision support. A mechanism to periodically migrate the
foreground data to background tables must be established to keep the
application data synchronized. One such mechanism could be a batch job
executing UNLOAD and LOAD utilities. Another possibility is to use built-
in replication and propagation software, if the DBMS supports such
functionality. At any rate, the data synchronization should be done as often as
necessary to sustain the effectiveness of the decision support processing.

It is important to note that the access needs of decision support are often
considerably different from the access needs of the production environment.

Therefore, different decisions about data definition, such as indexing and
clustering, may be made for the mirror tables.

In addition, simple mirror tables may not be sufficient for your decision
support needs. Perhaps you will need to create a full-blown data warehouse
environment. A data warehouse is just a relational database that is
specifically designed or denormalized for decision support and analytical
queries.

Split Tables
If separate pieces of one normalized table are accessed by different and
distinct groups of users or applications, consider splitting the table into two
(or more) denormalized tables—one for each distinct processing group. The
original table can also be maintained if other applications access the entire
table. In this scenario the split tables should be handled as a special case of
mirror tables. If an additional table is not desired, a view joining the tables
could be provided instead.

Tables can be split in one of two ways: vertically or horizontally. A
vertically split table separates the columns of a table into separate tables: One
set of columns is placed in a new table and the remaining columns are placed
in another new table. The primary key columns are placed in both of the new
tables. Designate one of the two new tables as the parent table for the
purposes of referential integrity unless the original table still exists, in which
case the original table should be the parent table in all referential constraints.
If the original table still exists and the split tables are read only, don’t set up
referential integrity for the split tables. Because the split tables are derived
from a referentially intact source, referential integrity is unnecessary.

Tables can be split in one of two ways: vertically or
horizontally.

If you are splitting a table vertically, always include one row per primary
key in each split table. Do not eliminate rows from any of the new tables for
any reason. If rows are eliminated, the update process and any retrieval
process that must access data from both tables will be unnecessarily
complicated.

A horizontally split table separates the rows of a table into separate tables.
To split a table horizontally, rows are classified into groups via key ranges.

The rows from one key range are placed in one table, those from another key
range are placed in a different table, and so on. The columns of horizontally
split tables are the same. For horizontal splits, avoid duplicating rows in the
new tables. To accomplish this, use the primary key to perform the split and
ensure that each key value is assigned to only one of the new tables.
Splitting Long Text Columns

A special case of a vertical split can be used to break up very large text
columns. For example, consider a table that stores item descriptions of
merchandise. The description can be 100 characters long, but most processes
require only the first ten characters. For example, consider this CREATE
TABLE statement:
Click here to view code image

CREATE TABLE ITEM
 (ItemNum integer not null,
 ItemSize CHAR(1),
 ItemColor CHAR(10),
 ItemDescr CHAR(100)
;

In such a case, you can split the table into two tables by splitting the
description into two columns. One new column, maintained in the old table,
would house the first 10 bytes of the description. The second column would
be created in a new table with the primary key and the last 90 bytes of the
description. For example:
Click here to view code image

CREATE TABLE ITEM
 (ItemNum INTEGER NOT NULL,
 ItemSize CHAR(1),
 ItemColor CHAR(10),
 ItemDescr CHAR(10)
;
CREATE TABLE ITEM_DESC
 (ItemNum INTEGER NOT NULL,
 ItemDesc CHAR(90)
;

The value of this type of denormalization is better I/O: More rows can be
stored on each physical page because each row of the main table is smaller.

Only those tasks that require all 100 bytes would need to access both tables.
Of course, there are variations on this type of denormalization. You might
choose to store only the first 10 bytes in the main table, but all 100 bytes in
the description table if the other columns do not need to be accessed when the
description is accessed. On the other hand, if the description is very large,
you might want to break it up into multiple rows in the description table. For
example, if the description can be up to 10,000 bytes long but most are under
1,000 bytes, you would not want to create a character column of 10,000 bytes
(even if the DBMS allowed you to do so). Instead, you could create a table
such as this:

The value of this type of denormalization is better I/O.

Click here to view code image

CREATE TABLE ITEM_DESC
 (ItemNum INTEGER NOT NULL,
 ItemCtr INTEGER NOT NULL,
 ItemDesc CHAR(100)
;

In this example, the primary key of the description table is now the
combination of ItemNum and ItemCtr, where ItemCtr is a counter of the
number of rows of description stored for the ItemNum. This design breaks
the description up into 100-byte chunks. For the largest values, 100 rows
would be required to store all 10,000 bytes, but for most descriptions, 10 or
fewer rows would be required.

Combined Tables
If tables exist with a one-to-one relationship, consider combining them into a
single table. Of course, if each participant in the one-to-one relationship has
different relationships to other tables, you will need to take that into account
when denormalizing. Sometimes even one-to-many relationships can be
combined into a single table, but the data update process will be significantly
complicated because of the increase in redundant data.

Consider combining tables with a one-to-one relationship into
a single table.

For example, consider an application with two tables: DEPT (containing

department data) and EMP (containing employee data). You might choose to
denormalize by combining the two tables into a large table named, for
example, EMP_AND_DEPT. This new table would contain all of the
columns of both tables except for the redundant foreign key. So, in addition
to all the employee information, all the department information would also be
contained on each employee row. This will result in many duplicate instances
of the department data. Combined tables of this sort can be considered
prejoined tables and treated accordingly.

Tables with one-to-one relationships should always be analyzed to
determine whether combination is useful. Sometimes the consolidation of a
one-to-one relationship is normalization, not denormalization.

Redundant Data
Sometimes one or more columns from one table are accessed almost every
time data is queried in another table. In such cases, consider appending the
columns to the queried table as redundant data. If the table carries these
additional columns, joins can be eliminated and performance perhaps
improved. This should be attempted only if the normal data access performs
insufficiently.

Consider, once again, the DEPT and EMP tables. If most of the employee
queries require the name of the employee’s department, the department name
column could be carried as redundant data in the EMP table. The column
should not be removed from the DEPT table, though. Columns to consider
storing redundantly should exhibit the following characteristics:

• Only a few columns are necessary to support the redundancy.
• The columns should be stable, needing infrequent updates.
• The columns should be used by either a large number of users or a few

very important users.

Repeating Groups
The normalization process transforms repeating groups into distinct rows
instead of separate columns of the same row. Even though the normalization
of repeating groups optimizes data integrity and update performance, it
usually results in higher disk usage and less efficient retrieval. This happens
because there are more rows in the table and more rows need to be read in
order to satisfy queries that access the repeating group.

Sometimes by denormalizing such groups back into distinct columns, you
can achieve significant performance gains. Nevertheless, these gains come at
the expense of flexibility. For example, consider an application that stores
repeating group information in a table such as this:
Click here to view code image

CREATE TABLE CUST_BALANCE
 (CustNum INTEGER NOT NULL,
 BalancePeriod INTEGER NOT NULL,
 Balance DECIMAL(15,2),
 constraint PKCB PRIMARY KEY (CustNum, BalancePeriod)
;

This table can store an infinite number of balances per customer, limited
only by available storage and the storage limits of the DBMS. If the decision
were made to string the repeating group, Balance, out into columns instead of
rows, a limit would need to be set for the number of balances to be carried in
each row. Here is an example of this table after denormalization:
Click here to view code image

CREATE TABLE CUST_BALANCE
 (CustNum INTEGER NOT NULL,
 Period1_Balance DECIMAL(15,2),
 Period2_Balance DECIMAL(15,2),
 Period3_Balance DECIMAL(15,2),
 Period4_Balance DECIMAL(15,2),
 Period5_Balance DECIMAL(15,2),
 Period6_Balance DECIMAL(15,2),
 constraint PKCB PRIMARY KEY (CustNum)
;

In this example, only six balances may be stored for any one customer. The
designer could just as easily have chosen to store eight, 12, or any arbitrary
number of balances. The number six is not important, but the concept that the
number of values is limited is important. This reduces the flexibility of data
storage and should be avoided unless performance needs dictate otherwise.

Using the first design, six rows would need to be retrieved to obtain six
balances. Using the second design, all six balances can be retrieved by
reading one row. Therefore, the performance of retrieval may be better using
the denormalized design. Before deciding to implement repeating groups as
columns instead of rows, be sure the following criteria are met:

• The data is rarely or never aggregated, averaged, or compared within
the row.

• The data occurs in a statistically well-behaved pattern.
• The data has a stable number of occurrences.
• The data is usually accessed collectively.
• The data has a predictable pattern of insertion and deletion.

If any of these criteria are not met, certain types of data retrieval may be
difficult to code, making the data less available. This should be avoided
because, in general, data is denormalized only to make it more readily
available.

Derivable Data
If the cost of deriving data using complicated formulas is prohibitive, think
about physically storing the derived data in a column instead of calculating it.
For example, consider employee data that is scattered across multiple tables.
Perhaps the database contains three columns in several tables that store
employee compensation data. These columns are Salary, Bonus, and
Commission. Furthermore, assume that, more often than not, queries require
total compensation to be reported, which is the sum of these three columns. It
might make sense to include a column in the main EMP table called
TotalCompensation that is the sum of Salary, Bonus, and Commission,
thereby avoiding a multitable join and a calculation. Even though this
example shows a simple addition, certain business calculations can be quite
complex, requiring a lot of I/O and CPU processing to accomplish. The more
complex the calculation and the more resources it requires, the better the
performance gain you can achieve by physically storing it in the database
instead of calculating the value every time it is required.

It can make sense to include a derived column in a table to
avoid multitable joins and calculations.

However, when the underlying values that constitute the calculated value
change, it is imperative that the stored derived data also be changed;
otherwise inconsistent information will be stored. Such incorrect data will
adversely impact the usability, effectiveness, and reliability of the database.
To avoid such problems, consider storing derived data only when the
following criteria are met:

• The source data used for the derivation calculation is relatively static.
• The cost of performing the derivation calculation is quite high.
• The usage pattern of the source tables is such that recalculation can be

performed quickly when the source data changes.
Sometimes it is not possible to immediately update derived data elements

when the columns upon which they rely change. Such situations can occur
when the tables containing the derived elements are offline or being operated
on by a utility. Whenever possible, time the update of the derived data so that
it occurs immediately when the source table is made available again. Under
no circumstances should outdated derived data be made available for
reporting and inquiry purposes.

Hierarchies
A hierarchy is a structure that is easy to support using a relational database,
but it can cause data retrieval difficulties unless the DBMS supports SQL
extensions for traversing the hierarchy. For this reason, applications requiring
hierarchies frequently contain denormalized tables to speed up data retrieval.

Applications requiring hierarchies frequently contain
denormalized tables to speed up data retrieval.

Most of us have encountered at least one hierarchy in our data-processing
careers. Two common hierarchical structures are bill-of-materials
applications and departmental organization systems. A bill-of-materials
application typically records information about parts assemblies in which one
part is composed of other parts, which can then be a component of yet
another part. A departmental organization system typically records the
departmental structure of an organization, indicating which departments
report to which other departments. A typical implementation of a hierarchy
table for departmental organization would be
Click here to view code image

CREATE TABLE DEPT
 (ParentDeptNum INTEGER NOT NULL,
 DeptName CHAR(25),
 SupervisorNum INTEGER,
 ReportsToDeptNum INTEGER,
 constraint PKDN PRIMARY KEY (DeptNum),
 constraint FKCB FOREIGN KEY (ReportsToDeptNum)

REFERENCES
DEPT
 ON DELETE RESTRICT
;

To support such a hierarchy, a one-to-many relationship is set up for a
single table. In this example the ReportsToDeptNum column is the foreign
key that refers to the DeptNum primary key. Each department reports to only
one department, but a department can have more than one department
reporting to it.

Such a table represents an accurately normalized entity for storing a
hierarchy. The complete hierarchy can be rebuilt with the proper data
retrieval instructions. However, consider the difficulty of writing SQL to
query this table and report on the departmental organization. It is impossible
to accomplish such a task using only SQL unless you have some guiding
knowledge of the number of levels of reporting that may exist or your DBMS
supports SQL extensions for traversing hierarchies.

A very effective way to denormalize a hierarchy is to create speed tables.
The speed table contains a pretraversed hierarchy for easy retrieval. Such a
speed table is shown here:

A very effective way to denormalize a hierarchy is to create
speed tables.

Click here to view code image

CREATE TABLE DEPT
 (DeptNum INTEGER NOT NULL,
 ChildDeptNum INTEGER NOT NULL,
 Level INTEGER,
 Detail CHAR(1),
 DeptName CHAR(25),
 SupervisorNum INTEGER,
 constraint PKDN PRIMARY KEY (DeptNum, ChildDeptNum)
;

The speed table contains a row for every dependent ChildDeptNum, not
just immediate dependents. The primary key for the speed table is the
combination of DeptNum and ChildDeptNum. Two additional columns are
provided:

• A column named Level contains a numeric value indicating the level
within the hierarchy for the ChildDeptNum. For example, if the child
resides two levels down in the hierarchy from the parent, Level will
contain the value 2.

• A column named Detail contains “Y” if the ChildDeptNum is at the
very bottom of the hierarchy, and “N” otherwise.

The speed table must be created programmatically—it cannot be generated
using SQL.

Special Physical Implementation Needs
Sometimes the requirements of the database and the physical implementation
details of the DBMS will not mix for good performance. For example, some
DBMS products have limitations on the physical block sizes that can be
specified for database files. At times, the row size of a table in a logical data
model may require a very large block size because it will not fit completely in
a smaller block size. Some DBMS products treat large block sizes
inefficiently. In that case, you may want to denormalize the table by breaking
apart the row so it will fit in a smaller block size. This is just one example of
a physical DBMS implementation detail that may call for denormalization.

Denormalization Summary
We have discussed ten different types of denormalization. Table 4.1
summarizes the types of denormalization that are available with a short
description of when each type is useful.

Table 4.1. Types of Denormalization

The decision to denormalize should never be made lightly, because it can
cause integrity problems and involve a lot of administration. Additional
administration tasks include

• Documenting every denormalization decision
• Ensuring that all data remains valid and accurate
• Scheduling data migration and propagation jobs
• Keeping end users informed about the state of the tables
• Analyzing the database periodically to decide whether denormalization

is still required
If a database has been denormalized, the data and environment should be

regularly reviewed whenever hardware, software, and application
requirements change. Any change can alter the need for denormalization. To
verify whether denormalization is still a valid decision, ask the following
questions:

Any change can alter the need for denormalization.

• Have the processing requirements changed for the application such that
the join criteria, timing of reports, and/or transaction throughput
requirements no longer dictate a denormalized database?

• Did a new release of the DBMS enhance performance? For example,
did the introduction of a new join method or performance technique
undo the need for prejoined tables?

• Did a new hardware release change performance considerations? For
example, does the upgrade to a new, faster processor provide additional
CPU resources so that denormalization is no longer necessary? Or did
the addition of memory enable faster data access so that data can be
physically normalized?

In general, periodically test whether the extra cost related to processing
with normalized tables justifies the benefit of denormalization. You should
measure the following criteria:

• I/O saved
• CPU saved
• Complexity of data modification
• Cost of returning to a normalized design

Always remember that denormalization is implemented to enhance
performance. If the environment changes, it is only reasonable to reevaluate
the denormalization decision. Also, it is possible that, given a changing
hardware and software environment, denormalized tables may be causing
performance degradation instead of performance gains. Simply stated, always
monitor and periodically reevaluate all denormalized applications.

Denormalization is implemented to enhance performance.

Views
Another aspect of physical database design is the creation of database views
to support specific application data requirements. Views are not required to
access a physical database, but they can be helpful to support specific
application and user requirements. You can think of a view as a way of
turning a SELECT statement into a “table” that is accessible using SQL.
Therefore, a view can be considered a logical table. No physical structure is
required of a view; it is a representation of data that is stored in other tables
(or other views). As shown in Figure 4.4, the data “in the view” is not stored
anywhere and physically exists only in the underlying tables. Views can also
be based on other views.

Figure 4.4. What is a view?

Views are flexible and can consist of any combination of the following:
• Rows from tables. These can be a subset of rows from a single table, all

rows from a single table, a subset of rows from multiple tables, or all
rows from multiple tables.

• Rows from views. These can be the same combinations as listed for
tables.

• Columns from tables. These can be a subset of columns from a single
table, all columns from a single table, a subset of columns from
multiple tables, or all columns from multiple tables.

• Columns from views. These can be the same combinations as listed for
tables.

Views should be created based on their usefulness to application
development and ad hoc query users. There are six basic uses for which
views excel. Views can allow you to

• Provide row- and column-level security
• Ensure efficient access paths
• Mask complexity from the user
• Ensure proper data derivation

• Rename tables
• Rename columns

At any rate, be sure to document the intended purpose for every view
created so that future structural changes to database tables can be
promulgated to any views accessing those changed tables.

Data Definition Language
All physical database objects are created using SQL Data Definition
Language, or DDL for short. The basic components of DDL are the
CREATE, ALTER, and DROP statements. Appropriately enough, CREATE
is used to initially create a database object. Changes to the database object
once it has been created can be made using the ALTER statement. But the
ALTER statement cannot necessarily be used to change any and every aspect
of a database object (which is covered in more detail in Chapter 7, “Database
Change Management”). Finally, the DROP statement is used to remove a
database object from the system.

All physical database objects are created using SQL Data
Definition Language.

Many DBMS products provide a graphical interface for creating and
changing database objects. If your DBMS provides such an interface, you
may be able to create a physical database without learning the specifics of
DDL syntax. I do not recommend this for DBAs, because sometimes the
graphical interface does not support all of the syntax and options for every
database object. An informed DBA is an effective DBA—and unless you
verify that the graphical interface supports every DDL option, you will be
better off learning and using DDL statements.

Temporal Data Support
The need to store and access noncurrent data is a common requirement for
some types of applications. Many types of data change over time, and
different users and applications have requirements to access the data at
different points in time. For some, the current, up-to-date values for the data
are sufficient. But for others, the ability to access earlier versions of the data
is needed.

In traditional relational database systems, various approaches have been
used to store and access temporal data. Separate history tables are one
approach (perhaps augmented with triggers); snapshot tables are another; yet
an additional approach is to custom-build time sensitivity into the tables and
queries. None of these approaches is ideal, especially with the fast pace of
business and the escalating need to comply with legal and regulatory
requirements. Many applications need to provide real-time access to
noncurrent data.

A traditional database stores data implied to be valid at the current point in
time; it does not track the past or future states of the data. But some database
systems (for example, DB2 for z/OS) support built-in temporal features.
Temporal support makes it possible to store different database states and to
query the data as of those different states. This is accomplished by attaching a
time period to the data to indicate when it was valid or changed in the
database.

A Temporal Example
Consider an insurance company that sells policies to its customers. The terms
of any specific insurance policy are valid over a period of time. After that
period of time, customers can choose to decline further coverage, continue
with the existing coverage, or modify the terms of their coverage. So at any
specific point in time, the terms of the customers’ policies can differ.

Over time, customers make claims against their policies. This claim
information needs to be stored, managed, and analyzed. Accident histories for
customers are also important pieces of data with a temporal element.

Now consider the complexity inherent in trying to develop not only a
database design that accommodates changing policies, claims, and historical
details but also enables queries such that a user might access a customer’s
coverage at a given point in time. In other words, what policies were in effect
for that customer as of, say, April 15, 2012? Or on any other date during
which the customer had coverage?

This concept of business time can become quite complex. Consider the
situation in which a customer has multiple policies that expire on different
schedules. Add the possibility for periods in which coverage lapses. And the
database does not remain static; it grows in size, queries become more
complex, and so on.

Insurance is but one example. Many other types of applications exist for
which temporal support would be useful, for example, financial applications,
credit history, personnel management, transportation applications, reservation
systems, and medical information management, to name a few.

Business Time and System Time
There is another concept of temporal data that might need to be factored in as
well. Instead of business time, you also might need to track and manage
system time. For example, a regulatory mandate might require you to track
any changes to a particular piece of data. This is common with personally
identifiable information (PII), such as a Social Security number or phone
number. Support for managing system changes enables users to query the
database as of a point in time, returning the value of the data as of that time
frame.

The business time indicates the period during which the data is accurate
with respect to the world. The system time indicates the period during which
the data is stored in the database. These two time periods do not need to be
the same for a single piece of data. Suppose, for example, that you want to
store temporal information about twentieth-century events. The valid
business time for this data would be within the range of 1900 through 1999.
But if you were to add the information to the database now, perhaps the valid
system time for the data would be at some point in 2013. So, of course, you
might need to support both business temporal data and system temporal data
in the same table. This is called bitemporal support.

So, to define terms a bit more precisely: Business time, also referred to as
valid time or application time, specifies when the facts stored in the database
are true for the real world. These are the dates of interest to the business user
interacting with the data. Business time should be associated only with data
that has a business need for temporal tracking.

System time, also referred to as transaction time, denotes the time when the
fact became current in the database. System time can be used to track the
insertion and modification history of the data. Unlike business time,
transaction time can be associated with any database entity. It might be
useful, depending upon regulatory or industry requirements, to track when
any specific piece of data changes. Of course, you do not want to impose a
system time on all your data just because you can due to the overhead of

doing so.
A bitemporal table is defined with both a system period and a business

period. With a bitemporal table you can keep business (or application)
information and system-based historical information.
Impact on DBA

DBAs must understand the temporal requirements of the database before it is
implemented. The DBA should properly implement the business and system
time using the built-in facilities of the DBMS. When this is done, temporal
queries are easy to code using the AS OF syntax of SQL. For example,
consider our discussion of tracking the insurance policies in effect for a
customer as of April 15, 2012. For a temporal database, this can be simply
using something like the following SQL:
Click here to view code image

SELECT CustName, PolicyNo, BenefitSummary
FROM InsurancePolicy
 FOR BUSINESS_TIME AS OF '2012-04-15'
WHERE CustNo = ?
;

To modify temporal data you use standard INSERT, UPDATE, and
DELETE statements, but you must understand the temporal aspect of the
changes being made. For INSERT statements you must manipulate the date
range correctly. For DELETE statements you must assure that the correct
ranges are being removed. And UPDATE statements can be augmented with
temporal clauses so that specific ranges are modified.

Of course, if the DBMS does not offer temporal support, the DBA and
application team will need to build the tables with effective dates and ensure
that the application code is created to modify the time spans appropriately.
Additionally, queries against the tables become more complex, requiring
BETWEEN or greater-than/less-than predicates for the date ranges.

This discussion of temporal data is necessarily brief. For a more detailed
account consult Johnston and Weis, Managing Time in Relational Databases.

Summary
A logical data model should be used as the blueprint for designing and
creating a physical database. But the physical database cannot be created with

a simple logical-to-physical mapping. Many physical design decisions need
to be made by the DBA before implementing physical database structures.
Many times this will necessitate deviating from the logical data model. But
such deviation must be based on in-depth knowledge of the DBMS and the
physical environment in which the database will exist.

Review
1. Describe the first, simple steps to convert a logical data model to a

physical database.
2. What is the only reason to denormalize a physical data model?
3. Under what circumstances should a bitmap index be considered instead

of a b-tree index?
4. Which types of data access will benefit from data clustering?
5. Cite five reasons for creating a database view.
6. A referential constraint is created by specifying a __________ key in

the dependent table that refers back to the primary key in the parent
table.

7. Describe how a relational database uses indexes.
8. Why might the order in which columns are created in a table be

important for physical database design?
9. When should you consider physically storing derived data in a

database?
10. If indexes are beneficial to performance, why not create every possible

index conceivable just to be on the safe side?

Bonus Question
Review the very small data model shown in Figure 4.5 and create a physical
database implementation for the DBMS of your choice. Assume that there are
approximately 25,000 students and that each student enrolls in three to five
courses per semester. The most common query requirement is that students
be able to create their course schedules. Be sure to specify every physical
design decision and create sample DDL statements to implement a basic
physical design. Further, indicate where additional information is required to
make a physical design decision and why.

Figure 4.5. Logical data model

Suggested Reading
Fleming, Candace, and Barbara von Halle. Handbook of Relational

Database Design. Reading, MA: Addison-Wesley (1989). ISBN 0-201-
11434-8.

Harrington, Jan L. Relational Database Design: Clearly Explained. 2nd ed.
San Francisco, CA: Morgan Kaufmann (2002). ISBN 1-55860-820-6.

Hernandez, Michael J. Database Design for Mere Mortals. 2nd ed. Boston,
MA: Addison-Wesley (2003). ISBN 0-201-75284-0.

Hogan, Rex. A Practical Guide to Database Design. Englewood Cliffs, NJ:
Prentice Hall (1990). ISBN 0-13-690967-1.

Johnston, Tom, and Randall Weis. Managing Time in Relational Databases.
Burlington, MA: Morgan Kaufmann (2010). ISBN 978-0-12-375041-9.

Lahdenmaki, Tapio, and Michael Leach. Relational Database Index Design
and the Optimizers. Hoboken, NJ: John Wiley & Sons (2005). ISBN 0-
471-71999-4.

Lightstone, Sam, et al. Physical Database Design. San Francisco, CA:
Morgan Kaufmann (2007). ISBN 978-0-12-369389-1.

Pascal, Fabian. Practical Issues in Database Management. Boston, MA:
Addison-Wesley (2000). ISBN 0-201-48555-9.

Perkinson, Richard C. Data Analysis: The Key to Database Design.
Wellesley, MA: QED Information Sciences (1984). ISBN 0-89435-105-2.

Riordan, Rebecca M. Designing Effective Database Systems. Boston, MA:
Addison-Wesley (2003). ISBN 0-321-29093-3.

Rishe, Naphtali. Database Design. New York: McGraw-Hill (1992). ISBN
0-07-052955-8.

Stephens, Ryan K., and Ronald R. Plew. Database Design. Indianapolis, IN:
SAMS Publishing (2001). ISBN 0-672-31758-3.

Teory, Toby, et al. Database Design: Know It All. San Francisco, CA:
Morgan Kaufmann (2002). ISBN 978-0-12-374630-6.

5. Application Design

Application design is more than just writing efficient database requests in
application programs. Every aspect of the way the program is coded affects
the usability and effectiveness of the application. Of course, application
design includes database concerns such as interfacing SQL with traditional
programming languages and the type of SQL to use. However, each
application program must be designed to ensure the integrity of the data it
modifies. Additionally, performance has to be treated as a design issue.

Performance has to be treated as a design issue.

At the forefront the DBA must promote the concept of application design
based on thorough knowledge of the database. It is unacceptable to allow
programmers to design and code applications without considering how the
programs will perform as they interact with databases. Some uninformed
organizations approach database application development with no proactive
performance engineering: The assumption is that any performance problems
can be resolved after development by the DBA. However, it may be
impossible to tune an improperly designed application program without
rewriting it. So why not write it correctly the first time?

The intent of this chapter is not to teach software development
methodology or to provide an in-depth treatise on programming—nor is it a
primer on SQL. The focus of discussion will be high-level application design
issues that need to be understood when writing applications that use a
database for persistent storage of data. All DBAs should understand the
concepts in this chapter and be able to effectively communicate them to the
developers in their organization.

Chapter 12, “Application Performance,” provides additional coverage of
application performance issues as they pertain to database development.

Database Application Development and SQL
Designing a proper database application system is a complex and time-
consuming task. The choices made during application design will impact the
usefulness of the final, delivered application. Indeed, an improperly designed

and coded application may need to be redesigned and recoded from scratch if
it is inefficient, ineffective, or not easy to use.

Designing a proper database application system is a complex
task.

To properly design an application that relies on databases for persistent
data storage, the system designer at a minimum will need to understand the
following issues:

• How data is stored in a relational database
• How to code SQL statements to access and modify data in the database
• How SQL differs from traditional programming languages
• How to embed SQL statements into a host programming language
• How to optimize database access by changing SQL and indexes
• Programming methods to avoid potential database processing problems

In general, the developer must match the application development
languages and tools to the physical database design and functionality of the
DBMS. The first task is to master the intricacies of SQL.

SQL
Structured Query Language, better known as SQL (and pronounced “sequel”
or “ess-cue-el”), is the de facto standard for accessing relational databases.
All RDBMS products, and even some nonrelational DBMS products, use
SQL to manipulate data.

SQL is the de facto standard for accessing relational
databases.

Why is SQL so pervasive within the realm of relational data access? There
are many reasons for SQL’s success. Foremost is that SQL is a high-level
language that provides a greater degree of abstraction than traditional
procedural languages. Third-generation languages, such as COBOL and C,
and even fourth-generation languages, usually require the programmer to
navigate data structures. Program logic must be coded to proceed record by
record through data stores in an order determined by the application
programmer or systems analyst. This information is encoded in the high-level
language and is difficult to change after it has been programmed.

SQL, by contrast, is designed such that programmers specify what data is
needed. It does not—indeed it cannot—specify how to retrieve it. SQL is
coded without embedded data-navigational instructions. The DBMS analyzes
each SQL statement and formulates data-navigational instructions “behind
the scenes.” These data-navigational instructions are commonly called access
paths. A heavy burden is removed from the programmer by empowering the
DBMS to determine the optimal access paths to the data. Because the DBMS
better understands the state of the data it stores, it can produce a more
efficient and dynamic access path to the data. The result is that SQL, used
properly, provides a quicker application development and prototyping
environment than is available with corresponding high-level languages.
Furthermore, as the data characteristics and access patterns change, the
DBMS can change access paths for SQL queries without requiring the actual
SQL to be changed in any way.

SQL specifies what data is needed . . . not how to retrieve it.

Inarguably, though, the single most important feature that has solidified
SQL’s success is its capability to retrieve data easily using English-like
syntax. It is much easier to understand a query such as

SELECT deptnum, deptname
FROM dept
WHERE supervisornum = '903';

than it is to understand pages and pages of C or BASIC source code, let alone
the archaic instructions of Assembler. Because SQL programming
instructions are easier to understand, they are easier to learn and maintain—
affording users and programmers more productivity in a shorter period of
time. However, do not underestimate SQL: Mastering all of its intricacies is
not easy and will require much study and practice.

SQL also uses a free-form structure that makes it very flexible. The SQL
programmer has the ability to develop SQL statements in a way best suited to
the given user. Each SQL request is parsed by the DBMS before execution to
check for proper syntax and to optimize the request. Therefore, SQL
statements do not need to start in any given column and can be strung
together on one line or broken apart on several lines. For example, the
following SQL statement:
Click here to view code image

SELECT deptnum, deptname FROM dept WHERE supervisornum
= '903';

is exactly equivalent to the previous SQL statement shown. Another example
of SQL’s flexibility is that the programmer can formulate a single request in a
number of different and functionally equivalent ways—a feature that also can
be very confusing for SQL novices. Furthermore, the flexibility of SQL is not
always desirable, because different but logically equivalent SQL formulations
can result in differing performance results. Refer to the sidebar “Joins versus
Subqueries” for an example.

Finally, one of the greatest benefits derived from using SQL is its ability to
operate on sets of data with a single line of code. Multiple rows can be
retrieved, modified, or removed in one fell swoop by using a single SQL
statement. This feature provides the SQL developer with great power but also
limits the overall functionality of SQL. Without the ability to loop or step
through multiple rows one at a time, certain tasks are impossible to
accomplish using only SQL. Of course, as more and more functionality is
added to SQL, the number of tasks that can be coded using SQL alone is
increasing. For example, SQL can be used to create a stored procedure to
perform many programming tasks that formerly required a traditional
programming language to accomplish. Furthermore, most of the popular
relational DBMS products support extended versions of SQL with procedural
capabilities. Table 5.1 details the most popular procedural SQL dialects.

Table 5.1. SQL Usage Considerations

Joins versus Subqueries
One example of SQL’s flexibility is the way in which a single statement
can access data from multiple tables. SQL provides two methods: joins and
subqueries. However, a subquery can be converted to an equivalent join.

The concept behind both types of queries is to retrieve data from multiple
tables based on search criteria matching data in the tables.

Consider the following two SQL statements. The first one is a
subquery, where a query is embedded within another query. The second
query is a join, where two tables are specified in the FROM clause of a
single SELECT statement.

Click here to view code image

SELECT empno, firstname, lastname
FROM employee
WHERE workdept IN
 (SELECT deptno
 FROM department
 WHERE deptname = 'DBA');
SELECT empno, firstname, lastname
FROM employee,
 department
WHERE workdept = deptno
AND deptname = 'DBA';

Both queries return information about employees who work in the
database administration department. The results returned by both queries
will be the same, but the performance may vary significantly depending
on the DBMS in use, the indexes that are defined for each table, and the
complexity of the query itself.

Set-at-a-Time Processing and Relational Closure
Every operation performed on a relational database operates on a table (or set
of tables) and results in another table. This feature of relational databases is
called relational closure. All SQL data manipulation operations—that is,
SELECT, INSERT, UPDATE, and DELETE statements—are performed at a
set level. One retrieval statement can return multiple rows; one modification
statement can modify multiple rows.

All SQL data manipulation operations are performed at a set
level.

To clarify the concept of relational closure, refer to Figure 5.1. A database
user initiates SQL requests. Each SQL statement can access one or many

tables in the database. The SQL statement is sent to the DBMS, whereupon
the query is analyzed, optimized, and executed. The DBMS formulates the
access path to the data, and upon completion of the request the desired
information is presented to the user as a set of columns and rows—in other
words, a table. The result will consist of one or more columns with zero, one,
or many rows. Because SQL performs set-level processing, the DBMS
operates on a set of data, and a set of data is always returned as the result. Of
course, the results set can be empty, or it can contain only one row or
column. The relational model and set-level processing are based on the
mathematical laws of set theory, which permit empty and single-valued sets.

Figure 5.1. Relational closure

Application developers face a potential problem when using relational
databases because of the set-at-a-time nature of SQL. Most programming
languages operate on data one record at a time. When a program requires
relational data, though, it must request the data using SQL. This creates an
impedance mismatch. The program expects data to be returned a single row
at a time, but SQL returns data a set at a time. There are different ways to get
around this mismatch, depending on the DBMS, programming language, and
environment. Most DBMS products provide a feature called a cursor that
accepts the input from a SQL request and provides a mechanism to fetch

individual rows of the results set. Some programming environments and
fourth-generation languages automatically transform multirow sets to single
rows when communicating with the DBMS.

Furthermore, most programmers are accustomed to hard-wiring data-
navigational instructions into their programs. SQL specifies what to retrieve
but not how to retrieve it. The DBMS determines how best to retrieve the
data. Programmers unaccustomed to database processing are unlikely to
grasp this concept without some training. At any rate, programmers will need
to be trained in these high-level differences between non-database and
database programming techniques. This job usually falls upon the DBA or
other highly skilled database technician within the organization. Of course,
there are many more details at a lower level that the database programmer
needs to know, such as SQL syntax, debugging and testing methods,
optimization techniques, and program preparation procedures (compilation,
bind, etc.).

The DBMS determines how best to retrieve the data.

Embedding SQL in a Program
Most database applications require a host programming language to use SQL
to communicate with the database. A wide range of programming languages
can be used with SQL, from traditional languages such as COBOL,
FORTRAN, and Assembler to more modern languages such as C/C++, Java,
PHP, and Visual Basic. Your choice of host programming language can
impact the way you will have to code SQL. For example, SQL is embedded
directly into a COBOL program, whereas a language like C requires an API
such as ODBC to issue SQL statements.

The choice of development language will likely be limited to just a few at
your shop. You should attempt to minimize the number of different
languages you use, because it will make supporting and maintaining your
applications easier. Furthermore, such limitations will make it easier for
DBAs to administer and optimize the database environment. A DBA should
be capable of reading and understanding program code for each language
used to access databases within the organization.

Minimize the number of different languages you use.

Some application development projects use an IDE (integrated
development environment) or code generator to create programs from
program specifications. Exercise caution when using this approach: Don’t
allow the code generator to create SQL for you without first testing it for
efficiency. Poor performance can result when using a code generation tool
because these tools often have very little knowledge of the DBMS you are
using. In most cases the code generator is designed to work for multiple
DBMS products and is therefore not optimized for any of them. Test the SQL
that is generated and, if necessary, modify the generated SQL or build
indexes to optimize the generated SQL before moving the programs to a
production environment. The DBA should be responsible for implementing a
procedure to ensure that such SQL performance testing occurs.

SQL Middleware and APIs
Application programs require an interface for issuing SQL to access or
modify data. The interface is used to embed SQL statements in a host
programming language, such as COBOL, Java, C, or Visual Basic. Standard
interfaces enable application programs to access databases using SQL. There
are several popular standard interfaces or APIs for database programming,
including ODBC, JDBC, SQLJ, and OLE DB.

One of the most popular SQL APIs is Open Database Connectivity
(ODBC). Instead of directly embedding SQL in the program, ODBC uses
callable routines. ODBC provides routines to allocate and deallocate
resources, control connections to the database, execute SQL statements,
obtain diagnostic information, control transaction termination, and obtain
information about the implementation. ODBC is basically a call-level
interface (CLI) for interacting with databases. The CLI issues SQL
statements against the database by using procedure calls instead of direct
embedded SQL statements.

ODBC is basically a call-level interface for interacting with
databases.

Microsoft invented the ODBC interface to enable relational database
access for Microsoft Windows programming. However, ODBC has become
an industry-standard CLI for SQL programming. Indeed, every major DBMS
today supports ODBC.

ODBC relies on drivers, which are optimized ODBC interfaces for a
particular DBMS implementation. Programs can make use of the ODBC
drivers to communicate with any ODBC-compliant database. The ODBC
drivers enable a standard set of SQL statements in any Windows application
to be translated into commands recognized by a remote SQL-compliant
database.

Another popular SQL API is Java Database Connectivity (JDBC). JDBC
enables Java to access relational databases. Similar to ODBC, JDBC consists
of a set of classes and interfaces that can be used to access relational data.
There are several types of JDBC middleware, including the JDBC-to-ODBC
bridge, as well as direct JDBC connectivity to the relational database.
Anyone familiar with application programming and ODBC (or any call-level
interface) can get up and running with JDBC quickly. (Refer to Chapter 21,
“Database Connectivity,” for a discussion of the various types of JDBC
drivers.)

Another way to access databases from a Java program is by using SQLJ.
SQLJ enables developers to directly embed SQL statements in Java
programs, thus providing static SQL support to Java. A precompiler
translates the embedded SQL into Java code. The Java program is then
compiled into bytecodes, and a database bind operation creates packaged
access routines for the SQL.

SQLJ enables developers to embed SQL statements in Java
programs.

OLE DB, which stands for Object Linking and Embedding Database, is an
interface that is based on the COM architecture. It is a low-level interface to
data. OLE DB provides applications with uniform access to data stored in
diverse information sources. It allows greater flexibility than ODBC because
it can be used to access both relational and nonrelational data. OLE DB
presents an object-oriented interface for generic data access. OLE DB is
conceptually divided into consumers and providers. The consumers are the
applications that need access to the data, and the providers are the software
components that implement the interface and thereby provide the data to the
consumer.

SQL Server 20121 is planned to be the final version to include an OLE DB
provider for SQL Server. However, Microsoft has indicated that support will

continue for at least seven years.
COM is Microsoft’s component-based development architecture. Using

COM, developers can create application components that can be pieced
together to create application systems. The components can be written by
different developers and need not be written using the same programming
language. ADO (which stands for ActiveX Data Objects) is a set of software
components that programmers can use to access data and data services.

Both COM and ADO predate the .NET framework but have been adapted
for use by .NET.

Application Infrastructure
Application infrastructure is the combined hardware and software
environment that supports and enables the application. The application
infrastructure will vary from organization to organization, and even from
application to application within an organization. The application
infrastructure provides the foundation for building, deploying, and managing
applications with high performance, security, and control.

From a hardware perspective, the application infrastructure includes the
servers, clients, and networking components. From a software perspective,
things are a bit more difficult to nail down. Software components of an
application infrastructure can include database servers, application servers,
Web servers, transaction managers, and development frameworks. Some of
the key functionality of application infrastructure includes transaction
management, clustering, reliable application-to-application messaging,
system management, advanced application development tools, proprietary
access, and interoperability with legacy technologies.

From a mainframe perspective, the application infrastructure may consist
of IBM z Series hardware running z/OS, DB2, CICS, with application
programs written in COBOL. Typically, applications consist of both batch
and online workload. A modern mainframe infrastructure adds interfaces to
non-mainframe clients, as well as WebSphere Application Server and Java
programs. Most new mainframe development uses IDEs to code modern
applications instead of relying upon COBOL programmers.

Most modern, distributed, non-mainframe application development
projects typically rely upon application development frameworks. The two
most commonly used frameworks are Microsoft .NET and J2EE.

.NET

The Microsoft .NET framework provides a comprehensive development
platform for the construction, deployment, and management of applications.
The .NET framework provides CLR (common language run time) and a class
library for building components using a common foundation. This offers
benefits to developers such as support for standard practices, extensibility,
and a tightly integrated set of development tools.

The .NET framework consists of multiple major components in addition to
the CLR and class library. From a data perspective, the most important
component is ADO.NET, which provides access to data sources such as a
database management system.

See Figure 5.2 for a depiction of the .NET framework and its components.

Figure 5.2. The .NET framework

ADO.NET is composed of a series of technologies that enable .NET
developers to interact with data in standard, structured, and predominantly

disconnected ways. Applications that use ADO.NET depend on .NET class
libraries provided in DLL files. ADO.NET manages both internal data
(created in memory and used by the program) and external data (in the
database). It provides interoperability and maintainability through its use and
support of XML, simplified programmability with a programming model that
uses strongly typed data, and enhanced performance and scalability.
J2EE and Java

The Java 2 Platform, Enterprise Edition (J2EE), is a set of coordinated
specifications and practices that together enable solutions for developing,
deploying, and managing multitier enterprise applications. The J2EE platform
simplifies enterprise applications by basing them on standardized, modular
components. J2EE provides a complete set of services to those components
and handles many details of application construction without requiring
complex programming.

So J2EE is not exactly a software framework, but a set of specifications,
each of which dictates how various J2EE functions must operate. Software
conforming to the J2EE platform offers advantages such as “Write Once, Run
Anywhere” portability, JDBC API for database access, CORBA technology
for interaction with existing enterprise resources, and a security model for
data protection. Building on this base, the Java 2 Platform, Enterprise
Edition, adds full support for Enterprise JavaBeans components, Java
Servlets API, JavaServer Pages, and XML technology.

See Figure 5.3 for a depiction of a sample J2EE implementation.
Additional information and clarification on J2EE can be found online at
http://java.sun.com/j2ee/reference/whitepapers/j2ee_guide.pdf.

http://java.sun.com/j2ee/reference/whitepapers/j2ee_guide.pdf

Figure 5.3. A sample J2EE implementation

Note that there is much more to Java than is covered in this section. Refer
to the sidebar “Java Program Types” for a brief overview of the different
types of Java programs that can be coded.

Java Program Types
There are three types of programs that you can implement when accessing
data using Java: Java applets, Java servlets, and Java applications.

A Java applet is a small application program that must be
downloaded before it can be run by a Java-enabled Web browser. Java
applets reside on a Web server. When the Web server returns an HTML
page that points to a Java applet, the Java-enabled Web browser requests
the applet to be downloaded. After the applet is received at the browser,
either the browser starts the applet internally or an external JVM
executes it.

Applets typically perform simple operations, such as editing input
data or controlling screen interaction, and provide other client
functionality. Of course, Java applets can be written to perform more
complex functionality, but to load and run non-Java code in the client
requires signed applets, which have the authority needed to run code in
the client machine.

Performance problems can arise because Java applets must be

downloaded before they can be run. The time to download the applet
must be factored into its service levels. In general, Java applets are
small, so the performance impact should be negligible. Nevertheless,
even small downloads can be slow if there are network problems. Java
applets can be cached by the Web browser, which diminishes the
performance impact.

A Java servlet is basically server-side Java. A Java servlet runs on the
Web server, just as an applet runs in the Web browser. Java servlets can
be used to extend the functionality of the Web server. The Web server
hands requests to the servlet, and the servlet replies to them. Servlets can
be used instead of CGI applications.

Java servlets have security advantages over client-side Java applets. A
servlet that runs on a Web server inside a firewall can control access to
sensitive data and business logic. Java applets do not inherently provide
these security capabilities.

A Java application program is basically the same as a program
written in any other programming language. It can perform all of the
tasks normally associated with programs, including many tasks that Java
applets cannot perform. Furthermore, a Java application does not need a
browser to be executed. It can be executed in a client or server machine.

Before choosing which Java development style to use, you must know
the basics of the environment in which the program will be run. Ask the
following questions when deciding what type of Java program is
required for your development needs:

• How will the program be executed? Must it run over the Internet, as an
intranet or extranet application, or merely as a stand-alone application?

• What is the business logic that this program must perform?
• How complicated is the program?
• How large (or small) is the program, and can it be quickly downloaded?
• What are the security requirements?
• Who are the target users and at what speed will they be connected to

the Web?
Java applications, Java applets, and Java servlets are similar in nature,

but a different method is used to invoke each of them. Java applets and

servlets are started from an HTML page. Java applications do not
require a Web component but can be used as part of an intranet solution.

.NET versus J2EE

There is an ongoing debate as to the relative merits of .NET versus the J2EE
platform. In reality, it is not an “either/or” decision that organizations are
making, but a “both/and” decision. Although both are development
platforms, the two are not interchangeable.

At a very basic level, .NET is a platform designed to enable development
in multiple languages as long as the application is deployed on Windows. On
the other hand, J2EE is designed to enable applications to be deployed on any
platform as long as they are written in Java.2 Obviously, an organization may
choose to develop different application systems using different
methodologies and platforms, depending upon deployment and
implementation requirements.

Another difference is that .NET is software that can be purchased from
Microsoft. J2EE is a set of specifications (managed by Oracle, formerly Sun
Microsystems), each of which dictates how various J2EE functions must
operate. IBM’s WebSphere Application Server is an example of software that
implements J2EE. Oracle makes money from J2EE not only by selling J2EE
software, but also by licensing the J2EE specifications to independent
software vendors, which then implement software according to the specs.

The bottom line is that both .NET and J2EE can be used to build Web
services. A Web service is an application that accepts requests from other
systems across the Internet (or an intranet), mediated by lightweight, vendor-
neutral communications technologies. Web services enable applications to
share data and invoke capabilities from other applications without knowledge
of how those other applications were built, what operating system or platform
they run on, and what devices are used to access them.
Ruby on Rails

Ruby on Rails is an open-source Web application framework for the Ruby
programming language. Ruby on Rails includes tools that make common
development tasks easier and is an additional application development
framework, similar to but separate from both .NET and J2EE.

Truly, an entire book could be dedicated to the different framework

options available for modern application development. But this is a book
about database administration, so the cursory overview provided in this
section should be sufficient.

Object Orientation and SQL
Many organizations have adopted object-oriented (OO) programming
standards and languages because of the claimed advantages of the OO
development paradigm. The primary advantages of object orientation are
faster program development time and reduced maintenance costs, resulting in
a better ROI. Piecing together reusable objects and defining new objects
based on similar object classes can dramatically reduce development time and
costs.

Object orientation can result in a better ROI.

With benefits like these, it is no wonder that object-oriented programming
and development is being embraced by many IT organizations. Historically,
one of the biggest problems faced by IT is a large project backlog. In many
cases, end users are forced to wait for long periods of time for new
applications because the backlog is so great and the talent needed to tackle so
many new projects is not available. This backlog can sometimes result in
some unsavory phenomena such as business people attempting to build their
own applications or purchasing third-party packaged applications (and all of
the potential administrative burdens that packages carry). So, it is very clear
why the OO siren song lures organizations.

However, because OO and relational databases are not inherently
compatible, OO programmers tend to resist using SQL. The set-based nature
of SQL is not simple to master and is anathema to the OO techniques
practiced by Java and C++ developers. All too often insufficient
consideration has been given to the manner in which data is accessed,
resulting in poor design and faulty performance.

Object orientation is indeed a political nightmare for those schooled in
relational tenets. All too often organizations experience political struggles
between OO programming proponents and the data resource management
group. The OO crowd espouses programs and components as the center of
the universe; the data crowd adheres to normalized, shared data with the
RDBMS as the center of the universe.

Thanks to the hype surrounding object orientation, the OO crowd may win
many of these battles, but data-centered thinking will eventually win the war.
The use of data normalization and shared databases to reduce redundancy
provides far too many benefits in the long run for it ever to be abandoned.
Data has an existence independent of process, and the OO way of
encapsulating data within methods masks data from other processes and is
inefficient for sharing data across an organization. If the focus shifts away
from data management and sound relational practices, data quality will
deteriorate and productivity will decline.

If an OO programming language is to be used against a relational database,
you will need to marry the relational world to the OO world. This means your
applications will not be object oriented in the true sense of the word because
the data will not be encapsulated within the method (that is, the program).

You will need to marry the relational world to the OO world.

There are several techniques that can be used to enable an OO
programming language to work with a relational database. Serialization,
saving data using a flat file representation of the object, is one approach.
Because it can be slow and difficult to use across applications, serialization is
not commonly used for persisting object data. A second approach is to use
XML, which can be stored natively in many relational database systems.
However, XML adds a layer of complexity and requires an additional
programming skill set. XML is discussed in more detail later in this chapter.

Probably the most common technique is to deploy an ORM (object-
relational mapping) solution. Through ORM, an object’s attributes are stored
in one or more columns of a relational table. Hibernate is a popular ORM
library for Java. NHibernate is an adaptation of Hibernate for the .NET
framework. Both Hibernate and NHibernate provide capabilities for mapping
objects to a relational database by replacing direct persistence-related
database accesses with high-level object-handling functions. Another option
is Microsoft LINQ, which stands for Language Integrated Query. LINQ
provides a set of .NET framework and language extensions for object-
relational mapping.

One additional word of caution here: Many people believe that object-
relational databases resolve all of these issues. But an object-relational
database is not truly object oriented. The term object-relational means

basically that the DBMS supports large multimedia data types and gives users
the ability to define their own data types and functions—all good things, but
not object orientation. So don’t get confused over the similarity of the terms.

Types of SQL
SQL, although a single language, comprises multiple types that exhibit
different behavioral characteristics and require different development and
administration techniques. SQL can be broken down into categories based on
execution type, program requirement, and dynamism.

• SQL can be planned or unplanned. A planned SQL request is typically
embedded into an application program, but it might also exist in a query
or reporting tool. At any rate, a planned SQL request is designed and
tested for accuracy and efficiency before it is run in a production
system. Contrast this with the characteristics of an unplanned SQL
request. Unplanned SQL, also called ad hoc SQL, is created “on the
fly” by end users during the course of business. Most ad hoc queries are
created to examine data for patterns and trends that impact business.
Unplanned, ad hoc SQL requests can be a significant source of
inefficiency and are difficult to tune. How do you tune requests that are
constantly written, rewritten, and changed?

SQL can be planned or unplanned, embedded in a program or
stand-alone, dynamic or static.

• SQL can either be embedded in a program or issued stand-alone.
Embedded SQL is contained within an application program, whereas
stand-alone SQL is run by itself or within a query, reporting, or OLAP
tool.

• SQL can be dynamic or static. A dynamic SQL statement is optimized
at run time. Depending on the DBMS, a dynamic SQL statement may
also be changed at run time. Static SQL, on the other hand, is optimized
prior to execution and cannot change without reprogramming. Favor
static SQL to minimize the possibility of SQL injection attacks (see the
sidebar “SQL Injection”).

Programmers must be able to quantify each SQL statement being
developed in terms of these three qualities. Every SQL statement exhibits one
of these properties for each criterion. For example, a certain SQL statement

can be a planned, embedded, static request, or it could be an unplanned,
stand-alone, dynamic request. Be sure to use the right type of SQL for the
right situation. Table 5.2 outlines situations and the type of SQL that is most
useful for that situation. Of course, the information in this table is meant to
serve as a broad suggestion only. You should use your knowledge of your
environment and the requirements of the user request to arrive at the correct
type of SQL solution.

Table 5.2. SQL Usage Considerations

SQL Injection
A common form of hack against Web-exposed applications using SQL to
access data is the SQL injection attack. Properly designed applications can
thwart SQL injection attacks.

A SQL injection attack inserts SQL statements in the fields of a Web
form to cause a poorly designed Web application to expose database
content to the attacker. Refer to Chapter 14, “Database Security,” for an
in-depth discussion of SQL injection and how to combat it.

SQL Coding for Performance
Developing database application programs requires a good amount of effort
to ensure that SQL requests are properly coded for performance. A solid
understanding of SQL syntax, database structures, and the programming
language is imperative. Let’s concentrate first on SQL.

One of the first rules to learn as a database developer is to let SQL, rather

than the program logic, do the work. It is much better to filter out unwanted
data at the DBMS level than to do so within the program. You’ll achieve
better efficiency by avoiding the actual movement of data between the
DBMS and the program. For example, it is better to add more WHERE
clauses to SQL SELECT statements than to simply select all rows and filter
the data programmatically.

Let SQL do the work.

To use another example, consider the cost of a multitable join statement. It
will be easier to tune, say, a four-table join for efficiency than four
independent SQL SELECT statements that are filtered and joined using
application logic. Of course, this assumes an optimal physical database and
the possibility of having to tweak that design (such as by adding indexes).

The more work the DBMS can do to filter data, the greater the efficiency
should be, because less data will need to be moved between the DBMS and
the application program as it runs. Of course, there is much more to
optimizing and tuning SQL than this short discussion of the matter. More
details are covered in Chapter 12, “Application Performance.”

Querying XML Data
These days, not all data stored in the database will be relational. XML is
gaining popularity for persisting complex data and is frequently used in Web-
enabled applications and as a means of data transmission. All of the leading
DBMS products provide means of storing and managing XML data.3

XML stands for Extensible Markup Language. You may be familiar with
HTML, the markup language used to create Web pages. Like HTML, XML is
based upon SGML (Standard Generalized Markup Language). SGML is a
language for defining markup languages; it was developed and standardized
by the International Organization for Standardization (ISO).

XML uses tags to describe the data itself.

Whereas HTML uses tags to describe how data appears on a Web page,
XML is designed to transport and store data. In other words, XML is
somewhat self-describing. It uses tags to describe the what, that is, the data
itself. The simple syntax of XML makes it easy to process by machine while
remaining understandable to people. Once again, let’s use HTML as a

metaphor to help us understand XML. HTML uses tags to describe the
appearance of data on a page. For example the tag “text” would specify that
the “text” data should appear in boldface. XML uses tags to describe the data
itself, instead of its appearance. For example, consider the following XML
describing a customer address:
Click here to view code image

<CUSTOMER>
 <first_name>Craig</first_name>
 <middle_initial>S.</middle_initial>
 <last_name>Mullins</last_name>
 <company_name>Mullins Consulting, Inc.
</company_name>
 <street_address>15 Coventry Ct.</street_address>
 <city>Sugar Land</city>
 <state>TX</state>
 <zip_code>77479</zip_code>
 <country>USA</country>
</CUSTOMER>

XML is actually a meta-language—that is, a language for defining other
markup languages. These languages are collected in dictionaries called
Document Type Definitions (DTDs). The DTD stores definitions of tags for
specific industries or fields of knowledge. Instead of a DTD, an XML schema
could be employed for the same purpose.

When data is stored as XML, it cannot be accessed using standard SQL.
Instead, it requires either XQuery or SQL/XML extensions.
XQuery

XQuery is a query and programming language designed to query collections
of XML data. XQuery uses XPath expression syntax to address specific parts
of an XML document. It supplements this with a SQL-like “FLWOR
expression” for performing joins. A FLWOR expression is constructed from
the five clauses after which it is named:

• FOR
• LET
• WHERE
• ORDER BY
• RETURN

The XQuery language is not just for querying; it also allows for new XML
documents to be constructed. However, there are no features in XQuery for
updating XML documents or databases. It also does not provide full text
search capability. Over time, expect these shortcomings to be remedied,
though.

In short, XQuery is a programming language that can be used to express
arbitrary XML-to-XML data transformations with strong typing and
logical/physical data independence.
SQL/XML

SQL/XML is an extension to the SQL standard that specifies SQL-based
extensions for using XML in conjunction with SQL. At a high level, it offers
an XML data type along with new routines, functions, and XML-to-SQL data
type mappings to support accessing and manipulating XML in SQL
databases. SQL/XML is developed to be complementary to XQuery.

At the heart of the SQL/XML specification are the functions that allow
users to access, modify, and construct XML elements or attributes. Examples
of these functions include XMLDOCUMENT (which returns an XML value
with a single document node and zero or more nodes as its children),
XMLCONCAT (which returns a forest of XML elements generated from a
concatenation of two or more elements), XMLELEMENT (which returns an
XML element given an element name, an optional collection of attributes,
and zero or more arguments that make up the contents of the element),
XMLAGG (which returns an XML sequence that contains an item for each
non-null value in a set of XML values), among many others.

SQL/XML also defines functions that allow the user to embed XQuery
expressions in SQL statements and to convert complex data types. These
functions include XMLQUERY and XMLTABLE.

Defining Transactions
A transaction is an atomic unit of work with respect to recovery and
consistency. A logical transaction performs a complete business process
typically on behalf of an online user. It may consist of several steps and may
comprise more than one physical transaction. The results of running a
transaction will record the effects of a business process—a complete business
process. The data in the database must be correct and proper after the

transaction executes.

A transaction is an atomic unit of work with respect to
recovery and consistency.

When all the steps that make up a specific transaction have been
accomplished, a COMMIT is issued. The COMMIT signals that all work
since the last COMMIT is correct and should be externalized to the database.
At any point within the transaction, the decision can be made to stop and roll
back the effects of all changes since the last COMMIT. When a transaction is
rolled back, the data in the database will be restored to the original state
before the transaction was started. The DBMS maintains a transaction log (or
journal) to track database changes.

Transactions exhibit ACID properties. ACID is an acronym for atomicity,
consistency, isolation, and durability. Each of these four qualities is
necessary for a transaction to be designed correctly.

• Atomicity means that a transaction must exhibit “all or nothing”
behavior. Either all of the instructions within the transaction happen, or
none of them happen. Atomicity preserves the “completeness” of the
business process.

• Consistency refers to the state of the data both before and after the
transaction is executed. A transaction maintains the consistency of the
state of the data. In other words, after a transaction is run, all data in the
database is “correct.”

• Isolation means that transactions can run at the same time. Any
transactions running in parallel have the illusion that there is no
concurrency. In other words, it appears that the system is running only
a single transaction at a time. No other concurrent transaction has
visibility to the uncommitted database modifications made by any other
transactions. To achieve isolation, a locking mechanism is required.

• Durability refers to the impact of an outage or failure on a running
transaction. A durable transaction will not impact the state of data if the
transaction ends abnormally. The data will survive any failures.

Let’s use an example to better understand the importance of transactions to
database applications. Consider a banking application. Assume that you wish
to withdraw $50 from your account with Mega Bank. This “business process”

requires a transaction to be executed. You request the money either in person
by handing a slip to a bank teller or by using an ATM (automated teller
machine). When the bank receives the request, it performs the following
tasks, which make up the complete business process. The bank will

1. Check your account to make sure you have the necessary funds to
withdraw the requested amount

2. If you do not, deny the request and stop; otherwise continue processing
3. Debit the requested amount from your checking account
4. Produce a receipt for the transaction
5. Deliver the requested amount and the receipt to you

Design transactions that ensure ACID properties.

The transaction that is run to perform the withdrawal must complete all of
these steps, or none of these steps, or else one of the parties in the transaction
will be dissatisfied. If the bank debits your account but does not give you
your money, you will not be satisfied. If the bank gives you the money but
does not debit the account, the bank will be unhappy. Only the completion of
every one of these steps results in a “complete business process.” Database
developers must understand the requisite business processes and design
transactions that ensure ACID properties.

To summarize, a transaction—when executed alone, on a consistent
database—will either complete, producing correct results, or terminate, with
no effect. In either case the resulting condition of the database will be a
consistent state.

Transaction Guidelines
A transaction should be short in duration because it locks shared resources.
Of course, “short” will vary from system to system. A short transaction in a
very large system handling multiple thousands of transactions per second will
most likely be measured in subseconds.

A transaction should be short in duration.

At any rate, transactions must be designed to remove the human element of
“think time” from the equation. When a transaction locks resources, it makes
those resources inaccessible to other transactions. Therefore, a good

transaction must be designed so that it does not wait for user input in the
middle of the processing.

Unit of Work
Unit of work (UOW) is another transaction term that describes a physical
transaction. A UOW is a series of instructions and messages that, when
executed, guarantee data integrity. So a UOW and a transaction are similar in
concept. However, a UOW is not necessarily a complete business process—it
can be a subset of the business process, and a group of units of work can
constitute a single transaction.

A UOW is a series of instructions and messages that guarantee
data integrity.

Each UOW must possess ACID characteristics. In other words, if the
transaction were to fail, the state of the data upon failure must be consistent
in terms of the business requirements.

Transaction Processing Systems
A transaction processing (TP) system, appropriately enough, facilitates the
processing of transactions. Such a system is sometimes referred to as a
transaction server or a transaction processing monitor. Regardless of name,
a TP system delivers a scheme to monitor and control the execution of
transaction programs. The TP system also provides an API—a mechanism for
programs to interact and communicate with the TP server. Examples of TP
systems include CICS, IMS/TM, Tuxedo, and Microsoft Transaction Server.

A TP system delivers a scheme to monitor and control the
execution of transaction programs.

The TP system provides an environment for developing and executing
presentation logic and business logic components. A TP system is useful for
mission-critical applications requiring a high volume of concurrent users with
minimal downtime. Used properly, a TP system can efficiently control the
concurrent execution of many application programs serving large numbers of
online users. Another major benefit of some TP systems is their ability to
ensure ACID properties across multiple, heterogeneous databases. This is
accomplished using a two-phase COMMIT, where the TP system controls the
issuance of database commits and ensures their satisfactory completion. If

your application requires online access and modification of heterogeneous
databases, a TP system is recommended.

A transaction server is ideal for building high-performance and reliable
distributed applications across heterogeneous environments. A TP system can
support the diverse application requirements of front-end e-commerce
applications as well as the robust needs of back-office processes. When
platform independence is crucial, a TP system can help developers to
successfully develop, manage, and deploy online applications that are
completely independent of the underlying communications, hardware, and
database environment.

Of course, a TP system is not required in order to develop database
transactions for every application. The DBMS itself can deliver ACID
properties for the data it manages. Yet even in a single-DBMS environment,
a TP system can provide development benefits. Take a look at Figure 5.4. It
shows the typical application setup: a database server without a TP system.
Requests are made by the client through the presentation layer to the database
server (DBMS). The client can make data requests directly of the database
server, or the client may execute stored procedures to run application logic on
the database server.

Figure 5.4. Using a database server

Now let’s compare Figure 5.4 with Figure 5.5, which shows an application
using a TP system. Database requests are run within the TP system, which

helps to control the transaction workflow. Furthermore, the TP system
enables the application to make requests of multiple heterogeneous databases
and to coordinate database modifications.

Figure 5.5. Using a transaction server

If your database applications use a TP system, the DBA should work with
the system administrator to ensure that the DBMS and the TP system are set
up to work with each other in an efficient manner. Furthermore, both the
DBA and the SA will need to monitor the interaction between the DBMS and
the TP system on an ongoing basis.

Ensure that the DBMS and the TP system are set up to work
together in an efficient manner.

Application Servers
A more recent type of middleware for serving database transactions is the
application server. An application server usually combines the features of a
transaction server with additional functionality to assist in building,

managing, and distributing database applications. An application server, such
as IBM’s WebSphere, provides an environment for developing and
integrating components into a secure, performance-oriented application.

Other examples of application servers include Zend Server (for PHP-based
applications), Base4 Application Server (open source), and TNAPS
Application Server (freeware).

There are several advantages of using an application server. When business
logic is centralized on an application server, application updates will apply to
all users. The risk of having old versions of the application is eliminated.
Furthermore, changes to the application configuration, such as moving a
database server, can occur centrally and thereby apply to all users at the same
time. Additionally, an application server can act as a central point for
application security.

With an application server, application changes are made
centrally, thereby reducing risk.

Application servers also serve many of the purposes of a transaction
server, such as the delivery of transaction support, whereby a unit of work
can be made atomic and indivisible.

Locking
Every programmer who has developed database programs understands the
potential for concurrency problems. When one program tries to read data that
is in the process of being changed by another program, the DBMS must
prohibit access until the modification is complete, in order to ensure data
integrity. The DBMS uses a locking mechanism to enable multiple,
concurrent users to access and modify data in the database. By using locks,
the DBMS automatically guarantees the integrity of data. The DBMS locking
strategies permit multiple users from multiple environments to access and
modify data in the database at the same time.

Locks are used to ensure the integrity of data. When a database resource is
locked by one process, another process is not permitted to change the locked
data. Locking is necessary to enable the DBMS to facilitate the ACID
properties of transaction processing.

Locks are used to ensure the integrity of data.

Data may be locked at different levels within the database. It is the DBA’s
job to determine the appropriate level of locking for each database object,
based on how the data will be accessed and to what extent concurrent users
will access the data. Theoretically, database locks can be taken at the
following levels:

• Column
• Row
• Page (or block)
• Table
• Tablespace
• Database

The level of locking is known as lock granularity. The actual lock
granularity levels available will depend on the DBMS in use. Typically the
lock granularity is controlled by the DBA when the database object is
created, but there may be an overall default lock granularity that is used if
none is specified. Nevertheless, it is a good practice for DBAs always to
specify the lock granularity when database objects are created.

The lock granularity specification should be based on the needs of the
applications and users that will be accessing and changing the data. In
general, the smaller the granularity of the lock, the more concurrent access
will be allowed, as shown in Figure 5.6. However, the smaller the granularity
of the lock, the more resources the DBMS will need to consume to perform
locking.

Figure 5.6. Lock granularity and concurrent access

The smallest unit that can conceivably be locked is a single column; the
largest lock size is the entire database. Neither of these two options is really
practical. Locking individual columns would maximize the ability to
concurrently update data, but it would require too much overhead.
Conversely, locking the database would be cheap to implement, but it would
restrict concurrency to the point of making the database worthless for
anybody but a single user.

Most database implementations choose between row and page locking. For
many applications, page locking is sufficient. However, applications needing
many concurrent update processes may benefit from the smaller granularity
of row locking. Very infrequently, when a specific process will be run when
no other concurrent access is needed, table locking can be useful. For this
reason many DBMS products provide a LOCK TABLE command that can be
issued to override the current locking granularity for a database object during
the course of a single process or UOW. The DBA must analyze the
application processing requirements for each database object to determine the
optimal locking granularity.

Most database implementations choose between row and page
locking.

Index entries can also be locked, depending on the DBMS and version in
use. However, index locking can be a significant impediment to performance.
Because index entries are usually quite small, it is not uncommon for locking
to block application access—especially when the DBMS locks indexes at the
block or page level. Some DBMSs do not require index locks, instead
handling integrity by using locks on the data. Remember, there is no data in
the index that is not also in a table.

Index locking can be a significant impediment to performance.

The exact nature of locking and the types of locks taken will differ from
DBMS to DBMS. This section will cover the basics of locking that are
generally applicable to most DBMS products.

Types of Locks
At a very basic level, a DBMS will take a write lock when it writes
information or a read lock when it reads information. A write occurs for
INSERT, UPDATE, and DELETE statements. A read occurs for SELECT
statements. But to actually accomplish such locking, the typical DBMS will
use three basic types of locks: shared locks, exclusive locks, and update
locks.

• A shared lock is taken by the DBMS when data is read with no intent to
update it. If a shared lock has been taken on a row, page, or table, other
processes or users are permitted to read the same data. In other words,
multiple processes or users can have a shared lock on the same data.

• An exclusive lock is taken by the DBMS when data is modified. If an
exclusive lock has been taken on a row, page, or table, other processes
or users are generally not permitted to read or modify the same data. In
other words, multiple processes or users cannot have an exclusive lock
on the same data.

• An update lock is taken by the DBMS when data must first be read
before it is changed or deleted. The update lock indicates that the data
may be modified or deleted in the future. If the data is actually modified
or deleted, the DBMS will promote the update lock to an exclusive
lock. If an update lock has been taken on a row, page, or table, other
processes or users generally are permitted to read the data, but not to
modify it. So a single process or user can have an update lock while

other processes and users have shared locks on the same data. However,
multiple processes or users cannot have both an exclusive lock and an
update lock, or multiple update locks, on the same data.

Intent Locks

In addition to shared, exclusive, and update locks, the DBMS also will take
another type of lock, known as an intent lock. Intent locks are placed on
higher-level database objects when a user or process takes locks on the data
pages or rows. An intent lock stays in place for the life of the lower-level
locks.

An intent lock stays in place for the life of the lower-level
locks.

For example, consider a table created with row-level locking. When a
process locks the row, an intent lock is taken on the table. Intent locks are
used primarily to ensure that one process cannot take locks on a table, or
pages in the table, that would conflict with the locking of another process.
For example, if a user was holding an exclusive row lock and another user
wished to take out an exclusive table lock on the table containing the row, the
intent lock held on the table by the first user would ensure that its row lock
would not be overlooked by the lock manager.

Lock Time-outs
When data is locked by one process, other processes must wait for the lock to
be released before processing the data. A lock that is held for a long time has
the potential to severely degrade performance because other processes must
wait until the lock is released and the data becomes available. Furthermore, if
the application is designed improperly or has a bug, the blocking lock may
not be released until the program fails or the DBA intervenes.

The locking mechanism of the DBMS prevents processes from waiting
forever for a lock to be released by timing out. Each DBMS provides a
parameter to set a lock time-out value. Depending on the DBMS, the lock
time-out value might be set at the DBMS level, the process level, or the
connection level. Regardless of the level, after a process waits for the
predetermined amount of time for a lock to be granted, the process will
receive an error message informing it that the time-out period has been
exceeded. Such an approach assumes that a problem occurs after a certain

amount of time is spent waiting for a lock. Time-outs prevent a process from
waiting indefinitely for locks—the rationale being that it is better for a
process to give up and release its locks than to continue to wait and perhaps
block other processes from running.

It is usually a good practice for programs to retry an operation when a lock
time-out error is received. If multiple lock time-outs occur for the same
operation, the program should log the problem and inform the user that it
cannot proceed.

Deadlocks
Another locking problem that can occur is deadlocking. A deadlock occurs
when concurrent processes are competing for locks. Figure 5.7 shows a
deadlock situation. Process A holds a lock on row 3 and is requesting a lock
on row 7; process B holds a lock on row 7 and is requesting a lock on row 3.

Figure 5.7. A deadlock situation

A deadlock occurs when concurrent processes are competing
for locks.

The deadlock is a specific type of lock time-out. It occurs when one
process holds a lock that another process is requesting at the same time the
second process holds a lock that the first process is requesting. This is also
known as a “deadly embrace.” The DBMS will choose one of the processes
to abort and roll back so the other process can continue.

As with time-outs, it is a good practice for programs to retry an operation
when a deadlock error is received. If multiple deadlocks occur for the same
operation, the program should log the problem and inform the user that it
cannot proceed.

If deadlocks are a persistent problem, application or database design
changes may be warranted. One technique is to consider changing the lock
granularity (perhaps from page to row) so that less data is locked for each
lock request. Another technique is to make application changes. You might
rewrite the program to lock all required resources at the beginning of the
transaction. However, such a technique is not likely to be possible for most
applications. A final method of avoiding deadlocks is to ensure that all
database modifications occur in the same order for all programs in your shop.
If the updates in every program are sequenced, deadlocks can be minimized
or eliminated. Perhaps you’ll find a logical business order for updates that is
reasonable to use for applications. If you don’t, consider using an arbitrary
policy such as modification in alphabetical order.

Lock Duration
Lock duration refers to the length of time that a lock is held by the DBMS.
The longer a lock is held on a database resource, the longer a concurrent lock
request must wait to be taken. As lock durations increase, so does the
likelihood of lockout time-outs.

Lock duration refers to the length of time that a lock is held by
the DBMS.

Each DBMS provides parameters that can be set to impact the duration of a
lock. Typically these parameters are set at the program, transaction, or SQL
statement level. In general, there are two parameters that affect lock duration:
isolation level and acquire/release specification.
Isolation Level

The isolation level specifies the locking behavior for a transaction or
statement. Standard SQL defines four isolation levels that can be set using the
SET TRANSACTION ISOLATION LEVEL statement:

• UNCOMMITTED READ
• COMMITTED READ

• REPEATABLE READ
• SERIALIZABLE

The preceding list progresses from lowest to highest isolation. The higher
the isolation level, the stricter the locking protocol becomes. The lower the
isolation level, the shorter the lock duration will be. Additionally, each higher
isolation level is a superset of the lower levels. Let’s briefly examine each of
the standard isolation levels.

The isolation level specifies the locking behavior for a
transaction or statement.

Specifying UNCOMMITTED READ isolation implements read-through
locks and is sometimes referred to as a dirty read. It applies to read
operations only. With this isolation level, data may be read that never actually
exists in the database, because the transaction can read data that has been
changed by another process but is not yet committed. UNCOMMITTED
READ isolation provides the highest-level availability and concurrency of the
isolation levels, but the worst degree of data integrity. It should be used only
when data integrity problems can be tolerated. Certain types of applications,
such as those using analytical queries, estimates, and averages, are often
candidates for UNCOMMITTED READ locking. A dirty read can cause
duplicate rows to be returned where none exist, or no rows to be returned
when one (or more) actually exists. When choosing UNCOMMITTED
READ isolation, the programmer and DBA must ensure that these types of
problems are acceptable for the application. Refer to the sidebar “Dirty Read
Scenarios” for additional guidance on when to consider using
UNCOMMITTED READ isolation.

COMMITTED READ isolation, also called cursor stability, provides more
integrity than UNCOMMITTED READ isolation. When READ
COMMITTED isolation is specified, the transaction will never read data that
is not yet committed; it will only COMMITTED READ data.

REPEATABLE READ isolation places a further restriction on reads,
namely, the assurance that the same data can be accessed multiple times
during the course of the transaction without its value changing. The lower
isolation levels (UNCOMMITTED READ and COMMITTED READ)
permit the underlying data to change if it is accessed more than once. Use
REPEATABLE READ isolation only when data can be read multiple times

during the course of the transaction and the data values must be consistent.

Dirty Read Scenarios
When is using UNCOMMITTED READ isolation appropriate? The
general recommendation is to avoid it if your results must be 100 percent
accurate. For example, avoid dirty reads when calculations must balance,
when data is being retrieved to insert into another table, or for mission-
critical data where consistency and integrity are crucial.

Frankly, most database applications are not candidates for dirty reads.
However, there are specific situations where permitting uncommitted
data to be read is beneficial.

One such situation is when accessing a reference, code, or lookup
table that is very static. Because the data is not volatile, an
UNCOMMITTED READ would usually be no different from using a
stricter isolation level. For those rare occasions when the lookup codes
are being modified, the problems should be minimal for concurrent
transactions.

When a transaction must perform statistical processing on a large
amount of data, a dirty read may be useful. For example, consider a
transaction designed to return the average account balance for each type
of account. The impact of using UNCOMMITTED READ isolation is
minimal because changing a single value should not have a significant
impact on the result. Because the result is an average of multiple values,
one or perhaps a few “bad” values are unlikely to change the average
significantly.

Data warehousing queries are good candidates for dirty reads. A data
warehouse is a time-sensitive, subject-oriented store of business data
that is used for analytical processing. Other than periodic data
propagation and/or replication, access to the data warehouse is read
only. An UNCOMMITTED READ can cause little damage because the
data generally does not change.

You might also consider using dirty read for those rare instances
when a transaction accesses a table, or set of tables, that is used by a
single user only. If only one person can modify the data, the application
programs can be coded so that most reads can use UNCOMMITTED

READ isolation with no negative impact on data integrity.
Finally, if the data being accessed is already inconsistent, little harm

can be done by using a dirty read to access the information.

Finally, SERIALIZABLE isolation provides the greatest integrity.
SERIALIZABLE isolation removes the possibility of phantoms. A phantom
occurs when the transaction opens a cursor that retrieves data and another
process subsequently inserts a value that would satisfy the request and should
be in the results set. For example, consider the following situation:

• Transaction 1 opens a cursor and reads account information, keeping a
running sum of the total balance for the selected accounts.

• Transaction 2 inserts a new account that falls within the range of
accounts being processed by Transaction 1, but the insert occurs after
Transaction 1 has passed the new account.

• Transaction 2 COMMITs the insert.
• Transaction 1 runs a query to sum the values to check the accuracy of

the running total. However, the totals will not match.

SERIALIZABLE isolation provides the greatest integrity.

SERIALIZABLE isolation eliminates this problem. Phantoms can occur
for lower isolation levels, but not when the isolation level is
SERIALIZABLE.

Most DBMS products support the specification of isolation level at the
program or transaction level, as well as at the SQL statement level.

Keep in mind that your DBMS may not implement all of these isolation
levels, or it may refer to them by other names. Be sure you understand the
isolation supported by each DBMS you use and its impact on application
behavior and lock duration.
Acquire/Release Specification

An additional parameter that impacts lock duration is the treatment of intent
locks. Regular transaction locks are taken as data is accessed and modified.
However, some DBMS products provide methods to control when intent
locks are taken. Intent locks can be acquired either immediately when the
transaction is requested or iteratively as needed while the transaction

executes. Furthermore, intent locks can be released when the transaction
completes or when each intent lock is no longer required for a unit of work.

If the DBMS supports different options for the acquisition and release of
intent locks, the parameter will be specified at the transaction or program
level.
Skipping Locked Rows

An additional locking option, available in some DBMSs,4 is the ability to
skip locked data. If you code a parameter specifying SKIP LOCKED DATA
on certain SQL statements, any data that is locked will simply be skipped
over instead of the DBMS waiting for the lock to be released.

This option should be used only sparingly and only with a full
understanding of its impact. When you tell the DBMS to skip locked data,
that data is not accessed and will not be available to your program. The
benefit, of course, is improved performance because you will not incur any
lock wait time; however, it comes at the cost of not accessing the locked data.

You should use this feature sparingly and with extreme caution. Before
skipping locked data, make sure that you completely understand exactly what
you are telling the DBMS to do. It is very easy to misuse this feature and
wind up reading less data than you want.

Consider using this option in certain test environments, in a data
warehouse where data is read only, and possibly even in production under the
proper conditions. For example, perhaps you have a program that needs to
read from a table such as a queue to get a next number. If it is not imperative
that the numbers be sequential, skipping locked data can eliminate
bottlenecks by skipping any locked rows/pages to get data off of the queue.

Lock Escalation
If processing causes the DBMS to hold too many locks, lock escalation can
occur. Lock escalation is the process of increasing the lock granularity for a
process or program. When locks are escalated, more data is locked, but fewer
actual locks are required. An example of escalating a lock would be moving
from page locks to table locks. You can see where this would minimize the
number of locks the DBMS needs to track—multiple page locks for a table
can be converted into a single lock on the entire table. Of course, this impacts
concurrent access because the process locks the entire table, making it

inaccessible to other processes.

Lock escalation is the process of increasing the lock
granularity for a process or program.

The DBMS kicks off lock escalation based on preset thresholds. Typically,
the DBMS will provide system parameters that can be set to customize the
actual manner in which the DBMS escalates locks, or to turn off lock
escalation. Also, the DBMS will provide DDL parameters for database
objects to indicate on an object-by-object basis whether escalation should
occur.

Some DBMSs, such as DB2 and Microsoft SQL Server, provide the
capability to escalate locks, whereas others, such as Oracle, do not. However,
both DB2 and Microsoft SQL Server can escalate from page locks to table
locks or from row locks to table locks. Neither allows escalation from row
locks to table locks.

Programming Techniques to Minimize Locking Problems
We have learned that locking is required to ensure data integrity. If
application programs are not designed with database locking in mind, though,
problems can arise. Application developers must understand the impact of
locking on the performance and availability of their applications. If locks are
held too long, time-outs will make data less available. If applications request
locks in a disorganized manner, deadlocks can occur, causing further
availability problems.

Standardize the sequence of updates within all programs.

Fortunately, though, there are development techniques that can be applied
to minimize locking problems. One such technique is to standardize the
sequence of updates within all programs. When the sequence of updates is the
same for all programs, deadlocks should not occur.

Another programming technique is to save all data modification requests
until the end of the transaction. The later modifications occur in a transaction,
the shorter the lock duration will be. From a logical perspective, it really does
not matter where a modification occurs within a transaction, as long as all of
the appropriate modifications occur within the same transaction. However,
most developers feel more comfortable scattering the data modification logic

throughout the transaction in a pattern that matches their concept of the
processes in the transaction. Grouping modifications such as INSERT,
UPDATE, and DELETE statements and issuing them near the end of the
transaction can improve concurrency because resources are locked for shorter
durations.

Locking Summary
Database locking is a complex subject with more details than we have
covered in this section. Each DBMS performs locking differently, and you
will need to study the behavior of each DBMS you use to determine how best
to set locking granularity and isolation levels, and to program to minimize
time-outs and deadlocks.

Batch Processing
Most of the discussion in this chapter has centered around transaction
processing, which is usually assumed to be for online processes. However,
many database programs are designed to run as batch jobs with no online
interaction required. DBAs must be aware of the special needs of batch
database programs.

The first design concern for batch database programs is to ensure that
database COMMITs are issued within the program. Except for very trivial
programs that access small amounts of data, database COMMITs should be
issued periodically within a batch program to release locks. Failure to do so
can cause problems such as a reduction in availability for concurrent
programs because a large number of locks are being held, or a large
disruption if the batch program aborts, because all the database modifications
must be rolled back.

Ensure that database COMMITs are issued within the
program.

Additionally, if a batch program with no COMMITs fails, all of the work
that is rolled back must be performed again when the problem is resolved and
the batch program is resubmitted for processing. A batch program with
COMMITs must be designed for restartability: The batch program must keep
track of its progress by recording the last successful COMMIT and including
logic to reposition all cursors to that point in the program. When the program

is restarted, it must check to see if it needs to reposition and, if so, execute the
repositioning logic before progressing.

Another problem that occurs frequently with batch database program
development is a tendency for developers to think in terms of file processing,
rather than database processing. This is especially true for mainframe
COBOL programmers who have never worked with database systems. Each
developer must be trained in the skills of database programming, including
SQL skills, set-at-at-time processing, and database optimization. The
responsibility for assuring that developers have these skills quite often falls
on the DBA.

Finally, batch programs typically are scheduled to run at predetermined
times. The DBA should assist in batch database job scheduling to help
minimize the load on the DBMS. Batch jobs that are long running and
resource consuming should be scheduled during off-peak online transaction
processing hours.

Summary
Application design and development is the job of systems analysts and
application programmers. However, the DBA must be involved in the process
when programs are being written to access databases. Special skills are
required that can be difficult to master. The DBA must first understand these
skills and then work to transfer the knowledge to developers. This is a
continual job because new programmers are constantly being hired—each
with a different level of skill and degree of database experience. Furthermore,
DBMS products are constantly changing, resulting in additional development
options and features that need to be mastered.

Review
1. Describe what the acronym ACID means and define each component.
2. What is ORM and why would it be necessary for application

development?
3. Why is locking required to assure data integrity?
4. Describe the difference between CURSOR STABILITY and

REPEATABLE READ isolation levels.
5. Under what circumstance should an isolation level of

UNCOMMITTED READ be considered?
6. Describe two application design techniques to minimize the impact of

locking on application performance.
7. What does relational closure mean, and what is its significance in

application design?
8. Describe, at a high level, what is required to embed SQL into an

application program written in a programming language like C or
Visual Basic.

9. What is the difference between a lock time-out and a deadlock?
10. What programming techniques can be used to minimize deadlocks and

why?

Bonus Question
Why might the order of database modifications within a transaction impact
deadlocks?

Suggested Reading
Anagol-Subbarao, Anjali. J2EE Web Services on BEA WebLogic. Upper

Saddle River, NJ: Prentice Hall (2005). ISBN 0-13-143072-6.
Applequist, Daniel K. XML and SQL: Developing Web Applications.

Boston, MA: Addison-Wesley (2002). ISBN 0-201-65796-1.
Bales, Donald. Java Programming with Oracle JDBC. Sebastopol, CA:

O’Reilly (2002). ISBN 0-596-00088-X.
Barcia, Roland, et al. Persistence in the Enterprise: A Guide to Persistence

Technologies. Upper Saddle River, NJ: IBM Press (2008). ISBN 978-0-
13-158756-4.

Beighley, Lynn, and Michael Morrison. Head First PHP & MySQL.
Sebastopol, CA: O’Reilly (2009). ISBN 978-0-596-00630-3.

Bernstein, Philip A., and Eric Newcomer. Principles of Transaction
Processing. San Francisco, CA: Morgan Kaufmann (1997). ISBN 1-
55860-415-4.

Ceri, Stefano, et al. Designing Data-Intensive Web Applications. San
Francisco, CA: Morgan Kaufmann (2003). ISBN 1-55860-190-2.

Date, C. J., with Hugh Darwen. A Guide to the SQL Standard. 4th ed.

Reading, MA: Addison-Wesley (1997). ISBN 0-201-96426-0.
Dix, Paul. Service-Oriented Design with Ruby and Rails. Boston, MA:

Addison-Wesley (2010). ISBN 978-0-321-65936-1.
Donahoo, Michael J., and Gregory D. Speegle. SQL: Practical Guide for

Developers. San Francisco, CA: Morgan Kaufmann (2005). ISBN 978-0-
12-220531-6.

Fronckowiak, John W. Teach Yourself OLE DB and ADO in 21 Days.
Indianapolis, IN: SAMS Publishing (1997). ISBN 0-672-31083-X.

Garvin, Curtis, and Steve Eckols. DB2 for the COBOL Programmer Part 1.
2nd ed. Fresno, CA: Mike Murach & Associates (1999). ISBN 1-890774-
16-2.

Garvin, Curtis, and Anne Prince. DB2 for the COBOL Programmer Part 2.
2nd ed. Fresno, CA: Mike Murach & Associates (1999). ISBN 1-890774-
03-0.

Gray, Jim, and Andreas Reuter. Transaction Processing: Concepts and
Techniques. San Francisco, CA: Morgan Kaufmann (1993). ISBN 1-
55860-190-2.

Geiger, Kyle. Inside ODBC. Redmond, WA: Microsoft Press (1995). ISBN
1-55615-815-7.

Gulutzan, Peter, and Trudy Pelzer. SQL-99 Complete, Really. Lawrence, KS:
R&D Books (1999). ISBN 0-87930-568-1.

Harrington, Jan L. SQL Clearly Explained. 3rd ed. Burlington, MA: Morgan
Kaufmann (2010). ISBN 978-0-12-375697-8.

Jennings, Roger. Database Developer’s Guide with Visual Basic 6.
Indianapolis, IN: SAMS Publishing (1999). ISBN 0-672-31063-5.

Jepson, Brian. Java Database Programming. New York, NY: John Wiley &
Sons (1997). ISBN 0-471-16518-2.

Kaute, Pierre Henri, Tobin Harris, Christian Bauer, and Gavin King.
NHibernate in Action. Greenwich, CT: Manning Publications (2009).
ISBN 978-1-932394-92-4.

Kline, Kevin, with Daniel Kline. SQL in a Nutshell. 3rd ed. Sebastopol, CA:
O’Reilly (2009). ISBN 978-0-596-51884-4.

Lewis, Philip M., Arthur Bernstein, and Michael Kifer. Databases and

Transaction Processing. Boston, MA: Addison-Wesley (2002). ISBN 0-
201-70872-8.

Loosley, Chris, and Frank Douglas. High-Performance Client/Server. New
York, NY: John Wiley & Sons (1998). ISBN 0-471-16269-8.

Marguerie, Fabrice, Steve Eichert, and Jim Wooley. LINQ in Action.
Greenwich, CT: Manning Publications (2008). ISBN 978-1-933988-16-0.

Melton, Jim. Understanding SQL’s Stored Procedures: A Complete Guide to
SQL/PSM. San Francisco, CA: Morgan Kaufmann (1998). ISBN 1-55860-
461-8.

Patrick, Tim. ADO.NET 4: Step by Step. Sebastopol, CA: Microsoft Press
(2010). ISBN 978-0-7356-3888-4.

Price, Jason. Java Programming with Oracle SQLJ. Sebastopol, CA:
O’Reilly (2001). ISBN 0-596-00087-1.

Pugh, Eric, and Joseph D. Gradecki. Professional Hibernate. Indianapolis,
IN: Wrox (2004). ISBN 0-7645-7677-1.

Reese, George. Java Database Best Practices. Sebastopol, CA: O’Reilly
(2003). ISBN 0-596-00522-9.

Rinehart, Martin. Java Database Development. Berkeley, CA: McGraw-Hill
(1998). ISBN 0-07-882356-0.

Sceppa, David. Programming Microsoft ADO.NET. Sebastopol, CA:
Microsoft Press (2012). ISBN 978-0-7356-4801-2.

Syverson, Bryan. Murach’s SQL for SQL Server. Fresno, CA: Mike Murach
& Associates (2002). ISBN 1-890774-16-2.

Walmsley, Priscilla. XQuery. Sebastopol, CA: O’Reilly (2007). ISBN 978-0-
596-00634-1.

Yank, Kevin. Build Your Own Database Driven Web Site Using PHP and
MySQL. 3rd ed. Collingwood, VIC, Australia: SitePoint (2004). ISBN 0-
9752402-1-8.

6. Design Reviews

Decisions made during the database design process and the application
development life cycle (ADLC) must be reviewed to ensure correctness. This
is the purpose of a design review.

What Is a Design Review?
Design reviews are an important facet of the ADLC for database applications.
It is during the design review that all aspects of the database and application
code are reviewed for efficiency, effectiveness, and accuracy. It is imperative
that all database applications, regardless of their size, be reviewed to ensure
that the application is designed properly, that the coding techniques are cost-
effective, and that the database can be accessed and modified correctly and
efficiently. The design review is an important process for checking the
validity of design decisions and correcting errors before applications and
databases are promoted to production status. Design reviews also can be used
to ensure that developers have adhered to corporate standards for internal
documentation, naming schemes, maintainability, and so on.

All aspects of the database and application code are reviewed
for efficiency, effectiveness, and accuracy.

Multiple design reviews should be conducted over the course of an
application’s life. For database applications, the DBA must participate in
every design review, at every stage. It is imperative that the application be
reviewed before, during, and after implementation. Design reviews are
critical for ensuring that an application is properly designed to achieve its
purpose.

Design reviews address many aspects of the development process and its
resulting application. Imposing the design review process on an application
exposes it to a thorough review of every underlying component, structure,
and nuance of the application. Some of the areas that can be addressed by a
design review include

• A validation of the intent and purpose of the application
• An assessment of the logical data model

• An assessment of the physical data model
• A review and analysis of the physical DBMS parameters
• A prediction of SQL performance
• A judgment on the practicality of the programming language

techniques deployed
• An analysis of overall performance after production implementation

A group consisting of subject matter experts and the developer’s peers and
coworkers should conduct each design review. The DBA usually must act as
the focal point for organizing and conducting design reviews. Frankly, if the
DBA does not organize design reviews, it is unlikely that any design review
will be conducted. In addition, if design reviews are not conducted, the
application is more apt to suffer performance and availability problems in a
production environment.

Subject matter experts, peers, and coworkers should conduct
each design review.

Rules of Engagement
Let’s cover the ground rules of a design review before defining each type of
review. A design review is conducted by a group of people—each having
different backgrounds, skills, expectations, and opinions. When any such
group is convened to discuss potential problems and errors, confrontation is
unavoidable. Each participant must possess the ability to discuss and reach
consensus on issues without turning the review into an unproductive battle or
argument. To accomplish this, participants must avoid being combative.
Everyone needs to understand that the only goal is to promote the best-
performing, most usable application possible.

One of the biggest threats to the success of a design review is the
possibility that negative criticism will be perceived as a personal attack. If the
atmosphere of the review is threatening or the developer perceives it to be so,
the developer is likely to resist contributing to the review or accepting an
unbiased critique of the work. To avoid such a scenario, be sure that all
participants back up their assertions and suggestions with facts, manual
references, white papers, articles, blog citations, and experience. As much as
possible, participants should check their emotions at the door.

All participants should back up their assertions and
suggestions with facts, manual references, white papers,
articles, blog citations, and experience.

Design Review Participants
With respect to choosing the design review participants, two guidelines will
help to ensure success. The first is to create formal roles for the design review
and assign the proper individuals to fulfill those roles. The second is to make
sure that participants possess the appropriate skills to actively engage in the
design review process.

Create formal roles for the design review.

First, let’s discuss the different roles required for a successful design
review. Formal roles should include a leader, a scribe, a mediator, and the
participants.
The Leader

It is imperative that each design review have only one leader. The leader can
change from one design review to the next, but within the scope of a single
design review, a single leader must be assigned. The leader’s role is
multifaceted. The leader

• Acts as a master of ceremonies to keep the review process moving
along

• Creates and follows an agenda to ensure that all aspects of the current
design review are conducted satisfactorily

• Solicits input from all participants
• Ensures that all participants maintain proper decorum
• Works with the participants before the meeting to ensure that all

required documentation will be available
• Addresses other tasks as necessary to ensure a successful design review

Though it is not mandatory, the DBA typically acts as the leader of design
reviews for applications using a database. If the DBA is not the leader, the
DBA group must, at a minimum, have the authority to approve the selection
of the leader. Other candidates for leader include the application owner or
lead developer. Sometimes it is a good idea to hire a consultant who has been

exposed to more applications at many different sites to lead a design review.
Doing so can result in the identification of design flaws that might not be
caught otherwise. In some cases even a somewhat disinterested third party
can be used to drive the review process, as long as that person has experience
with design review meetings.

The DBA typically acts as the leader of design reviews for
applications using a database.

The Scribe

The responsibility of the scribe is to capture all points of discussion during
the design review. Although the scribe is not an active participant in the
design review, a scribe is always required. Failure to record the review can
result in loss of vital information from the meeting.

The scribe must be capable of understanding the technical discussion but
need not have a technical position. The scribe could be a member of the
development team who has good writing and listening skills. A technically
savvy administrative assistant could be another good choice.
The Mediator

The mediator is an optional role, but depending on the project and the
dynamics of the design review team, a mediator can be a blessing. The
primary role of the mediator is to negotiate settlements when disagreements
occur, and given the nature of a design review, disagreements are almost
guaranteed. If a disagreement becomes vocal and volatile, the mediator will
hear each side of the disagreement and arrive at an equitable decision.

The primary role of the mediator is to negotiate settlements
when disagreements occur.

Although a good leader should be able to resolve most disagreements, the
leader’s authority may be compromised by the resentment that can ensue
from an intervention. By deferring the most difficult and sensitive decisions
to the mediator, the leader can maintain the confidence of the group and keep
the design review from breaking down. A technical management
representative is the usually the best choice for mediator.
The Participants

Design review participants consist of the other actors with a stake in the
project. The participants will differ from project to project, and from one
design review to the next. From a high-level perspective, though, the
following are the recommended personnel to engage in the design review:

Design review participants consist of the other actors with a
stake in the project.

• Application development personnel assigned to this development effort
• Representatives from other applications that are affected by the new

application or program
• Data administration representative
• Database administration representative
• Representative end users
• End user management
• IT management for the new application and possibly other impacted

applications
• Online support representatives for transaction processing and message

queuing systems
• Web support personnel for Internet-enabled applications
• Operational support representatives
• IT security representative
• IT audit representative (for regulated and sensitive applications and

data)
• Technical support and systems programming representatives

It is not necessary for each of these participants to be involved in each and
every facet of every design review. A single application should be subjected
to multiple design reviews—with each review focusing on a particular aspect
of the application. The scope of each design review should be determined
prior to the scheduling of the review so that only the appropriate participants
are invited.

Knowledge and Skills Required
To be considered for a position on a design review team, candidates should
be experienced in database development. It is best to form the design review

team using participants who possess considerable skills and knowledge. The
following criteria should be used to guide the formation of the design review
team:

• Strong technical skills: technicians, programmers, and DBAs
• Strong communication skills: all participants
• Good interpersonal skills: all participants
• DBMS fundamentals: all participants to the degree required by their

positions
• Background in data modeling and database design: in-depth knowledge

for the DA and DBA; good knowledge for programmers and other
technicians; some level of knowledge for all other participants

• Strong knowledge of SQL: technicians, programmers, and DBAs
Of course, not every team member will have all of these skills.1 However,

make sure that members of the design review team are experts in their field of
practice. For example, an IT manager may have limited expertise in SQL, but
that should not exclude him from the design review team. The manager will
contribute from his field of experience and should be chosen based on his
exposure to the project and his skills as a manager.

Members of the design review team should be experts in their
field of practice.

Furthermore, you should strive to maintain the same members of the team
throughout the ADLC. Since multiple design reviews are necessary, team
member consistency will make design reviews easier because knowledge
gained during past design reviews will carry over to subsequent design
reviews.

Types of Design Reviews
As previously mentioned, it is best to conduct several design reviews over the
course of the ADLC. Multiple design reviews are preferable to a single large
design review because they will allow errors and design flaws to be caught
earlier in the development process while it is still possible and cost-effective
to fix the problems. Additionally, it is unreasonable to expect a single design
review to be conducted at the end of the development process because too
many details will need to be inspected and errors are more likely to fall

through the cracks.
The following are the seven basic design review phases for a database

application:
• Conceptual design review
• Logical design review
• Physical design review
• Organizational design review
• SQL and application code review
• Pre-implementation design review
• Post-implementation design review

Remember the rendering of the ADLC shown in Figure 1.2? Figure 6.1
points out the relative point within the ADLC where each design review
should be conducted.

Figure 6.1. Design reviews in the application development life cycle

Conceptual Design Review
The first review to be conducted is the conceptual design review. The
purpose of this review is to validate the concept of the database and
application. The conceptual design review begins with a presentation of an
overall statement of purpose and a general overview of the desired
functionality to be provided by the application.

The conceptual design review validates the concept of the
database and application.

The conceptual design review should be conducted as early as possible in
the application development life cycle to determine the overall feasibility of
the project. The findings of the conceptual review must verify the purpose of
the application and the clarity of the vision for building the databases and
supporting application programs.

In order to conduct a conceptual design review a conceptual data model
must exist, as well as a high-level design for the application.

Failure to conduct a conceptual design review can result in
• Projects that provide duplicate or inadequate functionality
• Cancellation of projects due to lack of funds, inadequate staffing, poor

planning, lack of user participation, or waning management interest
• Projects that run over budget or take longer to complete than

anticipated
• Applications that do not deliver the required features and functionality

to support the business
The conceptual design review should include the participation of

application development, data administration, and database administration
staff; end users; and management representatives from the end user team and
IT.

Logical Design Review
The logical design review follows the conceptual design review. It should be
conducted when the first cut of the logical data model has been completed. A
thorough review of all data elements, descriptions, and relationships should

occur during this review. The logical design review should address the
following questions:

The logical design review examines all data elements,
descriptions, and relationships.

• Has the logical data model been thoroughly examined to ensure that all
of the required business functionality can be achieved?

• Is the model in (at least) third normal form?
• Have all of the data elements (entities and attributes) required for this

application been identified?
• Have the data elements that have been identified been documented

accurately?
• Have appropriate data types and accurate lengths been assigned for

each attribute?
• Have all of the relationships been defined properly?

The risk of failing to conduct a logical design review is a poorly designed
database, which will likely cause data integrity problems. The logical design
review helps to ensure that all required data has been identified, designed
properly, and fully documented. If changes are made to the logical data
model after conducting a logical design review, additional logical design
reviews should be scheduled as the project progresses.

Participants in the logical design review should be the same as those who
participated in the conceptual design review. If at all possible, the exact same
individuals should attend, to maintain a level of consistency from review to
review. With the same participants, less up-front preparation will be required
because everyone will already be knowledgeable about the purpose of the
application and its high-level conceptual design.

Physical Design Review
The physical design review comes next—it’s the review most often
associated with the design review process. In the physical design review, the
database is reviewed in detail to ensure that all of the proper database
parameter settings and other physical design choices have been made. In
addition, the DA and DBA should ensure that a proper translation from
logical model to physical database has been made and that all

denormalization decisions are formally documented.

The physical design review ensures that all of the proper
database parameter settings and other physical design choices
have been made.

The overall operating environment for the application should be described
and verified at this stage. The choice of transaction processor and a complete
description of the online environment should be provided and verified. An
estimation of workload, throughput, and number of concurrent users should
be provided and reviewed to ensure that the anticipated requirements can be
satisfied. Batch workload should also be reviewed; therefore, a complete
description of any batch processes must be provided.

The physical design review may be conducted before all of the SQL that
will be used for the application is available. However, general descriptions of
all the processes are required to verify the proposed physical database design.
Using the process descriptions, the database definitions can be fine-tuned.
Furthermore, an initial estimate of whether denormalization could be helpful
should be attempted at this point.

Portions of the physical database design may need to be reviewed again as
the application development process progresses. Ensuring a valid physical
design requires a lot of in-depth attention. Therefore, the review can be
broken into discrete processes that can be repeated as changes are made to the
database and the application. For example, as SQL statements are written,
indexing requirements will change. As indexes are added, the decision-
making process should be reviewed to ensure that the indexes are viable for
the entire application, not just for a single SQL statement.

Participants in the physical design review should include application
development staff, data administration staff, database administration staff,
online support representatives, and technical support personnel. If the
application or database will affect other applications, or be used by other
applications, it would be wise to include representatives from those areas as
well.

Organizational Design Review
Smaller in scope than the physical design review, but no less critical, is the
organizational design review. This review examines the enterprise-wide

concerns of the organization with respect to the new application. The
following are some common organizational design review questions:

The organizational design review gauges the impact of the
application on the organization.

• How does this system interact with other systems in the organization?
• Has the logical data model for this application been integrated with the

enterprise data model (if one exists)?
• To what extent can this application share the data of other applications?
• To what extent can other applications share this application’s data?
• How will this application integrate with the current production

environment in terms of the DBMS resources required?
• Will the implementation of this application cause the batch window to

be exceeded?
• Are the requirements of the application such that online response time

and/or data availability are negatively impacted for other users?
• Will the implementation of this application cause the data-processing

needs of the shop to expand? For example, will more memory, CPU
power, or storage be required?

• Can the organization satisfactorily implement the appropriate level of
audit and security required for the application based on industry and
government regulations?

Because the purpose of the organizational design review is to gauge the
impact of the application on the organization, all the players listed in the
“Participants” section earlier should attend this design review. Failure to
include everyone could result in missing certain aspects of the application’s
impact on the organization because of ignorance or oversight.

SQL and Application Code Design Review
The SQL design review is a rigorous review of every SQL statement in the
application. Each SQL statement must be reviewed for performance prior to
the turnover of the application to production. The review must analyze each
statement’s access path, the indexes it uses, and possible alternate
formulations—resulting in an overall assessment of how it is likely to
perform.

The SQL design review is a rigorous review of every SQL
statement in the application.

Every DBMS provides a command to show the access path that will be
used for a SQL statement. Typically the command is called either EXPLAIN
or SHOWPLAN, but I will use EXPLAIN as a generic term. Prior to the SQL
design review, an EXPLAIN should be run for each SQL statement. It is
important that the EXPLAIN command have access to production statistics.
The results of the EXPLAIN statement should be analyzed to determine if the
most efficient access paths have been chosen.

Furthermore, every program should be reviewed to validate that efficient
programming language constructs were used. Although SQL is more likely to
be the cause of poor relational performance, it is quite possible to code an
inefficient program using COBOL, Visual Basic, C, or whatever language.
For example, a very efficiently tuned SQL statement embedded in a loop
within a C program might become very inefficient if that loop runs hundreds
or thousands of times. Additional application and SQL performance issues
are discussed in detail in Chapter 12, “Application Performance.”

Once again: Every line of code and SQL statement must be reviewed prior
to implementation. The SQL and application design review is the appropriate
venue for making suggestions for performance improvements prior to moving
the application to production status. Alternate formulations and indexing
strategies can be suggested during this review and then tested to determine
their impact. If better performance is achieved, the application code, SQL, or
database design should be modified.

The application developers and DBA are mandatory participants in the
application and SQL design review. Additional participants might include
application development managers and perhaps technically savvy end users.
In some cases, developers may feel more comfortable while their code is
being reviewed if their managers are invited. Such an invitation can make it
seem less like the DBA is picking apart months and months of the
programmer’s hard work. Of course, this decision should be made on a case-
by-case basis depending on the developers’ comfort level with their
management, the personal interaction skills of the DBA, and the skill level of
both the DBA and the programmers.

Pre-Implementation Design Review

A pre-implementation design review should be conducted immediately prior
to turning over the application to production status. This review consists of an
overall appraisal of the system components prior to implementation. Each
participant must be prepared to discuss the status of any changes required to
support the application once it moves to production. Loose ends existing
from previous design reviews should be reviewed to verify that necessary
modifications were made and tested. A quick, final review of each
application component should be performed to make sure that new problems
were not introduced as changes were made.

The pre-implementation design review is an overall appraisal
of the system components.

Participants in the pre-implementation design review should include
personnel from the application development staff, application development
management representatives, database administration staff, online support
representatives, and technical support personnel. Optionally, you may choose
to invite technically savvy end users.

Post-Implementation Design Review
Finally, we come to the post-implementation design review. It is necessary to
formally review the application once it has run in the production environment
for a while to determine if the application is meeting its objectives, both in
performance and in functionality. If any objective is not being met, a plan for
addressing the deficiency must be proposed and acted on. Although daily
performance monitoring of a new application is a must, it does not preclude
the need for a formal post-implementation design review for all new
application projects.

A post-implementation design review determines if the
application is meeting its objectives.

Because any portion of the application may be a target for improvement,
all the players listed in the “Participants” section of this chapter may be
required to attend the post-implementation design review.

Design Review Output
Output from reviews should be clear and concise so that any required

application, SQL, or database modifications can be made quickly and
correctly. It is imperative that the scribe capture notes in sufficient detail that
a non-attendee can make sense of the discussion. The scribe should edit the
notes for grammar and spelling and distribute a copy to all attendees
(preferably by e-mail).

Output from design reviews should be clear and concise so
that any required modifications can be made quickly and
correctly.

An additional result of each design review is a separate list of action items.
This list should contain every modification or change discussed during the
design review. Each action item should be given a deadline and be assigned
to a single person, giving that person the responsibility to make the change,
test its impact, and report the progress back to the entire group.

Additional Considerations
There are additional considerations and issues that you will need to deal with
as you prepare and conduct your database design reviews. You must be
prepared to adapt to changing situations and personnel, as well as to the
needs of your organization.

In this section two additional design review considerations are addressed.
The first one is how to overcome a potential pitfall: working with a
geographically dispersed staff. The second issue is more of an opportunity:
using design reviews to mentor junior staff members.

Dealing with Remote Staff
In some cases organizations have distributed workforces where DBAs and
development staff are not located at the same site. When staff members are
remote, the design review process becomes an even more critical piece of the
development project because it forces communication between resources that
are not able to interact on a daily basis.

Of course, a distributed staff also complicates the design review. Although
it is possible to fly team members to a single location to participate in design
reviews, it is rarely cost-effective. Instead of bringing every participant into
the same room to conduct the review, a conference call, videoconference, or
Web-enabled meeting (such as Live Meeting or WebEx) can be set up. In

such cases it is important that materials be available well in advance of the
meeting so that each participant can review the content beforehand.

At any rate, you cannot assume that every staff member who should attend
the design review meeting will be located at the same site.

Mentorship and Knowledge Transfer
Design reviews meetings can be a great opportunity for mentoring junior staff
members. The meetings should be attended by senior technicians, many with
teaching abilities. By inviting junior technicians (who are receptive to new
ideas) to the meeting, you potentially can transfer knowledge cost-effectively
and efficiently.

Be sure, though, not to turn the meetings into purely education sessions.
Furthermore, do not let the junior personnel derail the meeting with endless
questions or let the senior personnel use the meeting as a soapbox.

The purpose of the design review is to ensure the viability of the new
application and database for the organization. Usually it is possible to do a
little mentorship at the same time.

Summary
Design reviews can be time-consuming and difficult to manage, but they are
worth the effort. If a systematic approach to database application design
reviews is established and followed, the likelihood of implementing optimal
applications increases. Database development can be very complex. Only by
managing and documenting the implementation process can you ensure the
creation of successful and useful application systems. The design review
process is an efficient way to encourage a rigorous and systematic pre- and
post-implementation review of database applications.

Review
1. Name the roles required for each design review.
2. What are the differences between a logical design review and a

physical design review?
3. During which type of design review should denormalization be

discussed?
4. Why is it important to review application code in addition to reviewing

SQL?
5. During which phase of the ADLC should the pre-implementation

design review be conducted?
6. During which type of design review should the design be checked for

conformance to third normal form?
7. Cite several reasons for including representatives from application

development management in design reviews.
8. What output is required of every design review?
9. During which type of design review will the impact of the application

on the computing resources of the company be ascertained and
analyzed?

10. Why should the DBA lead most of the design reviews?

Suggested Reading
DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and

Teams. New York, NY: Dorset House (1987). ISBN 0-932633-05-6.
Freedman, Daniel P., and Gerald M. Weinberg. Handbook of Walkthroughs,

Inspections, and Technical Reviews. New York, NY: Dorset House
(1990). ISBN 0-932633-19-6.

Ginac, Frank P. Creating High Performance Software Development Teams.
Upper Saddle River, NJ: Prentice Hall (2000). ISBN 0-13-085083-7.

Rothstein, Michael F., and Burt Rosner. The Professional’s Guide to
Database Systems Project Management. New York, NY: John Wiley &
Sons (1990). ISBN 0-471-62130-7.

7. Database Change Management

Although a cliché, it is true that change is the only constant in today’s
complex business environment. An ever-changing market causes businesses
to have to continually adapt. Businesses are striving to meet constantly
changing customer expectations while trying to sustain revenue growth and
profitability at the same time. To keep pace, businesses must constantly
update and enhance products and services to meet and exceed the offerings of
competitors.

Change is the only constant in today’s complex business
environment.

Moreover, the individuals within the business usually find it difficult to
deal with change. Change usually implies additional roles and responsibilities
that almost inevitably make our jobs more difficult. Our comfortable little
status quo no longer exists. So, we have to change, too—change either
aspects of our environment or our approach to doing things. There are many
different elements of managing change, particularly with respect to IT. Each
of the following constitutes a different facet of the “change management”
experience:

• The physical environment or workplace changes to accommodate more
employees, fewer employees, or perhaps just different employees with
new and different skill sets.

• The organization changes such that processes or methodology, for
example, have to adapt to facilitate a quicker pace for product and
service delivery.

• The network infrastructure changes to provide support for a growing,
and perhaps geographically dispersed, workforce.

• Applications and systems change to perform different processes with
existing data or to include more or different types of data.

• The type and structure of data change, requiring modifications to the
underlying database schemata to accommodate the new data.

Change is inevitable but necessary for business survival and success. Many
factors conspire to force us into changing our database structures, including

Many factors conspire to force us into changing our database
structures.

• Changes to application programs that require additional or modified
data elements

• Performance modifications and tweaks to make database applications
run faster

• Regulatory changes that mandate storing new types of data, or the same
data for longer periods of time

• Changes to business practices, requiring new types of data
• Technological changes that enable databases to store new types of data

and more data than ever before
Change will never disappear. Therefore, it is imperative that we have

solutions to enable us to better manage these inevitable changes.

Change Management Requirements
To successfully implement effective change management, understanding a set
of basic requirements is essential. To ensure success, the following factors
need to be incorporated into your change management discipline: proactivity,
intelligence, analyses (planning and impact), automation, standardization,
reliability, predictability, and quick and efficient delivery.

• Proactivity. Proactive change, which can eliminate future problems, is
an organization’s most valuable type of change. The earlier in the
development cycle that required changes are identified and
implemented, the lower the overall cost of the change will be.

• Intelligence. When implementing a change, every aspect of the change
needs to be examined, because it could result in an unanticipated cost to
the company. The impact of each change must be examined and
incorporated into the change process, because a simple change in one
area may cause a complex change in another area. Intelligence in the
change management process often requires a thorough analysis that
includes an efficient and low-risk implementation plan. True
intelligence also requires the development of a contingency plan,
should the change or set of changes not perform as projected.

• Planning analysis. Planning maximizes the effectiveness of change. A

well-planned change saves time. It is always easier to do it right the
first time than to do it again after the first change proves to be less than
effective. An effective organization will have a thorough understanding
of the impact of each change before allocating resources to implement
the change.

A well-planned change saves time.

• Impact analysis. Comprehensive impact and risk analyses allow the
organization to examine the entire problem, and the risk involved, to
determine the best course of action. A single change usually can be
accomplished in many different ways. However, the impact of each
change may be considerably different. Some changes involve more
risks: failure, undue difficulty, need for additional changes, downtime,
and so on. All considerations are important when determining the best
approach to implementing change.

• Automation. With limited resources and a growing workload,
automating the change process serves to reduce human error and to
eliminate more menial tasks from overburdened staff.

• Standardization of procedure. Attrition, job promotions, and job
changes require organizations to standardize processes to meet
continued productivity levels. An organized and thoroughly
documented approach to completing a task reduces the learning curve,
as well as the training time.

• Reliable and predictable process. When creating any deliverable, a
business needs to know that none of the invested effort is wasted.
Because time is valuable, a high level of predictability will help to
ensure continued success and profitability. Reliability and predictability
are key factors in producing a consistently high-quality product.

• Availability. Most changes require downtime to implement the change.
Applications must come down—the same is true of databases.
However, high availability is required of most applications these days,
especially for an e-business. This is fast becoming a requirement in the
Internet age. Reducing the amount of downtime required to make a
change will increase application availability.

• Quick and efficient delivery. Consumers demand quick turnaround for
most products and services. Profitability is at its best when a product is

first to market. Conversely, the cost of slow or inefficient delivery of
products can be enormous. So, when implementing change, faster is
better. The shorter the duration of an outage to accomplish the change,
the quicker the system can be brought to market.

The Change Management Perspective of the DBA
The DBA is the custodian of database changes. However, the DBA is not
usually the one to request a change; a programmer, application owner, or
business user typically does that. There are times, though, when the DBA will
request changes, for example, to address performance issues or to utilize new
features or technologies. At any rate, regardless of who requests the change,
the DBA is charged with carrying out the database changes and ensuring that
each change is performed successfully and with no impact on the rest of the
database.

The DBA is the custodian of database changes.

To effectively make database changes, the DBA needs to consider each of
the items discussed in the previous section: proactivity, intelligence, analyses
(planning and impact), automation, standardization, reliability, predictability,
and quick and efficient delivery. Without a robust, time-tested process that is
designed to effect database changes, the DBA will encounter a very difficult
job. Why?

Well, today’s major DBMS products do not support fast and efficient
database structure changes. Each DBMS provides differing levels of support
for making changes to its databases, but none easily supports every type of
change that might be required. One quick example: Most DBMSs today do
not enable a column to be added easily to the middle of an existing row. To
accomplish such a task, the DBA must drop the table and recreate it with the
new column in the middle. But what about the data? When the table is
dropped, the data is deleted unless the DBA was wise enough to first unload
the data. But what about the indexes on the table? Well, they too are dropped
when the table is dropped, so unless the DBA knows this and recreates the
indexes too, performance will suffer. The same is true for database security:
When the table is dropped, all security for the table is also dropped. And this
is but one example of a simple change that becomes difficult to implement
and manage.

Adding to this dilemma is the fact that most organizations have at least
two, and sometime more, copies of each database. At the very least, a test and
a production version will exist. But there may be multiple testing
environments—for example, to support simultaneous development, quality
assurance, unit testing, and integration testing. Each database change will
need to be made to each of these copies, as well as, eventually, to the
production copy. Furthermore, most organizations have multiple DBMS
products, each with varying levels of support for making changes. So, you
can see how database change can quickly monopolize a DBA’s time.

Types of Changes
Managing change is a big component of the DBA’s job. In fact, if systems
and databases could be installed into an environment that never changed,
most of the DBA’s job would vanish. However, things change. Business
changes usually necessitate a change to application code or to database
structure. Less obvious business changes also impact the database—for
example, when the business grows and more users are added, when additional
data is stored, or when transaction volume grows. Additionally, technological
changes such as upgrades to the DBMS and changes to hardware components
impact the functionality of database software and therefore require DBA
involvement.

Business changes usually necessitate a change to application
code or to database structure.

DBMS Software
As discussed in Chapter 2, the DBA must be prepared to manage the
migration to new DBMS versions and releases. The complexity involved in
moving from one version of a DBMS to another depends on the new features
and functions supported by the new version. Additional complexity will be
introduced if features are removed from the DBMS in a later version, because
databases and programs may need to change if the removed features were
being used. Furthermore, as functionality is added to, and removed from, the
DBMS, the DBA must create the policies and procedures for the proper use
of each new DBMS feature. This aspect of managing change is a significant
component of the DBA’s job, as we discussed in depth in Chapter 2.

Hardware Configuration
The DBMS may require hardware upgrades or configuration changes. The
DBA will be expected to work in conjunction with the system programmers
and administrators responsible for setting up and maintaining the hardware.
At times the DBMS may require a different configuration from the one that is
commonly used, thereby requiring the DBA to communicate to the SA the
reason why a nonstandard configuration is required.

Conversely, when hardware changes for other reasons, the DBMS
configuration may have to change. Perhaps your organization is changing the
disk drives in use with your database server hardware, or maybe adding
additional memory to the box. Hardware changes such as these may require
changes to database structures and the DBMS configuration. The DBA must
be actively engaged with the SA team that configures and maintains the
hardware used by the DBMS and, as discussed earlier, may even have to
function as an SA in addition to carrying out DBA duties.

Logical and Physical Design
When the database changes, it is important that the blueprints that define the
database also change. This means that you need to keep the conceptual and
logical data models synchronized with the physical database. This can be
accomplished in several ways.

When the database changes, the blueprints that define the
database must also change.

Organizations adept in data administration may choose to make changes at
the conceptual and logical levels first, and then migrate the changes into the
physical database. Usually such an approach requires data modeling tools that
segregate the logical and physical models. Furthermore, the procedures must
facilitate the specification of changes at each level while providing the
capability to synchronize the different models—both forward from logical to
physical, and backward from physical to logical.

In the absence of robust data modeling tools, the typical approach taken to
synchronize models is manual. Whenever the physical database is modified,1
the DBA must manually update the logical data model (and perhaps the
conceptual data model). Such an effort requires a strict approach to change
propagation. As with any manual change management scenario, this approach

is tedious and error prone. However, it is imperative that the logical model be
synchronized with the physical database. Failure to do so invalidates the
usefulness of the data model as a blueprint for database development.

Applications
Application changes need to be synchronized with database changes;
however, this is easier said than done. Whenever changes are made to a
physical database structure, application changes usually accompany those
changes. For example, simply adding a column to a database table requires
application software to populate, modify, and report on the data in the new
column.

Application changes need to be synchronized with database
changes.

When the database change is migrated to a production environment, the
application change must be migrated as well. Failure to do so will render the
database change ineffective. Of course, the DBA could allow the database
change to be migrated before the application change to ensure that the
database structures are correctly specified. After changing the database in the
production environment, the DBA would then inspect the database for
accuracy and only then allow the application changes to be migrated.

But the relationship between the database change and the application
change is valid. If the application change is backed off, the database change
should be backed off as well—and vice versa. Failure to synchronize changes
will likely cause an application error or inefficiency. It is imperative that the
DBA understand these relationships and monitor the change management
process to ensure that the database and application changes happen in step
with one another.

Physical Database Structures
The most complicated and time-consuming type of change for DBAs is
planning, analyzing, and implementing changes to physical database
structures. But most databases change over time—indeed, the database that
remains static once implemented is very rare. So DBAs must be prepared to
make changes to the databases under their care. Some changes are simple to
implement, but others are very complex, error prone, and time-consuming.
The remainder of this chapter discusses how physical database objects can be

changed and the problems that DBAs can expect to encounter in the process.

The most complicated type of change for DBAs is making
changes to physical database structures.

Impact of Change on Database Structures
When the data requirements of your organization change, the databases used
to store the data must also change. If the data is not reliable and available, the
system does not serve the business—rather, it threatens the health of the
business. So, we need infallible techniques to manage database changes. But
even more, we need techniques that are not just fail-safe but also automated,
efficient, and easy to use. Unfortunately, today’s database systems do not
make managing database change particularly easy.

Relational databases are created using Data Definition Language (DDL)
statements. DDL consists of three SQL verbs: CREATE, DROP, and
ALTER. The CREATE statement is used to create a database object initially,
and the DROP statement is used to remove a database object from the
system. The ALTER statement is used to make changes to database objects.

Not every aspect of a database object can be changed by using the ALTER
statement. Some types of changes require the database object to be dropped
and recreated with the new parameters. The exact specifications for what can,
and cannot, be changed using ALTER differ from DBMS to DBMS.

For example, you can add columns to an existing table using the ALTER
statement, but usually only at the end of the table. In other words, you cannot
use ALTER to add a column between two existing columns. Additionally,
typically you cannot remove columns from a table. To add a column
anywhere but at the end of the column list, or to remove a column from a
table, you must first drop the table and then recreate it with the desired
changes. Every DBMS has limitations on what can be changed by using the
ALTER statement. Furthermore, not just tables but most database objects
have certain aspects that cannot be changed using ALTER.

When making changes to a database requires an object to be dropped and
recreated, the DBA must cope with the cascading DROP effect. A cascading
DROP refers to the effect that occurs when a higher-level database object is
dropped: All lower-level database objects are also dropped. (See Figure 7.1
for a depiction of the database object hierarchy.) Thus, if you drop a

database, all objects defined in that database are also dropped. The cascading
DROP effect complicates the job of changing a database schema.

Figure 7.1. Database object hierarchy

The cascading DROP effect complicates the job of changing a
database schema.

To understand the complexity involved, let’s use an example. Suppose you
are working with DB2, and you need to change a segmented tablespace to a
partitioned tablespace. To do so, you must drop the segmented tablespace and
recreate it as a partitioned tablespace. However, when you drop the
segmented tablespace, you are also dropping any tables defined in the
tablespace, as well as the table’s columns and keys, all indexes defined on
those tables, any triggers defined on the tables, any synonyms defined for the
table, and all views that access the table. Furthermore, when a database object
is dropped, the security information and database statistics are deleted from
the system. The DBA must be able to capture all this information prior to
dropping the tablespace so that it can be recreated after the partitioned
tablespace is implemented. Capturing the DDL from the system catalog or
dictionary and ensuring that the DDL is submitted correctly after the
modification can be a tedious, complex, and error-prone process.

The system catalog or data dictionary stores the metadata about each
database object. Metadata includes much more than just the physical
characteristics of database objects. Additional information about database
objects such as security authorizations and database statistics are stored along

with the metadata. All of the information required to recreate any database
object is readily available if you know where to look for it, and part of the
DBA’s job is knowing where to look.

A final concern regarding database change: What happens to application
program specifications? When database objects that are accessed by a
program are dropped, the DBMS may invalidate that program. Depending on
the DBMS and the type of program, additional steps may be required to
rebind the application to the DBMS after the database objects accessed by the
program have been recreated.

The Limitations of ALTER
Many types of database object alteration cannot be performed using the basic
SQL ALTER statement; as usual, this varies from DBMS to DBMS and,
indeed, from version to version of a single DBMS. However, the actions that
are most likely to not be supported by ALTER include

• Changing the name of a database object (depending upon the DBMS
and version, some objects can be renamed using the RENAME
statement)

• Moving a database object to another database
• Changing the number of tablespace partitions or data files
• Removing a partition from a partitioned tablespace or index
• Moving a table from one tablespace to another
• Rearranging the order of columns in a table
• Changing a column’s data type and length (especially to a smaller

length)
• Removing columns from a table
• Changing the definition of a primary key or a foreign key
• Adding a column to a table that cannot be null
• Adding or removing columns from a view
• Changing the SELECT statement on which the view is based
• Changing the columns of an index
• Changing whether an index is unique
• Changing whether an index is clustering

• Changing whether the index is ascending or descending
• Modifying the contents of a trigger
• Changing a hash key

In some limited cases, it is possible to use ALTER to change the length of
certain types of columns. For example, in DB2 and Oracle you can alter a
character column to a larger size, but not to a smaller size. Additionally, it
may be possible to change a column from one numeric data type to another.
DB2 allows the modification of a column’s data type, as long as the change is
within the same data type family (numeric to numeric, character to character,
or datetime to datetime). For example, it is legal to change a column from
SMALLINT to INTEGER using ALTER, but not from SMALLINT to
DATE. In general, though, significant changes to the data type and length of
a column usually require the table to be dropped and recreated with the new
data type and length.

Making physical changes to actual database objects is merely one aspect of
database change. Myriad tasks require the DBA to modify and migrate
database structures. One daunting challenge is to keep test databases
synchronized and available for application program testing. The DBA must
develop robust procedures for creating new test environments by duplicating
a master testing structure. Furthermore, the DBA may need to create scripts
to set up the database in a specific way before each test run. Once the scripts
are created, they can be turned over to the application developers to run as
needed.

Making physical changes to actual database objects is merely
one aspect of database change.

Another challenge is recovery from a database change that was improperly
specified, or backing off a migration to a prior point in time. These tasks are
much more complicated and require knowledge of the database environment
both before and after the change or migration.

The preceding discussion justifies the purchase of a database change
management tool to streamline and automate database change management.
Keep in mind that the preceding list of items is not exhaustive and that it will
differ from DBMS to DBMS. DBA tools exist that manage the change
process and enable the DBA to simply point and click to specify a change.

The tool then handles all of the details of how to make the change. Such a
tool removes from the shoulders of the DBA the burden of ensuring that a
change to a database object does not cause other implicit changes. Database
change management tools provide

• A reduction in the amount of time required to specify what needs to
change

• A simpler and more elegant method of analyzing the impact of database
changes

• A reduction in technical knowledge needed to create, alter, and drop
database objects

• Ability to track all changes over time
• An increase in application availability by reducing the time it takes to

perform changes
A database change management tool is one of the first tools acquired by

most organizations when they implement a database of any size. Such tools
reduce the amount of time, effort, and human error involved in managing
database changes. The increase in speed and accuracy when using a change
management tool provides an immediate return on the investment to the
organization. More information on such DBA tools is provided in Chapter 23,
“DBA Tools.”

Database Change Scenarios
A DBA will need to make many different types of changes to a database over
its lifetime. Some will be simple and easy to implement, others much more
difficult and complex.

As discussed earlier, the SQL ALTER statement can be used to make
many types of changes to databases. However, other types of changes may
require additional steps to implement. It is the DBA’s job to understand the
best way to effect any type of database change. Keep in mind that simple
changes often become more difficult in the real world. For example, a simple
database change is not quite so simple when it needs to be propagated to
multiple databases on different servers at multiple locations.

A simple change is not quite so simple when it has to be
propagated to multiple databases on different servers at
multiple locations.

A single complex change, such as removing or renaming a column, can
take hours to implement manually. Changing the name of one column can
require hundreds of changes to be scheduled, executed, and verified from
development to test to production. Tackling such challenges is the job of the
DBA.
Some Database Change Examples

Adding a new column to the end of a table is usually a very simple type of
change. All that is required to implement the change is an ALTER statement,
such as

Adding a new column to the end of a table is usually a simple
type of change.

Click here to view code image

ALTER TABLE Table_1
 ADD COLUMN new_column INTEGER NULL
;

The change can be accomplished in a straightforward manner by issuing a
single SQL statement. It simply adds a new integer column to Table_1 that
can be set to null. However, making the change once is easy, but keeping
track of the change is a little more complex. Tracking database changes
becomes more difficult as the number of database environments increases
and the latency required between changes increases. In other words, a simple
change that needs to be populated across 20 distinct database environments
over a period of three months becomes more complex because the DBA must
be able to track which environment has which changes. Furthermore, there
will usually be multiple changes that need to be tracked.

Tracking database changes becomes more difficult as the
number of database environments increases and the latency
required between changes increases.

A somewhat more difficult change is modifying the amount of free space
for a database object. Such a change typically is accomplished by using an
ALTER statement, but additional work is required after the ALTER
statement has been issued. For example, consider the following ALTER
statement:

ALTER TABLESPACE TS1
 PCTFREE 25
;

This statement changes the free space percentage for the tablespace named
TS1 to 25 percent (from whatever value it was before). However, the
additional free space does not magically appear after this ALTER statement
is issued. In order to reclaim the free space for the tablespace, the DBA will
have to reorganize the tablespace after successfully issuing the ALTER
statement. Additional work is also required to ensure that sufficient disk
space is available for the increased amount of free space. Therefore, the DBA
needs to understand how each parameter that can be altered is actually
impacted by the ALTER statement. Furthermore, the DBA needs to
understand when additional work is required to fully implement the desired
change.

Finally, let’s examine a very difficult database change: adding a column to
the middle of a table. Implementing such a change requires a lot of
forethought and planning because it cannot be achieved using a simple
ALTER statement. Instead, the table must be dropped and recreated with the
new column in the appropriate place. The following steps need to be
performed:

Adding a column to the middle of a table is a very difficult
change.

1. Retrieve the current definition of the table by querying the system
catalog or data dictionary.

2. Retrieve the current definition of any views that specify the table by
querying the system catalog or data dictionary.

3. Retrieve the current definition of any indexes defined on the table by
querying the system catalog or data dictionary.

4. Retrieve the current definition of any triggers defined on the table by
querying the system catalog or data dictionary.

5. Capture all referential constraints for the table and its related tables and
determine what their impact will be if the table is dropped (causing all
data in the table to be deleted).

6. Retrieve all security authorizations that have been granted for the table

by querying the system catalog or data dictionary.
7. Obtain a list of all programs that access the table by using the system

catalog, data dictionary, and any other program documentation at your
disposal.

8. Unload the data in the table.
9. Drop the table, which in turn drops any views and indexes associated

with the table as well as invalidates any SQL statements against that
table in any application programs.

10. Recreate the table with the new column by using the definition
obtained from the system catalog.

11. Reload the table, using the unloaded data from step 8.
12. Recreate any referential constraints that may have been dropped.
13. Recreate any triggers, views, and indexes2 for the table.
14. Recreate the security authorizations captured in step 6.
15. Examine each application program to determine whether changes are

required for it to continue functioning appropriately.
As you can plainly see, such a complex change requires diligent attention

to detail to ensure that it is made correctly. The process is fraught with
potential for human error and is very time-consuming. In summary, to
effectively enact database changes, DBAs must understand all of the intricate
relationships among the databases they manage and have a firm
understanding of the types of changes supported by the DBMS products they
use.

Comparing Database Structures
When managing multiple database environments, the DBA may need to
compare one environment to another. Usually changes are made to one
database environment, say, the test environment, as applications are built and
tested. After the changes have been sufficiently tested, they will be promoted
to the next environment, perhaps QA, for additional quality assurance testing.
In order to appropriately migrate the required changes, the DBA must be able
to identify all of the changes that were applied in the test environment.

One approach to change migration is for the DBA to keep records of each
change and then duplicate the changes one by one in the new database
environment. However, such an approach is likely to be inefficient. The DBA

could analyze a series of changes and condense them into a single change or
perhaps a smaller group of changes, but once again, this approach is time-
consuming and error prone.

An alternative approach is to use a DBA tool to compare database
components. All of the differences between the environments can be written
to a report, or the tool can automatically replicate the structure of the database
environment of record to another database environment. To accomplish this,
the tool can compare the physical databases using the system catalog, data
dictionary, or DDL scripts. A comparison tool is almost a requirement for a
very complex database implementation because it is very difficult to track
changes from one environment to the next. And the more environments that
exist, the more difficult the change management becomes.

Use a DBA tool to compare database components.

If your organization does not have a database change management tool, be
sure to save the DDL scripts used to create databases and keep them up-to-
date. Every change made to the database must also be made to the DDL
scripts. Bear in mind that subsequent ALTER statements can change the
database but will not change the DDL scripts. The DBA will need to update
the DDL scripts either by appending the ALTER statements to the
appropriate DDL scripts or by changing the DDL scripts to reflect the effect
of the ALTER statement. Neither approach is ideal: For the first approach,
changes may be required that cannot be implemented using ALTER
(requiring you to modify the DDL script), and for the second, the likelihood
of introducing errors is high because a single change is made twice—once to
the actual database and once to the saved DDL script.

If you do not store the DDL scripts for your database objects, you will
need to learn how to query the system catalog or data dictionary tables to
recreate the database DDL manually. Both of these approaches, saving DDL
and manually recreating DDL, are error prone and time-consuming.

Without some type of comparison functionality the DBA must keep track
of every single change and accurately record which environments have been
changed and which have not. This too is an error-prone process. If the DBA
does not keep accurate records, he will have to tediously examine the entire
database structure for each database that may have changed, using the system
catalog or data dictionary in each database environment. Once again, this is

also an error-prone and time-consuming process.

Requesting Database Changes
The application development team generally requests changes to databases.
The DBA is the custodian of the database but is not the primary user of the
database. Business users who access data by means of application programs
and systems tend to be the primary users of databases.

In order to properly coordinate database changes, the DBA group must
institute policies and procedures governing how changes are to be requested
and implemented. It is not reasonable to expect database changes to be
implemented immediately, or even the same day. However, the DBA group
should be held accountable to reasonable deadlines for implementing
database changes. The DBA must examine each request to determine its
impact on the database and on the applications accessing that database. Only
after this information is evaluated can the database change be implemented.

Institute policies governing how changes are to be requested
and implemented.

An application developer will request database changes only when those
changes are viewed as required. In other words, the application has new data
usage needs, and the database needs to be changed to support those needs. Of
course, not every request will be implemented exactly as it is received. The
DBA may need to modify requests based on his knowledge of the DBMS.
Any deviations from the request must be discussed with the development
team to ensure that they are still workable within the realm of the application.

Standardized Change Requests
The DBA group should establish standardized forms for implementing
database changes. These forms should be customized for each shop, taking
into account things such as environment, development expectations,
knowledge, DBA experience, production workload, service-level agreements
(SLAs), platforms, DBMSs, and naming conventions.

Establish standardized forms for implementing database
changes.

Standardized change request forms prevent miscommunications from

occurring during the change management process and, if possible, should be
implemented online. The form should include all pertinent information
related to each change, including, at a minimum, operating system, database
subsystem or instance name, object owner, object name, object type, desired
change, and date requested. The form should include sign-off boxes for those
personnel who are required to sign off on the change before it can be
implemented. Required sign-offs should include at least the application
development team leader and a senior DBA—but could also include a
business unit representative, DA, or SA, depending on the nature of the
request.

When the database change is completed, the form should be signed off by
the DBA implementing the change and then sent back to the originator. The
originator returns the form to the DBA with a requested date for
implementing the change in production.
Checking the Checklists

Many DBAs develop checklists that they follow for each type of database
change. These checklists may be incorporated into an online change request
system so that the DBA can walk through changes as required. Additionally,
many application development teams use checklists to ensure that every step
that is required for an application to run correctly is taken and verified.

It is a good practice for the DBA group and the application development
teams to share their checklists with each other to verify that each step in the
database change and turnover process is completed successfully. Activities
performed by DBAs, developers, and technical support personnel often
overlap. Allowing the teams to review each other’s checklists promotes a
better understanding of what steps other units are performing during the
change process. Many steps require intricate interaction and communication
among the different teams. A formalized review process can correct errors
before problems arise.

Share your database change management checklists with other
DBAs and the application development teams.

Communication
DBAs must provide education to development organizations on how to
request a database change. They should provide guidance on accessing

change request forms, instructions for completing the forms, and guidelines
on service expectations.

Unrealistic service expectations, often the biggest problem, can be avoided
through education. For example, if requesters understand that the DBA team
could take up to two days to process their requests, they will be able to work
that delay into their timeline. Clarifying realistic service expectations on an
organizational level prevents the DBA team from being deluged by “change
this now” requests. These expectations need to be based on solid ground—
performance requirements, availability, 24/7 issues, and so on. The DBA
must ensure that reasonable time frames—based on solid requirements—are
built into policies and procedures that are readily available to all requesters.
Only in this way does change management become a discipline.

Unrealistic service expectations can be avoided through
education.

Coordinating Database and Application Changes
Although this chapter has focused primarily on the management of database
structural changes, DBAs must also participate in the coordination of
program changes. Typically, database changes are effected to enable new
program functionality. At the very least, new columns will need to be
updated and accessed by new program logic.

If the database changes are enacted before the program changes, the new
data will not be accessible and existing programs may fail (if the structure
changes are incompatible with the existing structure layout in the program).

If the program changes are enacted before the databases changes, the
programs will fail because the database structure will not match the expected
structure.

It is therefore important for the turnover procedure from the test
environment to the production environment to be coordinated and integrated
across the DBA group and the application team. The changes should be
enacted together. And if the changes need to be backed out for any reason,
both should be backed out in conjunction with each other. Failing to do so
will result in application and database failures.

Compliance

Regulatory compliance demands need to be integrated into your database
change management practices as well. Your change management
methodology or tool set must be capable of logging changes in order to track
who made what change to which piece of data when. The ability to attest to
the purpose of each change is a significant component of regulatory
compliance.

Although regulations typically do not impact all database data, it can be
difficult to track changes to only database structures that are under the
jurisdiction of regulations. Thus, it probably is wise to track and log all
database changes to ensure compliance in the event of an audit.

Some forms of database change require that data be unloaded and
reloaded. All of the regulations that apply to the production data itself also
apply to the unloaded data. Be sure to properly secure and track any data that
is extracted, unloaded, archived, or backed up during database changes.

Indeed, regulatory compliance introduces yet another compelling reason to
consider adopting a database change management tool. It is possible to
develop a process using change management tools to automatically track all
structure changes to the database using the change auditing and comparison
features of such tools. Capturing all deltas between successive
upgrades/changes provides a record of what changed and when to the
auditors. These tools also can impose additional security, ensuring that
databases are protected with controls to prevent unauthorized changes.
Adoption of a change management tool also can contribute to the adoption of
a change management policy whereby all changes—routine, nonroutine, and
emergency—use the change management tool and follow the appropriate
procedures with the requisite level of logging and rigor.

A more complete discussion of regulatory compliance as it applies to
database administration is provided in Chapter 15, “Regulatory Compliance
and Database Administration.”

DBA Scripts and Change Management
The most important aspect of database change management for DBAs is
orchestrating and implementing changes to database structures without
impacting data integrity and availability. However, there are other aspects of
change management with which DBAs must contend.

DBAs develop and use many scripts and programs that also should

undergo the rigor of change management. Changes to scripts and processes
should be managed, approved, tested, and rolled out in much the same way
that changes to production programs are handled. This is especially the case
when the DBA team consists of multiple members, perhaps distributed across
many locations. When DBA scripts need to be modified, the code should be
checked out from a software change management library. By adopting a
program change control facility for DBA scripts, you can eliminate problems
inherent in parallel development projects, such as dual modification or
overwriting changes.

Summary
Databases are guaranteed to require changes over the course of their lifetime.
The DBA is the custodian of the database and is therefore responsible for
implementing change in a responsible manner that ensures the structure,
integrity, and reliability of the database. The DBA must create and administer
a database change management discipline consisting of tools, procedures, and
policies to effect database change appropriately and responsibly.

Review
1. The DBA is usually the initiator of database changes: true or false?

Why or why not?
2. Why is it difficult to add a column between two existing columns in an

existing table?
3. Name the three types of database comparisons that may be required in

a changing database environment.
4. What is the impact of dropping a database?
5. Describe an alternative change method that can be used if your

organization does not use a database change management tool.
6. Explain what is meant by the term cascading DROP.
7. Why must the DBA understand the relationship between a database

change and the application changes that are needed to use the changed
data?

8. Your organization does not use a tool to implement changes to database
objects. You need to insert a column between the third and fourth
columns of a table with ten columns. Describe the preparation process

you would employ to make such a change.
9. Why would a DBA want to have the capability to compare one

database structure to another quickly and simply?
10. If you have to drop an entire table to effect a database change, what

other database structures will also be dropped automatically by the
DBMS?

Suggested Reading
Ambler, Scott W., and Pramod J. Sadalage. Refactoring Databases:

Evolutionary Database Design. Boston, MA: Addison-Wesley (2006).
ISBN 0-321-29353-3.

O’Donnell, Glenn, and Carlos Casanova. The CMDB Imperative: How to
Realize the Dream and Avoid the Nightmare. Upper Saddle River, NJ:
Prentice Hall (2009). ISBN 978-0-13-700837-7.

Scalzo, Bert, and Dan Hotka. TOAD Handbook. 2nd ed. Indianapolis, IN:
SAMS/Developer’s Library (2009). ISBN 978-0-321-64910-2.

8. Data Availability

Availability is the holy grail of database administrators. If the data is not
available, the applications cannot run. If the applications cannot run, the
company loses business. Therefore, DBAs are responsible for doing
everything in their power to ensure that databases are kept online and
operational. This has been the duty of the DBA since the first days of the
database.

However, the need for availability is increasing. The age of the long batch
window, where databases can be offline for extended periods to perform
nightly processing, is over. Contributing to the trend of continual availability
is the adoption of e-business. Coupling businesses to the Internet has
dramatically altered the way we do business. It has created expectations for
businesses to be more connected, more flexible, and importantly, more
available. When you integrate the Web with database management,
heightened expectations are placed on DBAs to keep databases up and
running more smoothly and for longer periods. When your business is online,
it never closes. People expect full functionality on Web sites they visit
regardless of the time of day. Remember, the Web is worldwide. It may be
three o’clock in the morning in New York, but it is always prime time
somewhere in the world. Therefore, an e-business must be available and
operational 24 hours a day, seven days a week, 365 days a year (366 for leap
years). And if your customer is conducting business at three o’clock in the
morning in New York, you had better be, too—or you risk losing that
customer’s business.

It is always prime time somewhere in the world.

On the Web, all of your competitors are just a simple mouse click away.
Studies have shown that if Web customers do not get the service they want in
seconds, they will take their business elsewhere. A Jupiter Research survey
found that 33 percent of broadband shoppers are unwilling to wait more than
4 seconds for a Web page to load. Tests conducted by Amazon revealed that
every 100ms increase in load time of Amazon.com decreased sales by 1
percent.

And if prospective customers are satisfied after taking their business to

your competitor, chances are they will never come back. So, an e-business
site that is down, even for a short period, will result in not just hundreds or
thousands of lost hits, but lost business, too. The impact of downtime cannot
be measured in the loss of immediate business alone. No, e-business
downtime also damages the goodwill and public image of your organization.
And once that is lost, it is quite hard to rebuild the trust of your customers
and your company’s reputation.

Indeed, some pundits use the phrase “Internet time” to describe the rapid
rate of change and the rapid development schedules associated with Internet
projects. But the DBA can think of Internet time as a simple Boolean
equation—there is uptime and there is downtime. During uptime, business is
conducted and customers are serviced. During downtime, business is halted
and customers are not serviced. So, Internet-age DBAs are sharply focused
on maintaining availability.

Of course, e-business is not the only driver for increased availability. Other
factors include

E-business is not the only driver for increased availability.

• The “fast food” mentality of customers who demand excellent service
and demand it “now!”

• “Airline magazine syndrome”—you know, when your manager reads
an article from the in-flight magazine during his latest junket that states
how a competitor offers round-the-clock service . . . so your next
project has to offer round-the-clock service, too

• The desire to gain a competitive advantage in the marketplace by
offering superior services at a time of the customer’s choosing

• The need to react to competitors who offer better service to customers
because of higher data availability

Defining Availability
Before discussing further the importance of availability, a good definition of
availability is needed. After all, we should know what we are talking about.
Simply stated, availability is the condition where a given resource can be
accessed by its consumers. This means that if a database is available, the
users of its data—that is, applications, customers, and business users—can

access it. Any condition that renders the resource inaccessible causes the
opposite of availability: unavailability.

Availability is the condition where a given resource can be
accessed by its consumers.

Another definition of availability is the percentage of time that a system
can be used for productive work. The required availability of an application
will vary from organization to organization, within an organization from
system to system, and even from user to user.

Database availability and database performance are terms that are often
confused with each another, and indeed, there are similarities between the
two. The major difference lies in the user’s ability to access the database. It is
possible to access a database suffering from poor performance, but it is not
possible to access a database that is unavailable. So, when does poor
performance turn into unavailability? If performance suffers to such a great
degree that the users of the database cannot perform their jobs, the database
has become, for all intents and purposes, unavailable. Nonetheless, keep in
mind that availability and performance are different and must be treated by
the DBA as separate issues—even though a severe performance problem is a
potential availability problem.

Availability and performance are different and must be treated
by the DBA as separate issues.

Availability comprises four distinct components, which, in combination,
assure that systems are running and business can be conducted:

Availability comprises manageability, recoverability,
reliability, and serviceability.

• Manageability—the ability to create and maintain an effective
environment that delivers service to users

• Recoverability—the ability to reestablish service in the event of an
error or component failure

• Reliability—the ability to deliver service at specified levels for a stated
period

• Serviceability—the ability to determine the existence of problems,

diagnose their cause(s), and repair the problems
All four of these “abilities” impact the overall availability of a system,

database, or application.

Increased Availability Requirements
Talk to the DBA group in any major corporation today and you will hear
about an atmosphere of controlled chaos. DBAs are scrambling to address a
variety of needs, ranging from the design of new applications to keeping
business-critical applications operational. All the while, business executives
are demanding that DBAs accomplish these tasks with minimal or no
downtime. As more businesses demand full-time system availability, and as
the cost of downtime increases, the time available for optimizing
performance on business-critical systems and software is shrinking.

The time available for optimizing performance on business-
critical systems and software is shrinking.

On the other hand, if routine maintenance procedures are ignored,
performance suffers. The DBA is forced to perform a delicate balancing act
between the mandate for 24/7 availability and the consequences of deferred
system maintenance. The stakes are high, and IT is caught between
seemingly contradictory objectives.
The Shrinking Maintenance Window

All growing businesses accumulate enormous amounts of data. And
enterprise databases continue to expand, increasing in size and complexity.
Multiterabyte databases are common, and the largest databases in production
exceed a petabyte in size. At the same time, 24/7 system availability is more a
requirement than an exception. DBAs need to be increasingly creative to find
time to perform routine system maintenance. High-transaction databases need
periodic maintenance and reorganization. With constant use, databases
become fragmented, data paths become inefficient, and performance
degrades. Data must be put back in an orderly sequence; the gaps created by
deletions must be erased. Furthermore, performing defragmentation and
reorganization usually results in database downtime.

DBAs need to be increasingly creative to find time to perform
routine system maintenance.

Decision Support, Business Intelligence, and Analytics

More and more companies are finding new ways to use core business data for
decision support. For example, credit card companies maintain a basic body
of information that they use to list purchases and prepare monthly statements.
This same information can be used to analyze consumer spending patterns
and design promotions that target specific demographic groups and,
ultimately, individual consumers. This means that core business data must be
replicated across multiple database environments and made available in user-
friendly formats. Therefore, the availability of operational data can be
negatively impacted by the requirements of decision support users, since
large amounts of data are not available for update during bulk data unload
processing.

Business intelligence (BI) applications support better business decision
making through data analysis. BI technologies provide historical, current, and
predictive views of business operations. A BI system and a decision support
system (DSS) are somewhat synonymous. Common functions of business
intelligence technologies are reporting, online analytical processing,
analytics, data mining, process mining, complex event processing, business
performance management, benchmarking, text mining, and predictive
analytics.

The current buzzwords in this arena, though, are advanced analytics,
implying a business-focused approach that comprises techniques to help build
models and simulations to create scenarios, as well as to understand realities
and future states. Advanced analytics uses data mining, predictive analytics,
applied analytics, statistics, and other approaches in order to allow
organizations to improve their business performance.

The Benefits of Analytics: An Example
A large wireless phone service provider was concerned with the number of
customers it was losing. Every customer lost cost the company $53 in
monthly revenue. Although the lost revenue looked small on a customer-
by-customer basis, with a large customer base the company was losing
millions of dollars each month. Using advanced analytics, it was able to
develop an attrition model to predict which customers were most likely to
terminate their contract. In doing so, the company developed a model to
cross-sell, helping it to retain customers by providing products, services,

and other incentives targeted to their profile. This program improved the
retention rate and contributed to an overall savings of $6.7 million.

That is the type of success story common among companies that have
deployed advanced analytics to better understand their data.

Traditional business intelligence enables us to understand the here and
now, and even some of the why, of a given business situation. Advanced
analytics goes deeper into the “why” of the situation and delivers likely
outcomes (refer to the example in the sidebar “The Benefits of Analytics: An
Example”). Although advanced analytics cannot infallibly predict the future,
it can provide models for judging the likelihood of events. By allowing
business managers to be aware of likely outcomes, advanced analytics can
help to improve business decision making with an understanding of the effect
those decisions may have in the near future.

Advanced analytics cannot infallibly predict the future, but it
can provide models for judging the likelihood of events.

Advanced analytical capabilities can be used to drive a wide range of
applications, from operational applications such as fraud detection to strategic
analysis such as customer segmentation. Regardless of the applications,
advanced analytics provides intelligence in the form of predictions,
descriptions, scores, and profiles that help businesses better understand
customer behavior and business trends. And decision support, business
intelligence, and advanced analytics all rely upon having access to data—
large amounts of data.
Data Warehousing

Just as decision support, business intelligence, and advanced analytics have
expanded the use of operational data, data warehousing has driven overall
database growth. Typical data warehouses require the replication of data for
use by specific departments or business units. The unloading and loading of
external data to operational data stores, and then on to data warehouses and
data marts, has increased the number of database utility operations that need
to be run and administered. The time taken to propagate data has conversely
affected the overall availability window of both the data sources and data
targets during unload and load processing. The growth of data warehouses

will continue unfettered into the foreseeable future, fed by the information
needs of knowledge workers, the expanding business embrace of advanced
analytics, and the falling cost of storage media.

The growth of data warehouses will continue unfettered into
the foreseeable future.

Full-Time Availability

Just when the latest hardware and software technologies are beginning to
bring 24/7 availability within reach, the mandates of the global economy
have forced IT departments to reevaluate the situation. Now the buzz phrase
is 24/24 availability, because businesses conduct operations in all time zones
and data must be available to a new spectrum of users, not all of whom work
in the same time zone as the operational DBMS.

Airline reservation systems, credit card approval functions, telephone
company applications—all must be up and running all day, every day.
International finance is one of the best examples of the need for full-time
availability. Money never sleeps, and the daily flow of euros, dollars, pounds,
and yuan occurs daily and inevitability. So does the global information
exchange on which brokers base their buy and sell decisions. Large quantities
of money are on the line every minute, and downtime simply cannot be
tolerated. DBA and IT professionals need techniques that perform
maintenance, backup, and recovery in small fractions of the time previously
allotted to accomplish these tasks.
Increasing IT Complexity

Any single-vendor system should be clean, precise, and predictable. But
today, it is hard to find a company of any size that does not operate in a
heterogeneous environment that includes mainframe, midranges, and desktop
systems in a client/server infrastructure. As these systems expand in size and
functionality, IT staffs must find ways to accommodate operational tuning
across a complex, heterogeneous IT environment. This is rarely the seamless
process portrayed by the hardware manufacturers. Moreover, the DBMS
software itself also can add complexity, with new releases and features being
delivered at breakneck speed.

It is hard to find a company of any size that does not operate
in a heterogeneous environment.

Complexity stems from human factors as well. Downsizing has forced
former IT specialists to become generalists. As a result, tasks such as
database reorganization—something that used to be simple and
straightforward for expert DBAs—are now complex and lengthy for
generalists. Of course, IT is not immune to corporate downsizing; there are
now fewer personnel to handle day-to-day computer issues than there were
just a few years ago. Finally, mergers and acquisitions force IT staffs to
consolidate incompatible systems and data structures.

Cost of Downtime
The cost of downtime varies from company to company. Contingency
Planning and Research (a division of Edge Rock Alliance Ltd.) estimates it at
approximately $6.5 million per hour at retail brokerage houses. Consult Table
8.1 for additional examples of the estimated hourly cost of downtime by
industry. Of course, these numbers are approximations and estimates—each
organization needs to determine the actual cost of downtime based on its
customers, systems, and business operations.

Table 8.1. Cost of Downtime

Some businesses can handle downtime better than others. For brokerages,
downtime is a catastrophe. For other businesses that can “get by” using
manual systems during an outage, downtime is not as much of a disaster. The
truth is, outages impact every business, and any nontrivial amount of
downtime will impose a cost on the organization. When estimating the cost of

downtime, remember to factor in all of the costs, including

Outages impact every business.

• Lost business during the outage
• Cost of catching up after systems are once again available
• Legal costs of any lawsuits
• Impact of reduced stock value (especially for dot-coms that rely on

computerized systems for all of their business)
Additionally, downtime can negatively impact a company’s image. In this

day and age an outage of any length that impacts business, particularly e-
business, will be reported by the press—and if the story is big enough, not
just the computer press but the business press as well. Let’s face it, bad news
travels fast. Recovering from negative publicity can be a difficult, if not
impossible, task.

Sometimes companies are unwilling to spend money on software and
services to improve availability because they do not have an understanding of
the true cost of downtime for their business. One line of thought goes
something like this: “I know our systems may go down, but the chance of it
impacting us is really small, so why should we incur any costs to prevent
outages?” Such thinking, however, can be changed when all of the cost and
risk factors of downtime are known and understood.

Failure to prepare an estimate of the cost of downtime will make it more
difficult to cost-justify the measures a DBA needs to take to ensure data
availability.

How Much Availability Is Enough?
Availability is traditionally discussed in terms of the percentage of total time
that a service needs to be up. For example, a system with 99 percent
availability is up and running 99 percent of the time and down, or
unavailable, 1 percent of the time. Another term used to define availability is
MTBF, or mean time between failure. More accurately, MTBF is a better
descriptor of reliability than availability. However, reliability has a definite
impact on availability. In general, the more reliable the system, the more
available it will be.

In this Internet age, the push is on to provide never-ending

uptime.

So, just how much availability is enough? In this Internet age, the push is
on to provide never-ending uptime, 365 days a year, 24 hours a day. At 60
minutes an hour, that mean 525,600 minutes of uptime a year. Clearly, to
achieve 100 percent availability is a laudable goal, but just as clearly an
unreasonable one. The term five nines is often used to describe highly
available systems. Meaning 99.999 percent uptime, five nines describes what
is essentially 100 percent availability, but with the understanding that some
downtime is unavoidable (see Table 8.2).

Table 8.2. Availability versus Downtime

Even though 100 percent availability is not reasonable, some systems are
achieving availability approaching five nines. DBAs can take measures to
design databases and build systems that are created to achieve high
availability. However, just because high availability can be built into a
system does not mean that every system should be built with a high-
availability design. That is so because a highly available system can cost
many times more than a traditional system designed with unavailability built
into it. The DBA needs to negotiate with the end users and clearly explain the
costs associated with a highly available system.

Whenever high availability is a goal for a new system, database, or
application, careful analysis is required to determine how much downtime

users can really tolerate, and what the impact of an outage would be. High
availability is an alluring requirement, and end users will typically request as
much as they think they can get. As a DBA, your job is to investigate the
reality of the requirement.

High availability is an alluring requirement, but your job is to
investigate the reality of the requirement.

The amount of availability that should be built into the database
environment will be based on cost. How much availability can the application
owner afford? That is the ultimate question. Although it may be possible to
achieve high availability, it may not be cost-effective, given the nature of the
application and the budget available to support it. The DBA needs to be
proactive in working with the application owner to make sure the application
owner fully understands the cost aspect of availability.

Availability Problems
Since the focus of this book is on database administration, it would be fair to
assume that DBAs must manage the availability of the databases under their
control. Although this is true, it is an incomplete definition of the DBA’s
duties with regard to availability. To further understand why this is so, let’s
first examine all of the potential causes of data unavailability.

Loss of the Data Center
Quite obviously, data will not be available if the data center is lost due to a
natural disaster or some other type of catastrophe. Whether the disaster is
small from a business perspective and impacts only the computing resources
of the business or whether it is large and impacts an entire building or the
entire organization, losing the computer means losing the database and any
data it contains.

To restore availability in a disaster situation usually requires recreating the
database environment (and perhaps much more) at a remote location.
Preparing for such a scenario is covered in detail in Chapter 17, “Disaster
Planning.”

From an availability perspective, losing the data center is the worst type of
availability problem the DBA could ever encounter. Even after the data and
databases have been restored at the remote location, serious availability

issues will linger. For example, probably all of the data will not be up-to-
date, which may require the DBA and the users to recreate data before
allowing general access to the databases. Additionally, ensuring that users
have the proper connections to the new location may increase the outage, and
problems with an unfamiliar setup can cause subsequent outages. Planning
for disasters and developing a good disaster plan will minimize such
problems.

Losing the data center is the worst type of availability problem
a DBA could encounter.

Network Problems
If a database server is on a single network switch and that switch incurs an
outage, the database will be unavailable. Consider implementing redundant
network switches to prevent such outages.

Loss of network access also can cause a database outage. Such problems
are usually caused by malfunctioning hardware, such as the network card in
the database server. It is wise to have spare networking hardware available
for immediate replacement in case such a problem occurs.

However, not all network problems are hardware problems. Installing a
new version of the networking software or specifying inaccurate network
addresses can cause database outages. The DBA is not a networking expert
and cannot be expected to resolve all types of network problems; however,
the DBA should be able to recognize when a problem is caused by the
network rather than the DBMS, the application, or some other piece of
hardware or software used by database applications.

DBAs should build good working relationships with the networking
specialists in their organization. When networking problems occur, the DBA
can consult with the network specialists right away and ideally learn
something from the experience of working with them.

Loss of the Server Hardware
At a basic level, the database server hardware consists of the CPU, the
memory, and the disk subsystems holding the databases. Let’s examine how
the loss of any or all of these components impacts database availability.

Obviously, if the CPU is damaged or becomes unavailable for any reason,

the database also will not be available. This is true even if the CPU is the
only piece of the database server that is lost. Even if system memory and the
disk subsystem remain intact, the database will be inaccessible because the
CPU drives all computer processes. However, the database files should
remain usable and could possibly be connected to another CPU to bring the
database back online.

To avoid outages due to CPU failure, consider using hardware cluster
failover techniques. When using cluster failover, the loss of a single server
causes the system to process on another node of the cluster. The data need not
be moved, and failover is automatic.

Another approach is to use a standby system: A copy of the database logs
produced on the primary server is shipped to the secondary server, or data
from the primary server is replicated to the secondary server. An alternate
approach is to keep a second server configured identically to the primary one
so that the drives can be pulled out of the primary server and simply inserted
into the secondary server.

Any such rapid failover approach will depend on the type of hardware you
are using, the ability of the hardware to participate in certain failover
techniques, and the cost associated with the technique. Refer to the sidebar
“Oracle Standby Database Options” for one approach to database failover.1

If system memory fails, the database may or may not be available. If all
system memory fails, any database on the system will be unavailable because
memory is required for a relational database system to operate. To resolve
this situation you will need to replace the failing RAM chips or modules.
However, the database may remain available when only some of the system
memory fails, although it is likely that performance will suffer. Once again,
replacing the faulty memory components should resolve the problem.

If the entire database server is lost or damaged, the failure will be more
difficult to address. Loss of an entire server implies that the CPU, memory,
and disk subsystem are unavailable. Once again, in such a situation the
databases on the server also will be unavailable. If the entire server platform
fails, the database will need to be recreated. It is not safe to assume that the
data on the disks can be accessed or would be valid even if it could be
accessed. The entire database system, including the configuration,
connections, and data, would need to be rebuilt. Data would be as accurate
and up-to-date as the last database log that is available for the system.

Database files would need to be recovered from backup copies and the
changes on the database log reapplied. For more information on database
backup and recovery, refer to Chapter 16.

Oracle Standby Database Options
Oracle supports the ability to create standby databases. A standby database
is a copy of a functioning database that is kept ready for use in case the
original database incurs an outage. Typically, the original database is
referred to as the primary, or source, database, and the standby database is
referred to as the secondary, or target, database.

It works like this: The transactions applied to the primary database are
applied to the standby database using the redo logs of the primary
database. When Oracle archives the redo logs, the archived logs are sent
to the standby database server and applied. Therefore, the standby
database will always be a little less current than the primary database.

If the primary database suffers an outage, the DBA can switch to the
standby database. This is done by taking the standby database out of
recovery mode, applying all archived redo logs, and then, if possible,
applying the transactions from the current redo log. The standby
database is then switched to become the primary database. When the
original primary database is repaired, it becomes the new standby
database.

Oracle also supports standby instances and standby tables when
different degrees of availability are required. Of course, there are more
implementation details and specifics that an Oracle DBA needs to
understand before implementing standby databases. Such
implementation-specific details are beyond the scope of this book and
the reader is directed to the Oracle product documentation for details.

Keep in mind, though, that the implementation of a standby database
does not eliminate the need to make backup copies of either the primary
or secondary databases. Nevertheless, standby Oracle databases can help
to increase the level of availability in the event of unplanned outages.

Losing an entire database server is rare if precautions are taken, but it is
insufficient simply to purchase a reliable server and forget about downtime.

Hardware goes bad regardless of built-in ruggedness and availability features.
Power spikes, power outages, and human error are the most likely causes of
such server failure. The DBA should always ensure that redundant power
supplies and uninterruptible power supply (UPS) systems protect the database
server against sudden power loss—and that proper precautions are taken such
that any type of outage incurred due to server hardware failure is minimized.

Losing an entire database server is rare if precautions are
taken.

Disk-Related Outages
Because databases rely on physical disk structures to actually store the data,
database availability is particularly vulnerable to disk failures. Of course, the
degree of database unavailability depends on the type of disk system and the
type of outage the disk system has suffered. Disk drives fail for numerous
reasons: The physical drive mechanism may fail, the controller could fail, or
perhaps a connecting wire has loosened.

Database availability is particularly vulnerable to disk failures.

One of the simplest database implementations is to store the database files
on a local disk subsystem attached directly to the database server. Obviously,
if the local disk subsystem fails, the database becomes unavailable. Recovery
from such a failure typically requires the server to be reconfigured with a new
disk subsystem to which the database is restored. Another recovery method is
to bring up an entirely new database server and restore the database there.
Neither of these options is required if the failing disk subsystem can be fixed.

To restore the database, the DBA can recover the data using backup copies
of the database files and logs. RAID disk systems can help to minimize
outages as well because multiple disk drives must fail before an outage
occurs. Chapter 18, “Data Storage and Management,” provides further details
on RAID storage.

Another scenario is a database stored on a storage area network (SAN). A
SAN is a grouping of networked disk devices. If the SAN fails, the database
will likely become unavailable. SAN failure can occur if multiple disk drives
within the network fail, the SAN connections fail, or a power loss occurs.

A failover system, such as a standby database, can help to minimize the

outages associated with disk-related failures. With a standby database, the
only data likely to be lost because of a disk failure is from uncommitted
transactions at the time of the failure.

Operating System Failure
Not all database availability problems are caused by hardware problems.
Software also can be the culprit. For example, data will not be available
during an operating system (OS) failure or outage, even if all of the server
hardware is operational. Typical causes of operating system outages include
general OS instability due to inherent bugs, problems encountered when
upgrading an OS version, or problems with patches applied to the operating
system.

Data will not be available during an OS failure or outage, even
if all of the server hardware is operational.

When an OS failure occurs, the only viable options for restoring data
availability are to fix the OS problem or to restore the database on another
server with a functional operating system. Once again, a failover system can
be used to minimize downtime caused by a software failure.

DBMS Software Failure
Similar to the failure of an operating system, a failure in the DBMS software
will cause unavailability. If the DBMS is not operational, the data in its
databases cannot be accessed. DBMS failure occurs for similar reasons that
an OS fails: general DBMS instability due to inherent bugs, problems
encountered when upgrading to a new version of the DBMS, or problems
when patches are applied to the DBMS software. The DBMS may also fail
when resources it needs to operate are not available—such as start-up
parameters, certain system files, and memory structures. For example, if the
database log file is corrupted or missing, the DBMS will not allow data to be
modified.

If the DBMS is not operational, the data in its databases
cannot be accessed.

In short, the DBMS will fail when its software has bugs or it cannot gain
control of the resources it needs to operate correctly.

Application Problems
Application software also can cause availability problems. If the application
is the only way that end users can access data, a data unavailability problem
arises when the application fails. An application software failure is unlikely
to cause a database outage, but an operational database means little if the
users can’t use their usual programs to access the data. The DBA and other
sophisticated users will be able to access data in the database using
alternative methods such as interactive SQL or query tools.

Software bugs and glitches or the loss of program execution modules or
libraries can cause application outages. Thorough program testing and quality
assurance procedures can minimize the occurrence of application outages.

Security and Authorization Problems
Security-related problems are another cause of database unavailability. This
type of problem is caused by improper use or administration of the database.
Before data can be accessed, either directly by an end user or by means of a
program, authorization must be granted—typically by the DBA or security
administrator. If, for any reason, the requesting agent does not have current
authorization to access the database, the data will be unavailable to the
requester. Security-related problems usually occur immediately after an
application goes into production or when a new user attempts to use the
system but has yet to receive permission. DBA error can also cause security-
related problems: If the DBA accidentally overwrites or removes valid
authorizations from the DBMS, valid users will not be able to access data.

Make sure that proper security and authorization procedures
are followed at your site.

To avoid security-related problems, make sure that proper security and
authorization procedures are followed at your site, and use extra caution
when changing database security. More information on this topic is provided
in Chapter 14, “Database Security.”

Corruption of Data
Corrupt data can cause unavailability. Even if the hardware and system
software are intact, a database can become unavailable because its contents
are inaccurate. Business decisions based on faulty or corrupt data can

negatively impact the business. Corrupt data comes from many sources:
application program bugs, DBMS software bugs, bad database design, or user
error. Old data also can be faulty if newer data was subjected to more
rigorous quality and edit checking.

Corrupt data can cause unavailability.

If a sufficient amount of the data becomes corrupt, the DBA will need to
take the database offline. Most DBMS systems provide commands to do this.
If the database is not taken offline, not only will bad business decisions be
made but the data may become more corrupt and processes that use the data
may corrupt other, related data. The sooner the DBA takes action to make the
data unavailable, the less damage that will ensue. Needless to say, taking a
database offline equals lost business.

When data is corrupted, the DBA must work with the application
specialists to identify exactly which data is inaccurate and to develop a plan
to correct the data. Furthermore, the team must identify the cause of the
corruption and take action to correct it. This very time-consuming task
requires a significant amount of effort.

After identifying the corrupt data elements, the DBA and application
specialists may be able to restore access to the unaffected portion of the
database while the bad data is cleansed. However, the database should not be
brought back online for update processes until the process that was corrupting
the data has been identified and corrected.

A different type of availability problem can be caused when data
transmissions fail. If users rely on the data in the database to be accurate and
up-to-date, a failed data feed can render the database useless, even if there is
accurate data in the database, because it will be impossible to determine
which data is up-to-date and which is not. Such a failure is similar to data
corruption in that the data exists but is not usable. Correcting such problems,
though, is usually many times easier than correcting invalid data. At any rate,
the DBA must work with the network technicians and SAs to identify and
correct data transmission failures. Once the feed is available, the DBA needs
to load the new data into the database quickly to resolve the availability
problem.

Loss of Database Objects

Inadvertently dropping a database object is yet another cause of
unavailability. When a tablespace or table is dropped, the data is no longer
accessible. The DBA will have to run scripts to recreate the objects
(including any related objects that were dropped), reapply any referential
constraints, rebuild authorizations, and then reload the data, which may
physically still reside on the disk device. Some DBMS products and add-on
tools facilitate easy recovery of that data. If such techniques are not available,
the data will need to be recovered from backup files and archive logs.

Inadvertently dropping a database object is another cause of
unavailability.

If an index is dropped, the data will be accessible but performance will
usually suffer. If performance is bad enough, the user may experience the
equivalent of an unavailable database. For example, consider a process that
returns a single row from a multimillion-row table. If an index is used, access
is rapid because the index is read using a few I/O operations and then a direct
pointer to the table data is used to perform a single I/O (usually) to read the
data. Without the index, the DBMS will have to scan all the multimillion
rows to return the single requested row—and that can take hours, if not days,
depending on the DBMS, hardware, and system environment.

Dropping a view will cause availability problems for those users and
processes that rely on the view for access to the database. Dropping a view
does not delete any data from the database; it simply removes the view
definition from the system. However, if a user accesses the database only by
means of the view, removing the view results in database unavailability for
that user. To rectify the situation, the DBA will need to recreate the view,
reapply the view authorizations, and possibly rebind application packages or
plans (depending on the DBMS and how that DBMS is being used).

Dropping database objects mistakenly usually is the result of simple
human error on the part of a DBA. However, it may also result when
inappropriate or unskilled individuals are granted DBA-like authority on the
database. You can minimize inadvertent dropping of database objects by
creating and ensuring appropriate database security and providing in-depth
training for DBAs. Third-party tools are available that automate the
restoration of dropped database objects.

Loss of Data

It is possible for data to be unavailable because it no longer exists, which can
occur if data is deleted or overwritten erroneously. Accidental mass deletes,
application program bugs, or even malicious attacks can all cause data loss.

Accidental mass deletes, application program bugs, or even
malicious attacks can all cause data loss.

When data is deleted in error, the DBA may need to recover the database
to a point in time before the data was deleted. This can be accomplished
using the RECOVER or RESTORE function of the DBMS in use. The DBA
reviews the transaction logs to determine when the error occurred and then
restores the data to the point in time just before the error. Analyzing and
interpreting the contents of a database transaction log can be a difficult
proposition, but there are third-party tools on the market that simplify the
task.

If you are using a standby database, there is a slight possibility that you can
avoid an outage when data is lost. If there is a sufficient delay in the process
that ships the log to the secondary database, the error may not yet have been
introduced to the standby database. In that case, you can switch the
processing to the secondary database and correct the primary offline.

Data Replication and Propagation Failures
Many databases participate in replication and propagation processes to
synchronize data that resides in separate databases. If a replication or
propagation task fails, the data will still be accessible, but it may not be as
current as the users expect it to be.

There are really two scenarios for replication and propagation failure: one
for databases that participate as a subscriber and another for databases that
participate as a publisher. Subscribers receive replicated or propagated data
from publishers. It is possible that data in the subscriber database will not be
up-to-date because the publisher fails to replicate or propagate changes. Such
problems can occur for many reasons, including connectivity problems,
software failures, or scheduling errors. At any rate, availability problems will
result if the data is not up-to-date in the subscriber database.

A second type of problem can occur with the publishing database. If the
publishing task fails, the publisher will be up-to-date, but once the replication
or propagation is fixed and the service is reinitiated, performance may suffer

as the publisher attempts to catch up by sending large amounts of data to the
subscriber. This, too, can cause availability problems if the performance
degradation is severe enough. Regardless of the scenario, the DBA needs to
develop procedures to detect replication and propagation outages and
methods to rapidly restore the replication or propagation process.

Severe Performance Problems
A severe performance problem can cause unavailability. Even if the database
is technically available—with accurate data and running on operational
hardware—poor performance can make the database unusable. Any number
of problems can cause poor performance, including damaged indexes,
improperly defined indexes, data growth, additional users, out-of-data
database statistics, and locking problems. The end users do not care what the
reason is—they just want their applications to work. Therefore, even though a
performance problem is not technically the same as an availability problem,
the DBA must treat it as such if the problem is severe enough to cripple the
end users’ ability to access data.

Poor performance can make the database unusable.

For more information on monitoring, tuning, and managing database
performance refer to Chapters 9 through 12.

Recovery Issues
Your organization’s database backup and recovery strategy will have an
impact on the availability of your database systems. There are multiple
techniques and methods for backing up and recovering databases. Some
techniques, while more costly, can enhance availability by recovering data
more rapidly.

It is imperative that the DBA team create an appropriate recovery strategy
for each database object. For data with high availability requirements, the
backup and recovery strategy should provide the shortest mean time to
recover. When it is imperative that the database environment be recovered as
quickly as possible after a database crash, using the most effective backup
and recovery techniques is critical. Factors that impact recoverability and
reinstating availability include operating system configuration, hardware
architecture design, database features, backup frequency, and recovery
procedures and practices.

Many modern disk arrays offer instant copy and recovery of data using
dynamic mirroring and other inventive techniques. By using storage
hardware technology, a DBA can significantly reduce the impact of database
backup recovery. Be sure to investigate the storage solutions available to you
and to use their built-in functionality for improving data availability.

Additionally, be sure to investigate the high availability and recovery
features of your DBMS when building applications that require extreme
availability. For example, refer to the sidebars on DB2 HADR and SQL
Server 2012: AlwaysOn.

Refer to Chapter 16 for in-depth coverage of database backup and recovery
practices, as well as procedures for improving database availability.

DBA Mistakes
One of the biggest causes of database downtime is human error. In fact, one
major DBMS vendor states that 70 percent of the calls it receives for database
outages are the result of DBA mistakes. While there is nothing you can do to
guarantee that mistakes will not be made, proper DBA training and tools can
minimize mistakes.

One of the biggest causes of database downtime is human
error.

DB2 HADR
DB2 high-availability disaster recovery (HADR) is a data replication
feature that provides a high-availability solution for both partial and
complete site failures. It is a feature of DB2 on Linux, UNIX, and
Windows platforms that was ported to DB2 from Informix.

HADR protects against data loss by replicating data changes from a
source database, called the primary, to a target database, called the
standby. Without HADR, the DBMS server has to be rebooted when a
failure occurs. The time required to restart the database and the machine
where it resides can be highly unpredictable, ranging from a few
minutes to much longer. With HADR, a standby database can take over
in seconds. Clients can be redirected to the standby database using
automatic client reroute or retry logic in the application.

HADR allows the standby database to take over as the primary

database with full DB2 functionality. It is also possible for the original
primary database to be brought back up and returned to its status of
primary database.

SQL Server 2012: AlwaysOn
SQL Server 2012 delivers improved availability through AlwaysOn SQL
Server Failover Cluster Instances and AlwaysOn Availability Groups.
These AlwaysOn features deliver improved database uptime and data
protection.

AlwaysOn SQL Server Failover Cluster Instances enables multisubnet
failover clusters, which are configurations where each failover cluster
node is connected to a different subnet or different set of subnets. There
is no shared data storage, so data needs to be replicated between the
multiple subnets. This helps to improve disaster recovery as well.
Flexible failover policy provides for moving group ownership to another
node in the case of a failure.

AlwaysOn additionally provides for the creation of Availability
Groups, which are containers that define a set of databases to failover as
a single unit, as well as a set of availability replicas to host copies of
each availability database. AlwaysOn Availability Groups can be
deployed to improve database availability through the creation of
multiple secondary replicas, choosing between asynchronous-commit
and synchronous-commit mode, and deployment of various failover
modes, among other benefits.

Be sure that all DBAs have received proper training before giving them
responsibility for critical-production database systems. Training should
consist of both course material (either instructor-led or computer-based
training) and on-the-job experience. A DBA’s first administration experience
should always be with a test system—never with production data.

Additionally, third-party tools can greatly diminish the effort required to
keep databases up and running. Database performance monitors can be used
to immediately notify DBAs of outages. Simple problems such as “out of
space” conditions can be eliminated by proactive performance tools because
they can be set up to warn about a potential problem before the problem

occurs. The DBA can take corrective action when notified, and a potentially
devastating problem that would cause an outage can be averted.

Some database performance tools provide proactive triggers that can be set
up to automatically correct problems as they occur. Other DBA tools, such as
recovery managers and advanced reorganization tools, can be used to fix
problems rapidly when they are encountered. More information on the vast
array of available DBA tools can be found in Chapter 23.

Outages: Planned and Unplanned
When discussing outages and downtime, many technicians immediately think
of unplanned outages. Human error, software bugs and glitches, and
hardware failures cause unplanned outages. However, most downtime
actually is caused by planned outages (see Figure 8.1). Planned outages are
caused by regularly scheduled system and database maintenance tasks that
require the database to be offline—for example, database reorganization or
changes.

Figure 8.1. Planned and unplanned outages

Most downtime actually is caused by planned outages.

Planned outages represent as much as 70 percent of downtime; unplanned
outages represent the other 30 percent. Furthermore, studies show that as
much as 50 percent of unplanned downtime is due to problems encountered
during planned downtime. Therefore, if the majority of outages are caused by
planned actions, it makes sense that DBAs should concentrate more effort on
developing techniques to avoid outages during planned database changes and
maintenance activities. It’s a given that DBAs need to prepare for the
inevitability of downtime due to unplanned outages. However, because
planned outages are actually a greater risk to availability, the DBA can have a
more beneficial impact by developing techniques to reduce them.

Ensuring Availability
Now that we have established that life is challenging for today’s DBAs, we
will shift our focus to some techniques that help promote higher availability.
Faced with shrinking budgets and resources, and an ever-increasing volume
of data to manage, IT organizations need to evaluate their critical needs and
implement a series of key strategic steps to ensure availability. Good strategy
should include steps to

• Perform routine maintenance while systems remain operational
• Automate DBA functions
• Exploit the features of the DBMS that promote availability
• Exploit hardware technologies

Perform Routine Maintenance While Systems Remain Operational
To address the need for performance optimization while trying to get the
most out of smaller IT staffs and budgets, products that simplify and
automate maintenance functions are key. DBAs need tools that reduce
maintenance time from hours to minutes or no time at all, while allowing
users continued access to the data they need to do their jobs. Some DBMS
products provide built-in features to perform some maintenance tasks while
the database is available. If the DBMS does not provide native support, tools
are available from ISVs that provide additional database availability. The key
is to use the functionality of nondisruptive database utilities.

Use the functionality of nondisruptive database utilities.

A nondisruptive utility is a task that provides both update and read access
to a database during execution of database maintenance—and does so
without a loss of data integrity. Considerations for deployment of
nondisruptive utilities are the number and types of resources needed to
perform nondisruptive operations. In general, native database utilities use
considerably more CPU and I/O resources than ISV utility solutions, but the
ISV utilities can be costly. The types of nondisruptive utilities that are needed
most include

• Database reorganization, to maintain performance
• Database backup, to ensure data is available for recovery in the event of

application or hardware failure, in addition to disaster recovery
preparedness

• Database recovery solutions that can apply recovered data without
requiring an outage

• Unloading and loading processes for moving data between source data
and operational data stores for decision support systems and data
warehouses

• Statistics-gathering utilities that can analyze data characteristics and
record statistics for use by the database optimizer

• Integrity-checking utilities for both referential integrity and structural
data integrity

One example is online database reorganization. Typically, an online
REORG is performed by making a duplicate copy of the data and
reorganizing the duplicate. Read and write access continues on the original
data. When the reorganization of the shadow copy is complete, the REORG
process uses the database log to capture the data modifications performed on
the original data and applies them to the duplicate. This catching-up process
is iterative and may need to be performed multiple times. When the shadow
copy has caught up to the original copy, the data sets are switched: The copy
becomes the original and the original can be deleted. In this manner, DBAs
can reorganize databases with minimal impact on availability. Database
reorganization is covered in more depth in Chapter 11, “Database
Performance.”

But remember, most database maintenance tasks impact availability.
Making backups of data, recovering data, checking data for integrity

violations, capturing database statistics, and loading new data into a database
all can adversely impact availability. Tools that work in conjunction with
modern storage devices to minimize or eliminate downtime also are quite
useful to maintain databases while they remain online and operational. Some
storage devices can make rapid snapshots of files. When database
maintenance tasks can take advantage of this technique, outages can be
reduced from minutes or hours to seconds.

Most database maintenance tasks impact availability.

Making changes to databases can be a major threat to availability. The
impact on availability depends on the type of change and how the DBMS
implements that change. When simple changes can be made using an ALTER
statement, availability, though impacted, is less of a problem because this
type of change can be made quickly. Changes to data objects have a greater
impact on availability. The DBMS will often need to make the data
unavailable while the structural definition of the database object is being
changed.

As the type of change becomes more complex, the impact on availability
becomes greater. DBMS vendors are adapting their products to make them
more capable of nondisruptive database change, such as IBM’s Database
Definition on Demand initiative (see the sidebar). Certain changes require
objects to be dropped and data to be deleted. Obviously, such a change causes
an outage. The longer it takes to make the change, the greater the outage
becomes. Using high-speed LOAD and UNLOAD utilities can shrink the
duration of the outage. Automating the change, discussed next, can further
diminish unavailability. Additional details of implementing database changes
can be found in Chapter 7.

IBM DB2: Database Definition on Demand
IBM embarked on a path of online schema evolution as of DB2 V8 with
the intention of allowing DB2 databases to be altered without causing an
outage. With each subsequent release of DB2 additional changes can be
made without incurring an outage.

For example, some of the improved change management capabilities
introduced over the past few releases of DB2 include improved ability to
extend the length of columns, change the data type of columns, add

columns to indexes, and change partitioning characteristics, and
improved utility support.

Over time, the Database Definition on Demand initiative will make it
much easier to change DB2 databases without causing any downtime.

Automate DBA Functions
Building more automation into DBA procedures can increase overall
database and application availability. When properly created, an automated
task will fail less frequently than a manual task. Humans make mistakes.
Computers do not make mistakes (unless a human programs them
improperly). So, the more complex the task, the more it can benefit from
automation.

Implementing database changes is a complex task. It stands to reason,
therefore, that the automation of changes can improve availability. When an
automated DBA tool that understands the DBMS and how to make changes
to the database objects is used, the potential for human error is reduced.
Furthermore, the time it takes for a DBA to manually generate CHANGE
scripts is many times greater than the time it takes a change management tool
to generate CHANGE scripts. In addition, the tool is unlikely to make errors.
So, with automated database changes, less time is required to analyze the
requested changes, develop the scripts to make the changes, and run the
scripts to actually change the database. Overall, an automated change process
is a boon to availability.

Automation of changes can improve availability.

Another task that benefits from automation is database backup and
recovery. To ensure that a company can retrieve its data as quickly as
possible after an outage or disaster, preplanning is necessary. Taking a
proactive approach to backup and recovery management can mean the
difference between a minimal outage with no data loss and a situation from
which a business can never recover. Most database systems and applications
provide little in the way of automated backup and recovery, nor do they
provide functions that enable proactive recovery planning. DBAs need
products that allow for frequent backups that exert minimal impact on the
online system. An additional requirement of backup and recovery software is
extremely fast recovery of data in a sequence directly related to the criticality

of the business application the data supports. Once it becomes obvious that a
recovery is needed to resolve an outage, the DBA needs to ensure the proper
recovery of each database object by using the backups and database logs at
his disposal. This requires knowledge of the DBMS, the application, and the
environment. Add-on products are available that can assist in automating
recovery in a crisis situation by analyzing the situation and building the
appropriate recovery scripts that will bring the system back in the shortest
period of time. For an in-depth discussion of database backup and recovery,
consult Chapters 16 and 17.

Exploit High-Availability Features
If the DBMS is engineered to work with clustering and parallel technology,
be sure to design databases that work well with that technology. More and
more DBMS vendors are aligning their software with the capabilities of
modern hardware and operating systems.

Most DBMS vendors have made additional availability features a priority
due to the burgeoning need for Internet and Web support in database
management systems and applications. Each new DBMS release brings
additional availability options and features that can be exploited to enhance
uptime and availability. Two obvious examples involve utilities and database
system parameters. Running utilities and changing system parameters were
tasks that traditionally required an outage. In many cases, running utilities
required the database object that was being maintained to be taken offline.
Similarly, the entire DBMS had to be taken down to change a system
parameter. However, DBMS vendors are attacking these foes of availability.
Many newer DBMS versions provide techniques to change system
parameters without bringing down the DBMS (for example, the SET
SYSPARM command in DB2 for z/OS). DBAs should reexamine old tasks
that required database unavailability to see if those tasks can be redesigned to
be performed without taking databases or the DBMS offline.

Exploit Clustering Technology

Clustering2 is an option for increasing the reliability of servers. A cluster,
quite simply, is a group of interconnected servers. The actual implementation
of a server cluster can range from computers that share storage to groups of
servers that can redistribute their workload from one to another with the help
of special software.

Companies generally turn to clustering to improve availability and
scalability. Clusters improve availability by providing alternate options in
case a system fails. Clustering involves multiple, independent computing
systems working together as one. So, if one of the independent systems fails,
the cluster software can distribute work from the failing system to the
remaining systems in the cluster. Users won’t know the difference—they
interact with a cluster as though it were a single server—and the resources
they rely on will still be available.

Most companies consider enhanced availability to be the primary benefit
of clustering. In some cases, clustering can help companies achieve “five-
nines” (99.999 percent) availability. A big advantage of clustering is the
ability to increase computing power by adding another server, or node, to the
cluster. When throughput increases due to expanding business or publicity,
systems can be kept online and available by adding more servers.

Systems can be kept online and available by adding more
servers.

Clustering offers scalability benefits, too. When load exceeds the
capabilities of the systems that make up the cluster, you can incrementally
add more resources to the system to increase the cluster’s computing power
and meet processing requirements. As traffic or availability assurance
increases, all or some parts of the cluster can be increased in size or number.

Another advantage is reliability. Some clusters are implemented with
failover software that can reallocate the workload of one server to another
when a server fails. This added reliability minimizes downtime and enhances
availability. Each node in the cluster remains in contact with the others.
When a node falls out of contact, the cluster recognizes the failure and
initiates the failover process.

Clusters can be configured to failover in different ways. For example,
when a node fails, failover can direct that processing to another node in a
different location. Some configurations have an extra node in the cluster that
is usually idle. When failover occurs, the idle node takes over and the cluster
capacity isn’t compromised. Furthermore, failover can spread the work over
the other existing nodes based on capacity and throughput.

Load Balancing versus High Availability

IT professionals commonly mistake high-availability technology (such as
Windows Clustering, replicated SANs, etc.) as “load balancing”
technologies. Load balancing is a methodology to distribute workload
across multiple computers (or a cluster, network links, disk drives, or other
resources) to optimize resource utilization, maximize throughput, minimize
response time, and avoid overload. Load balancing is usually achieved by
means of dedicated software and hardware.

High availability is not about balancing. There are many ways to
make databases more available, mostly determined by how much you
are willing to spend. There are not many ways to make a database
application load balanced on the database side of the infrastructure.

Clustering can enhance availability because failing nodes can be removed
from the cluster without an outage. When the node becomes operational, it
can rejoin the cluster. This may or may not require an outage, depending on
the clustering implementation.

Given all these advantages, why wouldn’t every IT organization choose a
clustering configuration? Of course, the primary reason is cost. A cluster
requires multiple machines—and one machine is always cheaper than
multiple machines, at least initially. Another consideration is that applications
may need to be modified to enable failover, depending on the cluster
implementation.

Most operating systems support some degree of clustering. Windows
servers can failover if one goes down. A cluster of IBM mainframes can
completely share system resources and appear for all intents and purposes as
one system. Furthermore, from a database perspective, the DBMS software
needs to be programmed to understand and take advantage of the clustering
support in the operating systems. Some DBMS products do this better than
others.

Additionally, clustering is useful for masking the impact of routine
maintenance. When a server node needs to be taken offline for maintenance,
its work can be shifted to another server. For example, if memory needs to be
added to the motherboard of a server, that server must be shut down. If it
participates in a cluster, its workload can be routed to other nodes in the
cluster while the maintenance is being performed, resulting in an outage-less
maintenance task.

Clustering is useful for masking the impact of routine
maintenance.

Types of Clustering

Shared-disk and shared-nothing architectures are the predominant approaches
to clustering. The names are fairly accurate descriptions of each type. Chapter
2 contains an overview of these types of clustering.

Essentially, shared-nothing and shared-disk offer two differing techniques
for clustering. Shared-nothing is the predominant clustering architecture used
by most computing and database implementations. Scalability and
performance are hallmarks of shared-nothing clustering and make it ideal for
analytical and data warehousing applications. Shared-disk clustering requires
a controlling facility to manage access to the shared data. Shared-disk
clustering is ideal for handling data warehousing workloads because their
read-only nature does not require locking and therefore will not stress a
shared-disk system in the same way that OLTP workloads can.
A Few Database Examples

An Oracle standby database is a simple example of one type of cluster. The
primary database is mirrored to the standby database, which can step in and
take over in the event of a failure. The redundancy can be expensive but is
cost-effective for businesses that cannot afford long outages.

Another clustering-related, high-availability feature of Oracle is its Real
Application Clusters (RAC) support. RAC provides for the transparent
deployment of a single database across pools of servers, providing fault
tolerance from hardware failures or planned outages. Oracle RAC provides a
single image installation and management. Database administrators have a
single point of control to install and manage an Oracle RAC cluster using
provided graphical user interface (GUI) or command-line tools.

Oracle RAC eliminates an individual server as a single point of failure. If a
node in a server pool fails, the Oracle Database continues to run on the
remaining servers in the pool. Individual servers can be shut down for
maintenance while application users continue to work.

Another example of a clustered system is IBM’s Sysplex multiprocessor
line, which splits tasks among parallel processors. Individually, the
processors are less powerful than traditional bipolar predecessors, but

combined, they crunch data faster by assigning work to open processors
rather than requiring users to wait for cycles on a single processor. DB2 for
z/OS can be set up to take advantage of this type of parallel processing. The
sidebar “Data Sharing and DB2 for z/OS” offers more details.

Keep in mind that standard database maintenance software may not run
very efficiently on clustered and parallel systems. To reduce costs and
improve availability, the tools used by DBAs must be capable of
understanding and exploiting the clustering and parallel technologies being
used. Otherwise, products that run slowly and inefficiently because they were
built for a different hardware environment will negate the benefits of the
parallel technology. For example, to reorganize databases and handle backup
and recovery functions for parallel processing environments, DBAs need
maintenance utilities written specifically to take advantage of parallel
processors.

Data Sharing and DB2 for z/OS
DB2 Data Sharing allows applications running on multiple DB2
subsystems to concurrently read and write to the same data sets. Simply
stated, Data Sharing enables multiple DB2 subsystems to behave as one.

The primary benefit of Data Sharing is to provide increased
availability to data. With Data Sharing, data is available for direct access
across multiple DB2 subsystems. Furthermore, applications can be run
on multiple smaller, more competitively priced microprocessor-based
machines, thereby enhancing data availability and the price/performance
ratio.

An additional benefit is expanded capacity. Capacity is increased
because more processors are available to execute the DB2 application
programs. Instead of a single DB2 subsystem on a single logical
partition, multiple central processor complexes (CPCs) can be used to
execute a program (or even a single query).

DB2 Data Sharing requires an IBM Parallel Sysplex. An IBM Sysplex
is a set of z/OS (mainframe) images3 that are connected and coupled by
sharing one or more Sysplex timers. A Parallel Sysplex is a basic
Sysplex that additionally shares a coupling facility. The coupling facility
provides external shared memory and a set of hardware protocols that
allow enabled applications and subsystems to share data with integrity

by using external shared memory. A Parallel Sysplex enhances
scalability by extending the ability to increase the number of processors
within a single z/OS image with the ability to have multiple z/OS
images capable of cooperatively processing a shared workload.

For DB2 on non-mainframe platforms, the DB2 pureScale
architecture is similar to DB2 for z/OS Data Sharing. IBM created the
pureScale architecture based on mainframe Data Sharing concepts and
integrated that together with the most current distributed technologies to
deliver availability and scalability services to distributed platforms.

Database Architecture and NoSQL
For certain data-intensive applications—such as indexing a large number of
documents, serving pages on high-traffic Web sites, and delivering streaming
media—traditional relational database systems may not be the best choice for
delivering high availability and performance. NoSQL database systems are
designed to work well in such circumstances and are often associated with
“Big Data” applications.

Although the NoSQL movement is gaining popularity, there isn’t exactly
much rigor in terms of defining exactly what a NoSQL database system is, or
what it must be able to do. At a high level, NoSQL implies nonrelational,
distributed, flexible, and scalable. Many NoSQL database products are also
open source. Common attributes of a NoSQL database system include the
lack of a schema, simplicity of use, replication support, and an “eventually
consistent” capability (instead of the typical ACID transaction capability).

NoSQL databases have been deployed in the real world at Digg (a 3TB
implementation for green badges) and at Facebook (a 50TB implementation
for in-box search). Twitter also uses NoSQL, having moved from its initial
MySQL foundation to the Java-based NoSQL Cassandra DBMS.

Summary
Organizations have to find a balance between the seemingly incompatible
needs for 24/7 uptime and periodic maintenance. A poorly maintained
database is a business inhibitor and will be nearly impossible to restore in the
event of a crisis. There are alternatives to the native database utilities that can
deliver maintenance and backup functionality while providing continuous

availability of the database and associated applications. In many instances,
critical applications directly affect revenue. Thus, the DBA must implement a
maintenance and backup strategy that provides optimum availability.

Additionally, the DBA must remain alert to all of the potential problems
that can cause a lack of availability. These causes run the gamut from
hardware problems to software bugs to human error. Obviously, each type of
database unavailability has different effects on the organization, the users,
and the DBA. Although each involves an outage from the end user
perspective, some are easier for the DBA to cope with than others. At any
rate, the DBA must be prepared to resolve any type of availability problem
that impacts a database user’s ability to access and modify data. This is a
complex and challenging task because its scope is truly enterprise-wide—just
about every component of the IT infrastructure can impact database
availability.

Remain alert to all of the potential problems that can cause a
lack of availability.

However, if the DBA has the right skills and training, prudent DBA
practices and 24/7 availability need not be mutually exclusive. It just takes
the right tools, a little planning, and a lot of diligence.

Review
1. Define what is meant by the term availability.
2. Compare and contrast performance problems with availability

problems.
3. Describe three types of technology that can help to alleviate availability

problems.
4. Hardware and software failures are the only causes of data

unavailability: true or false?
5. What impact does corrupt and invalid data have on availability?
6. What factors contribute to the cost of downtime?
7. What is the typical cause of an unplanned outage?
8. What percentage of downtime is caused by planned outages?
9. What are nondisruptive database utilities, and why are they important

for maintaining database availability?
10. What are the four (high-level) steps that can be taken to improve

database availability?

Suggested Reading
Bertucci, Paul. Microsoft SQL Server High Availability. Indianapolis, IN:

SAMS (2005). ISBN 0-672-32625-6.
Devraj, Venkat S. Oracle 24x7: Real-World Approaches to Ensuring

Database Availability. Berkeley, CA: Osborne/McGraw-Hill (2000).
ISBN 0-07-211999-3.

Eaton, Chris. High Availability Guide for DB2. Upper Saddle River, NJ:
Prentice Hall (2004). ISBN 978-0-7686-8220-5.

Jesse, Scott, et al. Oracle Database 11g Release 2 High Availability:
Maximize Your Availability with Grid Infrastructure, RAC and Data
Guard. Berkeley, CA: McGraw-Hill (2011). ISBN 978-0-07-175208-4.

O’Reilly Media. Big Data Now. Sebastopol, CA: O’Reilly (2011). ISBN
978-1-449-31518-4.

Otey, Michael. Microsoft SQL Server 2008 High Availability with Clustering
& Database Mirroring. Berkeley, CA: McGraw-Hill (2010). ISBN 978-0-
07-149813-5.

Piedad, Floyd, and Michael Hawkins. High Availability: Design, Techniques
and Processes. Upper Saddle River, NJ: Prentice Hall (2001). ISBN 0-13-
096288-0.

9. Performance Management

When non-DBAs think about what it is that a DBA does, performance
monitoring and tuning are quite frequently the first tasks that come to mind.
This should not be surprising. Almost anyone who has come in contact with a
computer has experienced some type of performance problem. Moreover,
relational database systems have a notorious reputation (mostly undeserved)
for poor performance.

This chapter, as well as the following three, will discuss performance
monitoring, tuning, and management within the context of database
administration. Chapter 9 defines performance, discusses the difference
between performance monitoring and performance management, looks at
managing service levels, and defines three specific subsets of database
performance management. Chapters 10 through 12 delve further into the
three subsets.

Defining Performance
Most organizations monitor and tune the performance of their IT
infrastructure. This infrastructure encompasses servers, networks,
applications, desktops, and databases. However, the performance
management steps taken are usually reactive. A user calls with a response-
time problem. A tablespace runs out of disk storage space in which to
expand. The batch window extends into the day. Someone submitted a “query
from hell” that just won’t stop running. Those of you in the trenches can
relate—you’ve been there, done that.

Performance management is usually reactive.

Handling performance problems is truly an enterprise-wide endeavor.
However, the task of enterprise performance management frequently
becomes the job of the DBA group. Anyone who has worked as a DBA for
any length of time knows that the DBMS is usually “guilty until proven
innocent.” Every performance problem gets blamed on the database
regardless of its true cause. DBAs need to be able to research and ascertain
the source of all performance degradation, if only to prove that it is not
caused by a database problem. Thus, DBAs must be able to understand at

least the basics of the entire IT infrastructure, but they also need to have
many friends who are experts in other related fields (such as networking,
operating systems, and communication protocols). Possessing a sound
understanding of the IT infrastructure enables DBAs to respond effectively
when performance problems arise. Event-driven tools exist on the market that
can make performance management easier by automatically invoking
predefined actions when specific alerts are triggered. For example, an alert
can be set to proactively reorganize a database when it reaches its storage
capacity or to allocate more memory when the DBMS is reaching its limit.
Moreover, other tools exist that can ease the burden of performance
management and analysis. However, many of the supposedly proactive steps
taken against completed applications in production are truly mostly reactive.
Let’s face it, DBAs are often too busy taking care of the day-to-day tactical
database administration tasks to proactively monitor and tune their systems to
the degree they wish they could.

Handling performance problems is truly an enterprise-wide
endeavor.

All of this discussion is useful, but it begs the question: Just what do we
mean by database performance? You need a firm definition of database
performance before you can plan for efficiency. Think, for a moment, of
database performance using the familiar concepts of supply and demand.
Users request information from the database. The DBMS supplies
information to those requesting it. The rate at which the DBMS supplies the
demand for information can be termed database performance. However, this
definition captures database performance only in a most simplistic form.

We need a more comprehensive definition of database performance. Five
factors influence database performance: workload, throughput, resources,
optimization, and contention.

The workload is a combination of online transactions, batch jobs, ad hoc
queries, data warehousing analysis, and system commands directed through
the system at any given time. Workload can fluctuate drastically from day to
day, hour to hour, and even minute to minute. Sometimes workload is
predictable (such as heavy month-end processing of payroll, or very light
access after 7:00 p.m., when most users have left for the day), whereas
workload is very unpredictable at other times. The overall workload has a

major impact on database performance.
Throughput defines the overall capability of the computer to process data.

It is a composite of I/O speed, CPU speed, parallel capabilities of the
machine, and the efficiency of the operating system and system software. The
hardware and software tools at the disposal of the system are known as the
resources of the system. Examples of resources include the database kernel,
disk storage devices, random access memory chips, cache controllers, and
microcode.

The fourth defining element of database performance is optimization. All
types of systems can be optimized, but relational databases are unique in that
query optimization is primarily accomplished internal to the DBMS.
However, many other factors need to be optimized (such as SQL formulation
and database parameters) to enable the database optimizer to create the most
efficient access paths.

When the demand (workload) for a particular resource is high, contention
can result. Contention is the condition where two or more components of the
workload are attempting to use a single resource in a conflicting way (e.g.,
dual updates to the same piece of data). As contention increases, throughput
decreases.

Therefore, database performance can be defined as the optimization of
resource use to increase throughput and minimize contention, enabling the
largest possible workload to be processed. Of course, I do not advocate
managing database performance in a vacuum. Applications regularly
communicate with other subsystems and components of the IT infrastructure.
Each of these must also be factored into the overall performance planning of
your organization. However, it is wise to place limits on the DBA’s actual
responsibility for performance tuning outside the scope of this definition. If
the task is not included in the definition above, it probably requires expertise
outside the scope of database administration. Therefore, performance
management tasks not covered by this description should be handled by
someone other than the DBA—or at least shared among the DBA and other
technicians.

Database performance is the optimization of resource use to
increase throughput and minimize contention, enabling the
largest possible workload to be processed.

A Basic Database Performance Road Map
Planning for database performance management is a crucial component of
any application implementation. Therefore, the DBA needs to forge a basic
plan to ensure that database performance management and analysis is
accomplished for all database applications across the organization. A
complete performance management plan will include tools to help monitor
application performance and tune the database and SQL.

Following the 80/20 rule (see the sidebar), the first step should be to
identify the most troublesome areas. However, this is not always as easy as it
might seem.

The most likely culprit for most database application performance
problems is inefficient SQL and application code. In my experience, 75 to 80
percent of all database performance problems can be traced to poorly coded
SQL or application logic. This does not mean that the SQL in applications is
necessarily bad to begin with. Although an application may be 100 percent
tuned for rapid relational access when it first moves into the production
environment, it can suffer performance degradation over time. This
degradation can occur for many reasons, such as database growth, new data
access patterns, additional users, changes in the business, and so on.

The most likely culprit for most performance problems is
inefficient SQL and application code.

The 80/20 Rule
The 80/20 rule, also known as the Pareto Principle, is an old maxim
stating that 80 percent of the results come from 20 percent of the effort.
This rule is usually applicable to most efforts. Whether or not the
percentages are precisely 80 percent and 20 percent, the underlying logic
of the rule holds—namely, that a small amount of effort brings the most
rewards.

For example, the Pareto Principle as applied to database performance
tuning can be stated as 80 percent of the results of tuning come from 20
percent of the effort. Additionally, it can just as easily be applied to
mean that 20 percent of your database applications cause 80 percent of
your problems.

The bottom line is that, from the perspective of database performance
tuning, the wise DBA will concentrate on the most likely causes of
performance problems first, because he will receive a high return on his
tuning investment.

Of course, the SQL and application code can be just plain bad to begin
with, too. Any number of problems can cause poorly performing SQL,
including

• Table scans
• Lack of appropriate indexes
• Improper indexing choices
• Not using the available indexes
• Outdated database statistics
• Tables joined in a suboptimal order
• Application joins instead of (usually) more efficient SQL joins
• Improper join method (nested loop, merge scan, etc.)
• Efficient SQL inside of inefficient application code (loops)
• Inefficient subquery formulation (exists, not exists, etc.)
• Unnecessary sorting (distinct, group by, order by, union)

Finding the SQL statements that are the most expensive in a large shop is
an extremely difficult thing to do.1 Resource-hogging SQL statements might
be hiding in one of hundreds or even thousands of programs. Interactive users
who produce dynamic, ad hoc SQL statements might reside anywhere, and
any one person who is generating ad hoc queries can severely affect overall
production performance.

A good approach is to use an SQL monitor that identifies all SQL running
anywhere in your environment. Typically, these tools rank SQL statements
based on the amount of resources being consumed and track a statement back
to who issued it and from what program. Once you have identified the top
resource-consuming statements, you can concentrate your tuning efforts on
the most costly statements.

However, it is not always obvious how to tune poorly coded SQL
statements. The proper coding and tuning of SQL statements is a detailed

endeavor. In-depth strategies for SQL tuning and additional application
performance management details can be found in Chapter 12, “Application
Performance.”

The proper coding and tuning of SQL statements is a detailed
endeavor.

Of course, other factors can negatively impact database performance. It is
wise to periodically check the overall performance of the database instance
and the server operating system. Some quick items to check include the
following:

• Memory allocation (buffer/cache for data, SQL, authorization)
• Logging options (log cache, log size, Oracle rollback segments)
• I/O efficiency (separation of tables and indexes on disk, database size,

fragmented and extended files)
• Overall application and database workload on the server
• Database schema definitions

To assure optimum database performance, plan on combining a good
definition of database performance with a detailed performance plan specific
to your shop.

Monitoring versus Management
Unfortunately, the DBA usually attacks performance in a reactive manner. A
user calls with a response-time problem. A database runs out of space. The
batch window extends into the day. The problem has happened and now it
needs to be remedied. Such activity is purely reactive.

Even many of the supposedly proactive steps taken against completed
production applications might be considered reactive. A change to a
completed application that requires code to be rewritten cannot reasonably be
considered proactive. A proactive approach would have involved correcting
the problem before completing the application.

Some event-driven tools can be used to make performance tuning easier by
automatically taking predefined actions when prespecified alerts are
triggered. This is the first step toward performance management. Managing
performance differs from monitoring performance because it combines

monitoring with a detailed plan for resolving problems when they arise.
Performance management consists of three specific components that need

to be performed in conjunction with each other: monitoring, analysis, and
correction, as shown in Figure 9.1. Monitoring is the first component of
performance management. It consists of scanning the environment, reviewing
the output of instrumentation facilities, and generally watching the system as
it runs. Monitoring is the process of identifying problems.

Figure 9.1. The components of performance management

Performance management consists of three steps: monitoring,
analysis, and correction.

Analysis is the second component of performance management. A
monitoring task can generate hundreds or thousands of messages, or reams
and reams of paper reports. A monitor collects the pertinent information for
making performance tuning and optimization decisions, but it is essentially
dumb. A monitor cannot independently make decisions based on the
information it has collected. This requires analysis—and analysis typically is
performed by a skilled technician such as a DBA.

Optimization—the corrective action—is the third component of
performance management. Some performance tools allow the technician to
automate certain aspects of performance management by automatically
kicking off corrective actions when the monitoring agent identifies certain

conditions. However, most of these tools are limited in scope. Furthermore, a
skilled technician must set up the automation to make sure that the
appropriate optimization step is taken at the correct time. Eventually
performance management tools and solutions will become intelligent—with
built-in knowledge of how to optimize a DBMS and with the ability to learn
what works best from tuning exercises.

Performance management can be achieved only by using a proactive
performance plan. Many problems can be identified and solutions mapped
out in advance, before an emergency occurs. With a proper plan, correction
of performance problems becomes easier, and indeed, some performance
problems can be avoided altogether because a potential problem-causing
situation can be corrected before a problem occurs.

Performance management can be achieved only by using a
proactive performance plan.

For true proactive performance management to be achieved, the DBA must
plan the performance of an application before it is completed. This requires
the DBA to be involved in the application development life cycle and to
ensure that performance is designed into the application. Achieving such a
high degree of DBA involvement in the application development process can
be problematic. DBAs are pressed for time, and it seems as if there is always
time to do it over later instead of simply doing it right the first time.

Reactive versus Proactive
Reactive performance management will always be required because
unplanned performance problems will always occur. It is impossible to
foresee every type of performance problem; after all, systems and
applications change over time. Reactive performance management is not, in
itself, a bad thing, but it is a manual, time-consuming process. Proactive
performance management combines forethought, planning, and automation to
minimize reactive monitoring and tuning. In other words, proactive
performance management reduces the amount of time, effort, and human
error involved in implementing and maintaining efficient database systems.

Proactive performance management combines forethought,
planning, and automation to minimize reactive monitoring and
tuning.

Although proactive performance management has a greater payback than
reactive, many DBA organizations struggle to implement a plan for
proactively attacking performance problems. In most cases this is because the
DBAs are overburdened with reactive performance chores. Indeed, when the
boss is breathing down their neck, the phone keeps ringing with new
problems, and a queue of developers are lined up outside the DBA’s office, it
is unreasonable to expect the DBA to proactively seek out additional work.

But keep in mind that many of the problems that require reactive attention
could be avoided with a proper proactive performance management approach.

Preproduction Performance Estimation
Ideally, DBAs and developers should engineer high performance into their
applications during design and construction by implementing a methodology.
Such a methodology must address the ADLC by incorporating tactics to
achieve high performance into the creation of the database and application
code. A rigorous process focusing on verifiable results can build performance
into applications and databases, thereby eliminating costly redesign and
recoding efforts—at least with respect to most performance problems.

Problems identified earlier in the ADLC are easier to fix and cost less to
fix than problems identified later in the application’s life, as shown in Figure
9.2. Proactive performance management can reduce the cost of application
development because it occurs before the application becomes operational in
a production environment. Correcting problems after an application is
operational is the costliest method of performance management, because
users are relying on the operational application to perform their jobs.
Performance problems in a production application can increase the amount of
time it takes to perform mission-critical work, such as servicing customers.
Moreover, severe performance problems can cause outages, as discussed in
the preceding chapter.

Figure 9.2. Cost of performance problems across the application
development life cycle

Estimating the performance of applications differs from analyzing and
optimizing single database queries. Performance should be modeled for the
entire application, because individual queries may optimize at the expense of
other queries. A model will show the overall effect of all the queries and how
they affect each other’s performance. Such a model enables the DBA to
optimize overall performance.

Performance should be modeled for the entire application.

Creating an accurate performance model is an iterative process. Each
change must be reviewed and updated and its impact gauged for
effectiveness. DBAs, SAs, application developers, and capacity planners
must cooperate to share information and address any business requirement
issues that may affect the performance criteria.

Historical Trending
Capturing and analyzing resource usage trends and performance statistics
over time is another valuable performance task. Historical performance and

resource trending allows DBAs to predict the need for hardware upgrades
weeks, and perhaps months, in advance. Administrators can track key
performance statistics (such as buffer hit ratios, file I/O, and log switches)
and store that information in tracker tables in the database. This provides
valuable historical information that can be reported on and analyzed. DBAs
can track performance and resource consumption and predict when hardware
resources will be consumed by increasing usage. Furthermore, historical
trends can illuminate periods when database performance is slower than usual
due to increased user activity.2 For example, database applications tend to run
slower the first three days of the month due to month-end processing
requirements. Maintaining key historical performance indicators can provide
a huge benefit to DBAs as they attempt to comprehend the performance
characteristics of their applications, databases, and systems.

Maintaining key historical performance indicators can provide
a huge benefit to DBAs.

Service-Level Management
Service-level management (SLM) is the “disciplined, proactive methodology
and procedures used to ensure that adequate levels of service are delivered to
all IT users in accordance with business priorities and at acceptable cost.”3 In
order to effectively manage service levels, a business must prioritize its
applications and identify the amount of time, effort, and capital that can be
expended to deliver service for those applications.

A service level is a measure of operational behavior. SLM ensures that
applications behave accordingly by applying resources to those applications
based on their importance to the organization. Depending on the needs of the
organization, SLM can focus on availability, performance, or both. In terms
of availability, the service level might be defined as “99.95 percent uptime
from 9:00 a.m. to 10:00 p.m. on weekdays.” Of course, a service level can be
more specific, stating that “average response time for transactions will be 2
seconds or less for workloads of 500 or fewer users.”

SLM ensures that resources are applied to applications based
on their importance to the organization.

For an SLA to be successful, all parties involved must agree on stated

objectives for availability and performance. The end users must be satisfied
with the performance of their applications, and the DBAs and technicians
must be content with their ability to manage the system to the objectives.
Compromise is essential to reach a useful SLA.

In practice, though, many organizations do not institutionalize SLM. When
new applications are delivered, there may be vague requirements and
promises of subsecond response time, but the prioritization and budgeting
required to assure such service levels are rarely tackled unless the IT function
is outsourced. Internal IT organizations are loath to sign SLAs because any
SLA worth pursuing will be difficult to achieve. Furthermore, once the
difficulties of negotiating an SLA are completed, the business could very
well turn around and outsource the SLA to a lower-cost provider than the
internal IT group.

But do not misunderstand. The failure of SLM within most businesses lies
with both IT organizations and business users. The business users frequently
desire better service but are not willing to make the effort to prioritize their
needs correctly or to pay additional cash to achieve better service.

Another potential problem with SLM is the context of the service being
discussed. Most IT professionals view service levels on an element-by-
element basis. In other words, the DBA views performance based on the
DBMS, the SA views performance based on the operating system or the
transaction processing system, and so on. SLM properly views service for an
entire application. However, it can be difficult to assign responsibility within
the typical IT structure. IT usually operates as a group of silos that do not
work together very well. Frequently, the application teams operate
independently from the DBAs, who operate independently from the SAs, as
shown in Figure 9.3. When an application team has staffed an application
DBA function, that team may not communicate effectively with the corporate
DBA silo. These fractured silos make cooperation toward a common
application service level difficult.

Figure 9.3. IT silos in a fractured environment

To achieve end-to-end SLM, these silos need to be broken down. The
various departments within the IT infrastructure need to communicate
effectively and cooperate with one another. Failing this, end-to-end SLM will
be difficult, if not impossible, to implement.

SLM is a beneficial practice: A robust SLM discipline makes performance
management predictable. SLM manages the expectations of all involved.
Without an SLA, how will the DBA and the end users know whether an
application is performing adequately? Not every application can, or needs to,
deliver subsecond response time. Without an SLA, business users and DBAs
may have different expectations, resulting in unsatisfied business executives
and frustrated DBAs—not a good situation.

A robust SLM discipline makes performance management
predictable.

With SLM in place, DBAs can adjust resources by applying them to the
most-mission-critical applications as defined in the SLA. Costs will be
controlled and capital will be expended on the portions of the business that
are most important to the business. Without SLM in place, an acceptable

performance environment will be ever elusive. Think about it; without an
SLA in place, if the end user calls up and complains to the DBA about poor
performance, there is no way to measure the veracity of the claim or to gauge
the possibility of improvement within the allotted budget.

Types of Performance Tuning
A database application requires constant interaction between disparate
computing resources in order to operate efficiently and according to
specifications. Realistically, though, the tuning of a database application can
be broken down into three components: system tuning, database tuning, and
application tuning. Indeed, all these areas are related, and certain aspects of
tuning require an integrated approach. However, for clarity, we’ll discuss
these areas separately.

System Tuning
System tuning occurs at the highest level and has the greatest impact on the
overall health of database applications because every application depends on
the system. For the purposes of this discussion, we will define the system as
comprising the DBMS itself and all of the related components on which it
relies. No amount of tuning is going to help a database or application when
the server it is running on is short on resources or improperly installed.

The DBMS can and must be tuned to assure optimum performance. The
way in which the DBMS software is installed, its memory, disk, CPU, other
resources, and any configuration options can impact database application
performance.

The DBMS can and must be tuned to assure optimum
performance.

The other systems software with which the DBMS interacts includes the
operating system, networking software, message queuing systems,
middleware, and transaction processors. System tuning comprises
installation, configuration, and integration issues, as well as ensuring
connectivity of the software to the DBMS and database applications.

Database Tuning
Performance can be impacted by the physical design of the database,

including normalization, disk storage, number of tables, index design, and
use of DDL and its associated parameters. The physical location of database
files on disk systems will have an impact on the performance of applications
accessing the data. As more data is stored on the same disk device, the
possibility of performance degradation increases.

The physical location of database files on disk systems
impacts the performance of applications accessing the data.

However, design is not the only component of database performance. The
organization of the database will change over time. As data is inserted,
updated, and deleted from the database, the efficiency of the database will
degrade. Moreover, the files that hold the data may need to expand as more
data is added. Perhaps additional files, or file extents, will need to be
allocated. Both disorganization and file growth can degrade performance.

Indexes also need to be monitored, analyzed, and tuned to optimize data
access and to ensure that they are not having a negative impact on data
modification.

Application Tuning
The application itself must be designed appropriately and monitored for
efficiency. Most experts agree that as much as 75 percent of performance
problems are caused by improperly coded applications. SQL is the primary
culprit; coding efficient SQL statements can be complicated. Developers need
to be taught how to properly formulate, monitor, and tune SQL statements.

However, not all application problems are due to improperly coded SQL.
The host language application code in which the SQL has been embedded
may be causing the problem. For example, Java, COBOL, C++, Ruby, or
Visual Basic code may be inefficient, causing database application
performance to suffer.

Not all application problems are due to improperly coded
SQL.

Managing the performance for each of these three areas—the system, the
database, and the application—will be discussed in depth in Chapters 10, 11,
and 12.

Performance Tuning Tools
Database tools are helpful to effectively manage database performance. Some
DBMS vendors provide embedded options and bundled tools to address
database performance management. However, these tools are frequently
insufficient for large-scale or heavily used database applications. Fortunately,
many third-party tools will effectively manage the performance of mission-
critical database applications. Tools that enable DBAs to tune databases fall
into two major categories: performance management and performance
optimization.

Many third-party tools can effectively manage the
performance of mission-critical database applications.

Many different types of performance management tools are available:
• Performance monitors enable DBAs and performance analysts to gauge

the performance of applications that access databases in one of three
ways: real time, near real time (intervals), or based on historical trends.
The more advanced performance monitors are agent based.

• Performance estimation tools provide predictive performance
estimation for entire programs and SQL statements based on access
paths, operating environment, and a rules or inference engine.

• Capacity planning tools enable DBAs to analyze the current
environment and database design and perform “what-if” scenarios on
both.

• SQL analysis and tuning tools provide graphical and/or textual
descriptions of query access paths as determined by the relational
optimizer. These tools can execute against single SQL statements or
entire programs.

• Advisory tools augment SQL analysis and tuning tools by providing a
knowledge base of tips on how to reformulate SQL for optimal
performance. Advanced tools may automatically change the SQL (on
request) based on the coding tips in the knowledge base.

• System analysis and tuning tools enable the DBA to view and change
database and system parameters using a graphical interface (e.g., cache
and/or buffer pool tuning, log sizing).

In the performance optimization category, several tools can be used to tune
databases:

• Reorganization tools automate the process of rebuilding optimally
organized databases. Databases can cause performance problems due to
their internal organization (e.g., fragmentation, row ordering, storage
allocation).

• Caching tools work to buffer frequently used data in memory, which
can be accessed faster than secondary disk storage. These tools can
augment the performance of the DBMS cache or, more commonly,
integrate with the disk storage subsystem.

• Compression tools enable DBAs to minimize the amount of disk
storage used by databases, thereby reducing overall disk utilization and,
possibly, elapsed query/program execution time, because fewer I/Os
may be required. (Caution: Compression tools can also increase CPU
consumption due to the overhead of their compress/decompress
algorithms.)

• Sorting tools can be used to sort data prior to loading databases to
ensure that rows will be in a predetermined sequence. Additionally,
sorting tools can be used in place of ORDER BY or GROUP BY SQL.
Retrieving rows from a relational database is sometimes more efficient
using SQL and ORDER BY rather than SQL alone followed by a stand-
alone sort of the SQL results set.

The DBA will often need to use these tools in conjunction with one
another—integrated and accessible from a central management console. This
enables the DBA to perform core performance-oriented and database
administration tasks from a single platform.

The DBA will often need to use these tools in conjunction
with one another.

Many DBMS vendors provide solutions to manage their databases only;
for example, Oracle provides Oracle Enterprise Manager, IBM offers Data
Studio for DB2, and Microsoft provides SQL Server Management Studio for
this purpose. Third-party vendors provide more robust options that act across
heterogeneous environments such as multiple different database servers or
operating systems. One example is Embarcadero Technologies’ DBArtisan.

In general, it is wise to use the DBMS vendor solution as your only
management tool if your shop has just a single DBMS. Organizations with
multiple DBMS engines running across multiple operating systems should
investigate the third-party tool vendors with heterogeneous support (perhaps
in addition to the single-solution tools).

Chapter 23, “DBA Tools,” provides additional information on tools that
simplify database administration and performance management tasks.

DBMS Performance Basics
We have defined database performance and discussed it from a high level.
Before we delve into the specifics of system, database, and application
performance, let’s examine some rules of thumb for achieving your DBMS-
related performance goals:

• Do not overtune. Most DBAs are more than happy to roll up their
sleeves and get their hands dirty with the minute technical details of the
DBMS. Sometimes this is required. However, as a DBA, you should
always keep in mind the business objectives of the databases and
applications you manage. It is wise to manage performance based on
the expectations and budget of the business users. Even though it might
be an interesting intellectual challenge for you to fine-tune a query to its
best performance, doing so may take too much time away from your
other duties. It is best to stop tuning when performance reaches a
predefined service level for which the business users are willing to pay.

• Remain focused. As a DBA, you should understand the goal for each
task you perform and remain focused on it. This is important because
the DBMS is complex, and when you are tuning one area you might
find problems in another. If so, it is best to document what you found
for later and continue with the tuning task at hand. Furthermore, by
jumping around trying to tune multiple things at once, you will have no
idea of each task’s impact on the environment.

• Do not panic. DBAs are expected to know everything about the DBMS
they manage. However, this is an unreasonable expectation. “I don’t
know, but I’ll find out” is one of the most important sentences in your
communications arsenal. A good DBA knows where to look for
answers and whom to call for help.

• Communicate clearly. Communication is key to assuring properly

tuned, high-performance database systems. The DBA must be at the
center of that communication, coordinating discussions and workload
among the business users, programmers, managers, and SAs.
Furthermore, the world of IT in general, and database technology in
particular, sometimes uses a language all its own. Many similar and
confusing terms are thrown about, and folks are expected to understand
what they mean. Be sure to clearly define even basic terms so that
you’re all speaking the same language.

• Accept reality. Many organizations talk about being proactive but in
reality have very little interest in stopping performance problems before
they happen. Yet, every organization is interested in fixing performance
problems after the problems occur. This can be a frustrating
environment for the DBA, who would rather set up preventive
maintenance for the DBMS environment. Alas, this requires budget,
time, and effort—all of which are in short supply for strapped IT
organizations. As a DBA, you must sometimes be content to accept
reality and deal with problems as they occur—even when you know
there are better ways of tackling performance management.

Summary
Applications that access relational databases are only as good as the
performance they achieve. The wise organization will implement a
comprehensive performance monitoring, tuning, and management
environment consisting of policies, procedures, and integrated performance
management tools and utilities.

Applications that access relational databases are only as good
as the performance they achieve.

Review
1. Define database performance.
2. During which phase of the application development life cycle is it most

costly to make a change?
3. What are the three factors that need to be addressed in database

application tuning?
4. What does the 80/20 rule mean and how should it be applied to

database application performance tuning?
5. Name and describe the three steps of database performance

management.
6. Discuss the problems involved in implementing service-level

management for database applications.
7. What two categories of database tools can be used to help deliver

database performance management?
8. What percentage of performance problems do most experts attribute to

improperly coded database applications?
9. What is the condition in which two or more components of the

workload are attempting to use a single resource in a conflicting way?
10. Compare and contrast reactive and proactive database performance

management.

Bonus Question
Why is it a good idea to capture and store historical performance statistics?
What types of questions can historical statistics help a DBA to answer?

Suggested Reading
Dunham, Jeff. Database Performance Tuning Handbook. New York, NY:

McGraw-Hill (1998). ISBN 0-07-018244-2.
Gunther, Neil J. The Practical Performance Analyst. Lincoln, NE: Authors

Choice Press (2000). ISBN 0-595-12674-X.
Harrison, Guy. Oracle Performance Survival Guide: A Systematic Approach

to Database Optimization. Upper Saddle River, NJ: Prentice Hall (2009).
ISBN 978-0-13-701195-7.

Koch, Richard. The 80/20 Principle. New York, NY: Currency/Doubleday
(1998). ISBN 0-385-49170-0.

Lawson, Christopher. The Art and Science of Oracle Performance Tuning.
Birmingham, UK: Curlingstone (2003). ISBN 1-904347-01-0.

Loosley, Chris, and Frank Douglas. High-Performance Client/Server. New
York, NY: John Wiley & Sons (1998). ISBN 0-471-16269-8.

Mittra, Sitansu S. Database Performance Tuning and Optimization. New
York, NY: Springer-Verlag (2003). ISBN 0-387-95393-0.

Mullins, Craig S. “Dissecting Database Performance.” In Database Trends
& Applications (October 2001). http://craigsmullins.com/dbta_002.htm.

Niemic, Richard. Oracle Database 11g Release 2 Performance Tuning Tips
& Techniques. New York, NY: Oracle Press (2012). ISBN 978-0-07-
178027-8.

Shasha, Dennis A. Database Tuning: A Principled Approach. Englewood
Cliffs, NJ: Prentice Hall (1992). ISBN 0-13-205246-6.

Sturm, Rick, Wayne Morris, and Mary Jander. Foundations of Service Level
Management. Indianapolis, IN: SAMS Publishing (2000). ISBN 0-672-
31743-5.

http://craigsmullins.com/dbta_002.htm

10. System Performance

A poorly performing system can degrade the performance of all databases
and applications deployed on that system. No amount of database,
application, or SQL tuning can improve performance when a poorly
implemented system is causing performance problems. Applications access
databases and both are implemented on an overall system environment, as
shown in Figure 10.1. Therefore, a system problem can cause all databases
and applications to perform poorly, just as a database problem can cause all
applications that access that database to perform poorly.

Figure 10.1. The tuning boxes

A system problem can cause all databases and applications to
perform poorly.

The system comprises the hardware and software required for the DBMS
to operate and for applications to access databases using the DBMS. It is
imperative that the DBA understand the system and operating environment
where the database applications will be run. The DBA must be able to
facilitate changes to any component of the system to tune the database
environment. Of course, the DBA cannot be expected to be an expert in every
aspect of the system, and therefore the DBA will need to work with other
teams within the organization to initiate system changes.

The following sections provide introductory coverage of system-related
performance and tuning tactics. They do not provide in-depth treatment of the
subjects because that is not the primary focus of the book. However, we will

discuss system configuration issues, memory usage, database log
configuration, the system catalog, and locking issues.

The Larger Environment
A DBMS operates within the context of a much larger environment that
consists of other software and hardware components. Each of these
components must be installed, configured, and managed effectively for the
DBMS to function as required. The DBA needs to understand how the
DBMS interacts with the server hardware, the operating system, and any
other required software. Tuning and configuring these components and
connections properly can have a dramatic impact on system performance.

A DBMS operates within the context of a larger environment.

Interaction with the Operating System
When the operating system experiences a performance problem, all of the
software that runs on that operating system may experience performance
problems. To help ensure an optimal operating system for database
applications, the DBA should ask the following questions:

• Has a sufficient amount of memory been allocated for operating system
tasks?

• Most operating systems have the capability of allocating a specific
amount of disk space as a swap area. The swap area is used when the
OS runs out of memory. Has a sufficient amount of disk space been
allocated to the swap area?

• How were the database files allocated when the database was
implemented? Interaction with the file system can cause some operating
systems to create additional overhead. Changing the database files to
use raw disk can eliminate OS and file system overhead. (Additional
information on raw disk usage can be found in Chapter 18, “Data and
Storage Management.”)

• Some operating systems allow the administrator to set the priority of
tasks that run under the auspices of the OS. Has each database-related
task been assigned a priority? Is the priority appropriate for that specific
task?

• Is the operating system at the version and release level recommended

by the DBMS vendor? Have any bug fixes been shipped for the OS that
are applicable for the particular brand of database server you are
running?

• Have the operating system configuration parameters been modified
when installing the DBMS? If so, has sufficient testing been done to
ensure that the parameters were modified correctly and do not impact
any other processes that run on the database server?

Allied Agents
As discussed in previous chapters, the DBMS has to ally itself with many
other software components to deliver service to the end user. Examples of
allied agent software include

The DBMS has to ally itself with many other software
components to deliver service to the end user.

• Transaction processors such as CICS and Tuxedo
• Application servers such as WebSphere or WebLogic
• Integration and ETL software such as SQL Server Integration Services

(SSIS)
• Networking software such as TCP/IP and SNA
• Message queuing software such as MQSeries and MSMQ
• Web connectivity and development software such as ColdFusion and

Rails
• IDEs and ORMs such as Visual Studio, Hibernate, Spring, and

OpenAccess
• Programming languages such as Java, COBOL, and C

Each of these allied agents needs to be configured properly to interact with
the DBMS, and it is the DBA’s responsibility to understand the setup
requirements. In larger shops the DBA might not perform the actual
configuration—leaving it, instead, to more skilled professionals who
specialize in administering and managing the software. However, in smaller
shops DBAs may have to configure all of the software themselves.

Hardware Configuration
The DBMS runs on computer hardware. That hardware may be a large-scale

mainframe, an intermediate UNIX system, or a PC running Windows.
Regardless of its scale, the hardware must be installed and set up properly for
the DBMS to operate efficiently.

The hardware must be installed and set up properly for the
DBMS to operate efficiently.

Again, here are some questions the DBA should ask to assure an optimal
hardware environment for the database applications:

• Are the computer hardware and capacity appropriate for the DBMS
environment? In other words, does the DBMS vendor recommend this
particular hardware implementation?

• Is the computer firmware (e.g., ROM BIOS) up-to-date?
• Has a sufficient amount of memory been installed for all of the system

software to be installed (OS, DBMS, and other allied agents)?
• Has an appropriate amount of disk storage space been allocated and

configured for use by the DBMS?
• What type of disk storage is being used, and is it appropriate for large

data volumes and high-speed database queries?
• Are all the network cables connected and functioning properly?
• Are all physical connections (e.g., cables, plugs, and board sockets)

fully connected and operational?
• Is the hardware connected to an uninterruptible power supply?
• Is the hardware connected to a surge protection device?

Disk Storage and I/O

One of the biggest bottlenecks for database performance is the physical cost
of performing I/O operations. Data resides on a disk, and a disk is a
mechanical device. It requires machine parts that move in order to read
encoded data from a spinning platter. This physical movement takes time,
and anything that can be done to reduce I/O time can enhance performance.

A consideration for optimizing disk access is to use solid-state devices
(SSDs). A solid-state device is actually computer memory that is configured
to work like a disk drive. When data is read from a solid-state device, there is
no physical component to the I/O operation—the data resides in memory and
is transferred from memory to the DBMS and then to the requester.

A consideration for optimizing disk access is to use solid-state
devices.

Consider placing database objects with high performance requirements on
SSDs instead of physical disk drives, RAID devices, or storage area
networks.

However, implementing SSDs has some potential problems. The first is
cost. Solid-state devices will cost considerably more to acquire than
traditional disk devices. The second potential problem is persistence. Some
solid-state devices require a constant supply of power to prevent the data
from being erased. In such cases, be sure that solid backup and recovery
plans are implemented for database objects. Additionally, the longevity of
flash-based solid-state devices is not up to par with traditional disk devices.
For data that is modified frequently, keep in mind that flash-based SSDs can
begin to degrade between 1 million and 5 millions writes. Be that as it may,
software controllers can mitigate this issue, enabling flash SSDs to be viable
for multiple decades before failure. Note that DRAM SSDs do not have this
problem.

Consult Table 10.1 for a summary of the characteristics of solid-state
versus traditional disk-based storage.

Table 10.1. Solid State versus Traditional Disk

Components of the DBMS
A DBMS is a very complex system requiring hundreds of thousands of lines
of computer code. A DBMS is so complex that multiple programs are
required to deliver the requisite data management functionality; each program
interoperates with other programs to provide a database management system.

Each DBMS vendor breaks down DBMS functionality into different
components. The DBA must study the makeup of the DBMS and gain an
understanding of each component piece and how it integrates with the other
components of the DBMS. For a high-level overview of the architecture of

the Oracle DBMS, refer to the sidebar “The Architecture of Oracle.”
The DBA must become an expert on the inner workings of the DBMS in

order to ensure an optimized environment for database applications. A failure
or problem in any single component of the DBMS can cause severe
performance degradation for every application accessing the database.

The Architecture of Oracle
To effectively administer an Oracle environment, the DBA must
understand the basic “architectural” blueprint of Oracle. Oracle is
composed of five basic components that operate in an integrated manner to
provide support for the client tasks: file structures, memory structures,
processes, rollback segments, and redo logs.

An Oracle instance is the combination of all of the memory structures
and background processes that are allocated when an Oracle database is
started. Oracle users frequently confuse an Oracle instance with an
Oracle database. An Oracle database has both physical structures (data
files) and logical structures (table, index). The physical structure of an
Oracle database is determined by the files created at the operating
system level by the Oracle instance during database creation (e.g.,
controlfile, logfile) or by the DBA during normal operation (e.g.,
CREATE tablespace, CREATE controlfile). An Oracle database
comprises three physical file structures:

• Control files—small administrative files that are used by the Oracle
database.

• Redo log files—a record of changes made to data. The redo log files are
used in recovery circumstances to ensure that no data is lost should a
failure prevent changed data from being written to disk.

• Database files—files that contain the database information, including
both system and application data.

An Oracle parameter file contains all configuration parameters for an
Oracle instance. These parameters can be set to different values to tailor
the Oracle instance to the system’s operating configuration as well as to
the needs of the individual application(s) contained in the Oracle
database.

Oracle database files contain the data associated with a particular

database. All of the files discussed are not absolutely required for
normal database operations, but this configuration is highly
recommended for a well-designed, efficient environment. Oracle
database files can be grouped by the following categories:

• Control files record the physical structure of the Oracle database. The
control file is read during every database start-up.

• Data files associated with Oracle tablespaces include system data files,
application data files, default data files, temporary files, and rollback
files.

• Redo log files (the database transaction log) record changes made to
data.

• The config.ora file, associated with the Oracle client, specifies certain
defaults, file, and directory names for the Oracle client.

Additionally, Oracle uses specific memory structures to perform
DBMS-related tasks. These memory structures are contained in the main
memory (RAM) of the computer running the Oracle instance. The basic
memory structures for an Oracle instance are the system global area
(SGA), the program global area (PGA), and the sort area.

The SGA is a group of shared memory structures allocated by the
Oracle instance to contain data and control information. The SGA
contains the data cache, redo log buffer, and shared pool for SQL
statement parsing and processing.

The PGA is a work area for both user and background processes.
Each process has its own PGA. The contents of the PGA will vary,
depending on the type of process and Oracle configuration.

The Oracle sort area is a memory structure used to sort, order, and
group data whenever a user process requests a sort to be performed.

Finally, we come to the Oracle processes, where most of the data
management work is accomplished. Each process is composed of a
series of tasks. Oracle has two general types of processes: user processes
and Oracle processes. A user process is created to execute the program
code of an application program. An Oracle process is called by another
process to perform specific functions on behalf of the invoking process.
Oracle processes can be further broken down into server processes and
background processes. Server processes communicate with user

processes, acting as a “relay” between the user process and SGA
information. Background processes perform designated data
management and processing functions for the Oracle instance.

Let’s examine the functionality of each of the Oracle background
processes.

The process monitor (PMON) background process performs “cleanup
duties” when a user process fails with an error condition. PMON cleans
up the cache, releases locks, and performs other miscellaneous tasks.

The system monitor (SMON) background process provides instance
recovery during start-up. SMON also cleans up temporary segments that
are no longer in use, compresses free space into contiguous extents, and,
in a parallel server environment, provides instance recovery for a failed
CPU.

The database writer (DBWR) process writes data from the data cache
contained in memory out to the physical disk files.

The log writer (LGWR) manages the redo log buffer. If an Oracle
instance takes more checkpoints than the LGWR process can handle,
checkpoint duties may be turned over to the checkpoint (CKPT)
background process. The archiver (ARCH) process performs log
archival by copying online redo log files to auxiliary storage devices as
logs become filled up.

The recover (RECO) background process automatically resolves
failures involving distributed transactions.

Finally, Oracle deploys user and server processes. The user process
links the client application to the Oracle instance. The server process
parses and executes SQL statements and performs all tasks required to
send results back to the requesting application.

This overview of Oracle’s architecture is necessarily brief. It is
intended to communicate just how specialized the components of a
DBMS must be. An Oracle DBA will need to understand all of these
components, how they interact, and how they can be tuned to optimize
the performance of the Oracle system and applications.

DBMS Installation and Configuration Issues

Every database management system provides parameters that allow the DBA
to configure various aspects of the database environment. Configuration is
accomplished in a variety of ways, depending on the DBMS. Some popular
configuration methods include executing system procedures to set and reset
values, editing files with parameter settings, issuing commands at a DBMS
prompt, and assembling parameter specifications using an option within the
DBMS. Regardless of the manner of configuring the DBMS, the DBA will be
required to specify various parameters to the DBMS that affect the way the
DBMS operates.

Most DBMS software ships with default values supplied by the vendor.
However, default values are usually not sufficient to support the development
of robust production applications. This section will discuss some of the
common configuration parameters and how to tune them.

Default values are usually not sufficient to support the
development of robust production applications.

Types of Configuration
The DBMS can be configured when the DBMS is installed or after the
DBMS is operational. During installation, the DBA or SA installing the
DBMS will have the option to change the configuration parameters or to
allow the parameters to default. However, defaults are almost always wrong.
It is almost always better to set the parameters based on knowledge of the
data and applications that will be using the DBMS.

Once the DBMS is installed and operational, the DBMS will provide a
method of changing the configuration parameters. Depending on the DBMS,
parameters may be changed dynamically, nondynamically, or both.

Depending on the DBMS, parameters may be changed
dynamically, non-dynamically, or both.

Dynamic parameters can take effect without the need to restart the
database server. For example, executing the RECONFIGURE command in
Microsoft SQL Server causes dynamic parameters to immediately take effect.
After the appropriate commands are issued, the parameter value changes and
the DBMS will behave accordingly.

In order for nondynamic parameters to take effect, the DBMS must be shut

down and restarted. Of course, the parameter value must be changed—
usually in the same or a similar manner as a dynamic parameter. However, a
nondynamic parameter will not take effect until the DBMS is restarted.

Memory Usage
Relational databases love memory. The single biggest system performance
tuning task that a DBA will face is configuring RDBMS memory usage. The
DBMS uses random access memory to cache data and other resources
required by the DBMS. This is done because reading data from memory is
much less costly than reading the data from disk. So, as a rule of thumb, the
more memory you can provide to the DBMS, the better performance will be.
Of course, the DBMS has to be configured properly to use the memory
efficiently.

Relational databases love memory.

The American Heritage Dictionary defines cache as “a place for
concealing and safekeeping valuables.” This is a good starting point for
understanding what a cache means to a relational database. The “place” used
by the DBMS is memory (as opposed to disk). The “valuables” are data
pages, query plans, and other database resources. A typical DBMS will use a
cache to keep resources in memory longer. The longer a resource is cached in
a memory location, the better the chance for subsequent requests for the
resource to avoid incurring costly I/O operations, as shown in Figure 10.2.

Figure 10.2. The value of caching resources in memory

There are multiple caches or buffers used by DBMS products to reduce the
cost of I/O. Each DBMS uses different terminology but generally caches the
same resources.

A data cache is used to avoid I/O operations when actual data is being read
from the database. Accessing data in memory is substantially faster than
accessing data on disk. Therefore, all data access from a relational database
goes through a caching area (see Figure 10.3). Access to memory is typically
measured in microseconds, while access to disk I/O is usually measured in
milliseconds. When a program needs a row from a table, the DBMS retrieves
the page from disk and stores the page in the data cache. Basically, the
DBMS uses the cache as a staging area. If the row changes, the change is
written to the page in the data cache. Eventually, the DBMS will write the
page in the data cache back to disk. When data needed by an application is on
a page already in the data cache, the application will not have to wait for the
page to be retrieved from disk. Depending on the DBMS, this memory
structure also may be called a buffer pool.

Figure 10.3. Data cache (or buffer pool)

A data cache is used to avoid I/O operations when actual data

is being read from the database.

A procedure cache stores SQL and program-related structures. Before
SQL statements can be issued to retrieve or modify data, the statement must
first be optimized by the DBMS. The optimization process creates an internal
structure representing the access path that will be used by the DBMS to read
the data. The DBMS can store these access paths in the procedure cache and
reuse them each time the program or SQL statement is run. This optimizes
application performance because the optimization process need not be
performed every time the SQL is run. Instead, optimization occurs the first
time the SQL is issued, and subsequent executions retrieve the access path
from the procedure cache. Each DBMS provides similar functionality,
although with different names and differing features.

Another memory structure commonly deployed within a DBMS is a sort
cache. The sort cache is used instead of temporary disk storage to store
intermediate sort results in memory. The more sorting functionality that can
be performed in memory, the better a sort will perform. Many relational
database operations require sorts, for example, grouping, ordering, UNION
operations, and certain types of joins.

The sort cache is used instead of temporary disk storage to
store intermediate sort results in memory.

The DBMS may also use other internal structure caches. The
implementation of each DBMS is unique. To accomplish relational
operations, the DBMS may need to create internal structures that are not
necessarily visible to the end user. However, DBAs, and sometimes
programmers, will need to know about the internal structures. One example is
the internal DBD (database descriptor) structure used by DB2 to manage
databases. The DBD is never externalized to users, but every time an
application accesses any object within a database, DB2 must load the DBD
into a memory area known as the EDM pool. DB2 uses EDM pools to cache
dynamic SQL access paths and other internal structures, as well. DB2 DBAs
need to allocate sufficient memory and monitor the efficiency of the EDM
pools as processing requirements and usage patterns change.

The DBMS also may buffer log records to a separate database log cache.
Furthermore, the DBMS may implement two log caches, one for log writes

and one for log reads. The database log keeps a record of all changes made to
the database. The log write cache is used to speed up database modifications.
The changed data is written to the log cache, and over time the cache is
written asynchronously to disk. When log writes are buffered in this way, the
database log becomes less of a bottleneck to system and application
performance. The log read cache is used for ROLLBACK and RECOVER
operations. A rollback or a recovery needs to access the log to undo or
reapply database changes. As the log records are requested, they will be
buffered in memory in the log read cache.

The DBMS also may buffer log records to a separate database
log cache.

Additional Areas of Memory Consumption

In addition to the various caches and buffer pools used by relational database
systems, memory is required for other purposes. Generally, the DBMS
installation or configuration routines allow the DBA to allocate and tune the
memory consumption of the DBMS. Some of the more common areas of
DBMS memory consumption include

• User connections. Each concurrent user connection to the DBMS,
regardless of the type of client connection, requires memory for the
DBMS to maintain and manage the connection.

• Devices. The devices used by databases may require system memory to
maintain and use.

• Open databases. Most DBMSs provide a parameter to specify the
maximum number of databases that can be open at any one time. Each
open database requires DBMS memory.

• Open objects. Another parameter may exist to identify the maximum
number of database objects that can be open at any one time, including
tables, indexes, and any other database object in use. Each open
database object requires memory.

• Locks. Each concurrently held lock will require memory. The DBMS
should provide a configuration parameter for the number of concurrent
locks that can be held at one time.

• Caches. The various caches are discussed in the previous section.
How Much Memory Is Enough?

So, if relational databases love memory, just how much memory should be
allocated? This is a difficult (if not impossible) question to answer by using
generalities. The tempting answer is “Enough to get the job done,” but that
does not help the DBA who has to allocate the right amount of memory in the
right place.

Every DBMS uses memory, but in different amounts and for different
things. The best approach is to search your vendor’s DBMS manual to
determine how much memory is required for each resource. Then you can
estimate the usage requirements for each resource and calculate the
approximate amount of memory required by the DBMS.

Every DBMS uses memory, but in different amounts and for
different things.

For example, SQL Server requires about 75 bytes of memory per lock. To
configure the amount of memory required for locking, the DBA will need to
estimate the total number of concurrent transactions and the average number
of locks per transaction. After this has been done, the calculation for memory
required by the DBMS for locking is simple:
Concurrent locks = [# concurrent transactions] × [# locks per transaction] ×
75

The result of this calculation provides an estimate for the memory (in
bytes) used for locking in a SQL Server system. Of course, the number of
concurrent transactions and the number of locks per transaction may be
difficult to ascertain for your environment. You may be able to substitute the
number of concurrent transactions with the DBMS configuration value used
for total number of user connections. If the number of locks per transaction is
unavailable, you can examine a few typical programs to come up with an
estimate. This process is then repeated for each database resource that
consumes memory. Of course, the data cache should be treated separately and
is covered in the next section.

After repeating this process for each resource, you will arrive at the
amount of memory to install for the database server. It is a good practice to
leave some breathing room to support the addition of unanticipated
application programs, DBMS and operating system upgrades requiring
additional memory, and other unforeseen items. This means installing a little
bit more memory than you calculate. However, do not leave too much

breathing room. The memory was installed to be used, not conserved.

It is a good practice to leave some breathing room.

Data Cache Details
It is important for the DBA to understand the basics of data cache operation.
At any given point in time, the data cache will consist of three different types
of pages:

• In-use pages—pages that are currently being read and updated by the
DBMS. These pages are not available to be used for other database
processing.

• Updated pages—pages where data has been modified in some way, but
the data has not yet been written to disk. These pages are not available
to be used for other database processing.

• Available pages—pages not being used. These pages are available to be
used for other database processing. New data can be written to
available pages in the data cache.

The performance of the data cache depends on how efficiently memory has
been allocated for its use. For example, if unavailable pages dominate the
data cache, the DBMS may trigger synchronous writes to increase the space
in the data cache. Synchronous writes can slow down database processing
because each write request has to wait for the data to be actually physically
written to disk. Depending on the type of processing the database
applications are using, the DBA may be able to tune data caching parameters
and sizes to enable more efficient buffering of data.
Monitoring and Tuning the Data Cache

Ensuring the cache is the proper size is one of the most critical aspects of
having an efficient data cache. A data cache that is too large wastes memory
and can cause pages in the cache to be moved out to auxiliary storage. A data
cache that is too small forces frequent writes to disk and, in the most severe
cases, results in swapping the data cache pages back and forth from disk.

Ensuring the cache is the proper size is critical.

The complexity of tuning the data cache varies by DBMS and depends on
the configuration and tuning parameters that are available for the data cache.

Some DBMSs, such as DB2, provide multiple buffer pools that can be
configured and tuned independently with multiple parameters. Others, such
as SQL Server, are more basic, with a data cache per database. But regardless
of the DBMS, the DBA should monitor the read efficiency of each data cache
or buffer pool.

The read efficiency of the data cache is a percentage that tracks how well
the cache is performing its primary duty—to avoid physical disk I/O
operations. The read efficiency of each data cache is calculated as the number
of actual I/Os performed subtracted from the total number of data requests,
then divided by the total number of data requests, or

In other words, read efficiency shows the percentage of times a data page
is found in the data cache (or buffer pool). The higher this percentage is, the
more efficient the buffer pool is. When data pages can be found in buffers in
memory without requiring a physical I/O, performance will be enhanced.

The actual numbers for I/O requests and actual physical I/O operations can
be found by examining DBMS trace records or by using a database
performance monitor. Be sure to examine all I/O requests, those made
synchronously as well as those made asynchronously. Many DBMSs are
capable of anticipating I/O requirements and scheduling reads of multiple
blocks prior to their being requested. For example, DB2 deploys sequential
prefetch to read multiple pages into the buffer pool for sequential reads that
access large amounts of data.

Depending on the DBMS, the DBA may need to turn on traces that
externalize instrumentation details of the DBMS. Each DBMS has its own set
of instrumentation information that can be examined. Also, depending on the
type of performance monitor, traces may not need to be started by the DBA
because the monitor may start and stop traces as required. The monitor may
also use other means to capture the performance information from the
DBMS.

As a rule of thumb, an 80 percent or better read efficiency is good for a
data cache. Of course, the read efficiency value will depend on the type of
processing. Many sequential processes can cause the data cache to be overrun
and the efficiency to drop. Furthermore, systems with many processes that

access data only weekly or monthly may have lower read efficiencies because
less data is frequently reused. The DBA should know the type of database
processing that occurs for each data cache and gauge the read efficiency of
that data cache in light of the processing that occurs.

An 80 percent or better read efficiency is good for a data
cache.

When read efficiency is consistently below 80 percent, consider tuning by
increasing the size of the data cache, modifying the number or type of
concurrent processes using the data cache, or reducing the number of tables
and indexes assigned to the data cache. Making such changes may impact
availability because the DBMS must be stopped and restarted to register the
change. Each DBMS has different requirements for making data cache
changes.

Depending on the DBMS, the DBA may be able to configure the data
cache better by changing the amount of cache reserved for sequential and
parallel operations. Large table scans can quickly monopolize a data cache.
Reserving only a subset of the entire cache for sequential scans may improve
the overall performance of the data cache. Of course, the reverse may be true
if the majority of operations that use the data cache are sequential in nature.

Large table scans can quickly monopolize a data cache.

Additional possibilities for tuning the data cache—offered by some DBMS
vendors or as add-on products—include creating an additional cache to back
up the data cache, pegging specific pages in memory, and automatically
growing the size of the data cache as throughput increases.
Monitoring and Tuning the Procedure Cache

The DBA must monitor the effectiveness of the procedure cache to help
improve the efficiency of database applications and queries. Although the
procedure cache differs dramatically from DBMS to DBMS, the general idea
is the same: to keep optimized SQL structures in memory so they can be
reused by subsequent tasks instead of being reformulated or reread from disk.

To ensure optimal performance, the procedure cache must be sized
properly to accommodate all the SQL that may be run concurrently. DBAs
need information about the application programs that will be run in order to

size the procedure cache effectively. The read-efficiency calculation we used
for gauging the effectiveness of the data cache can be used for the procedure
cache also. In the case of the procedure cache, the read efficiency calculates
how often the DBMS needs to reoptimize SQL. Procedure cache read
efficiency usually ranges from 60 to 80 percent. Of course, this percentage
range will differ with the type of DBMS and the type of caching performed,
as well as with the type of applications and the number of times the same
SQL and programs are run. Refer to the sidebar “DB2’s EDM Pools” for an
example of a procedure cache.

The procedure cache must be sized properly to accommodate
all the SQL that may be run concurrently.

DB2’s EDM Pools
IBM’s DB2 for z/OS caches SQL in a memory area known as the
environmental descriptor manager pools, or EDM pools for short. The
EDM pools contain active and skeleton structures for application plans and
packages, as well as optimized dynamic SQL plans, database descriptors,
and program authorization lists. The EDM pools function as a sort of
catchall memory area for resources that are used by application programs
and SQL statements as they are being run.

If your EDM pools are too small, DB2 will incur increased I/O
activity in the DB2 directory, a specialized system catalog for internal
DB2 structures. An additional symptom that may occur is increased
response times as the required structures are read from disk and loaded
into memory in the EDM pools.

“Open” Database Objects
As database applications process, the DBMS will need to open database
objects for access and maintain the open objects. The DBMS will probably
have a configuration option for setting this number. However, these numbers
are difficult to arrive at originally. As time progresses, the database system
can be monitored and better values can be provided.

To begin with, it is not uncommon simply to specify a value such that all
production databases and objects can be open. However, each open database
object consumes memory. Therefore, it is a good idea to temper this value,

taking into account the size of the database implementation, the type of
application processing, and the amount of memory available.

Each open database object consumes memory.

Database Logs
The database log is another database system configuration option that can
impact performance. The database log, sometimes referred to as the
transaction log, is a fundamental component of a database management
system. All changes to application data in the database are recorded serially
in the database log (see Figure 10.4). Using this information, the DBMS can
track which transaction made which changes to the database. Furthermore,
ROLLBACK and RECOVER operations use the database log to reset the
database to a particular point in time.

Figure 10.4. Logging of database transactions

All changes to application data in the database are recorded
serially in the database log.

The manner in which the database log is created depends on the DBMS.
Some DBMSs specify the log at the database system level; others define a
database log for each database that is created within the database system.
Some DBMSs provide a parameter to enable and disable logging. In general,

avoid disabling database logging for any database or database system where
the data is valuable. In other words, consider turning off database logging
only for test databases.

Depending on the DBMS, the database log may consist of several files. For
example, Oracle uses a transaction log and rollback segments to accomplish
all of the functionality described in this section.

During normal database application processing, SQL INSERTs,
UPDATEs, and DELETEs will be issued to modify data in the database. As
these database modifications are made, the transaction log for the database
will grow. Since each database change is logged, the DBA will need to
monitor actively the size of the transaction log files. Since data is constantly
changing, the log will be continually growing.

The database transaction log is a write-ahead log.

The database transaction log is a write-ahead log. This means that changes
are made to the transaction log before they are made to the data in the
database tables. When the database modification has been fully recorded on
the log, recovery of the transaction is guaranteed.

Typically, the DBMS takes a system checkpoint to guarantee that all log
records and all modified database pages are written safely to disk. The
frequency of database system checkpoints can be set up by the DBA using
database configuration parameters. Checkpoint frequency is usually set as
either a predetermined time interval or a preset number of log records written.

Generally, the following type of information is recorded on the database
log:

• Beginning and ending time of each transaction
• Actual changes made to the data and enough information (using

“before” and “after” images of the data) to undo the modifications
made during each transaction

• Allocation and deallocation of database pages
• Actual COMMIT or ROLLBACK of each transaction

Using this information, the DBMS can accomplish data integrity
operations to ensure consistent data. The transaction log is used when the
DBMS is restarted, when transactions are rolled back, and to restore a

database to a prior state. Let’s examine each of these scenarios.
When the DBMS is restarted, each database goes through a recovery

process. During restart processing, the DBMS will check to determine which
transactions must be rolled forward. This occurs for transactions where it is
unknown if all the modifications were actually written from the cache to disk.
A checkpoint forces all modified pages to disk. Therefore, it represents the
point at which the start-up recovery must start to roll transactions forward.
Because all pages modified before the checkpoint are guaranteed to be
written accurately to disk, there is no need to roll forward anything done
before the checkpoint.

When a transaction is rolled back, the DBMS copies “before” images to
the database of every modification made since the transaction began.

During a recovery scenario, the DBA can use the transaction log to restore
a database. First, a backup copy of the database is restored, and then
subsequent transaction log backups can be restored. This causes a roll
forward of the transaction log. During a roll forward, the DBMS will copy to
the database “after” images of each modification. Using the logged data, the
DBMS ensures that each modification is applied in the same order that it
originally occurred.

During a recovery scenario, the DBA can use the transaction
log to restore a database.

You can see that the transaction log is a useful item to have around in case
of database or transaction errors, and to ensure data integrity.
Database Log Configuration Considerations

The configuration of the database log can be a complicated task. Depending
on the DBMS, the DBA may need to make multiple configuration decisions
to set up the database transaction log, such as defining input buffers and
output buffers, setting up log off-loading, and defining the actual log files.

Defining output buffers for the database log can optimize log write
operations. Writing log records to memory instead of directly to disk creates
more efficient database processing. The DBMS can write log records
asynchronously from the output buffer to the physical log file later. When
logging is implemented in this fashion, database processing does not need to
wait for synchronous log writes to occur to disk.

Defining input buffers for the database log can optimize operations—such
as ROLLBACK and RECOVER—that read the database log.

It is a good idea to set up dual logs.

When configuring the database log, it is a good idea to set up dual logs.
With dual logs, the DBMS will log changes to two separate and independent
log files. Implementing dual logging provides a redundant log for use in case
one of the logs fails. A log can fail for many reasons, including device
failure, media problems, or simple carelessness. When setting up dual
logging, be sure to define each log on separate devices and on separate
controllers to minimize the possibility of both logs failing at the same time.

Another log configuration detail is deciding how database logs are to be
handled when they fill up. Once again, the implementation details depend on
the DBMS. Some DBMSs provide for automatic log off-loading. Log off-
loading is the process of archiving an active log to an archival log and
switching log writes to a new active log.

If the DBMS performs automatic log off-loading, you can improve
performance by off-loading to an archive log on disk instead of tape.
Archiving to disk enables the log off-loading process to run faster, and
backout and recovery processes can also run faster because the log records
will be on disk—meaning not just faster I/O but no wait for tapes to be
mounted. The DBA can use a storage management system to automatically
migrate archive logs to tape after a predetermined amount of time.

Some DBMSs require the database log to be explicitly backed up. In this
case, you will need to implement periodic backups of the transaction log.
Typically, the DBMS provides a specific backup command to create a
transaction log backup. When the DBMS finishes backing up the transaction
log, it truncates the inactive portion of the transaction log to free up space.
Truncation of the log enables the DBMS to reuse space.

Of course, as a DBA you will need to learn how each DBMS you use
handles backing up the database log. DB2 automatically archives the
transaction log; Microsoft SQL Server requires the DBA to back up
transaction log files. In fact, Microsoft SQL Server provides some interesting
features for handling the transaction log; the sidebar “Microsoft SQL Server
Log Options” discusses the parameters that can impact the operation of the
database log.

Are All Database Operations Logged?

Depending on the DBMS, certain situations and commands may not be
logged. To avoid “out of space” conditions caused by rapid growth in
transaction log files, the DBMS may turn off logging. For example, some
DDL operations and database utility executions might not be logged. Beware
of these situations and plan accordingly for your recovery needs.

Certain situations and commands may not be logged.

Microsoft SQL Server Log Options
Microsoft SQL Server provides a system configuration parameter that
affects the behavior of database logging. The TRUNC LOG ON CHKPT
option can be changed at the database level. Use the system procedure
named SP_DBOPTION to change the configuration settings for a database.
For example:

Click here to view code image

EXEC SP_DBOPTION 'pubs', 'trunc. log on chkpt.',
'false'

Issuing this command causes the TRUNC LOG ON CHKPT option to
be set to FALSE for the pubs database. To see a list of all current
database options set for a database, simply issue the system procedure
without additional parameters, for example:

EXEC SP_DBOPTION pubs

The TRUNC LOG ON CHKPT option is potentially quite dangerous.
When this option is set to TRUE, every checkpoint operation will cause
the database log to be truncated—that is, the database log will be
emptied and reset, causing all of the logged changes to be lost. A
database cannot be recovered using a log that is truncated on
checkpoints.

You might consider setting the TRUNC LOG ON CHKPT option to
TRUE for test databases during your application development cycle, but
not for mission-critical production databases. The DBA needs to be
aware of these options and ensure that the appropriate settings are made,
based on the needs of the users of the data and the applications that

access that data.
You can also control log truncation using the SQL Server recovery

models. A recovery model is a database property that controls how
transactions are logged, whether the transaction log requires (and
allows) backing up, and what kinds of restore operations are available.
Three recovery models exist: simple, full, and bulk logged. Enabling
simple recovery mode causes log space to be reclaimed automatically,
whereas full and bulk-logged recovery modes do not automatically
truncate the transaction log.

During some large operations, such as CREATE INDEX, the DBMS will
probably not log every new page. Instead, the DBMS will record enough
information in the database log to determine that a CREATE INDEX
happened, so that it can either be recreated during a roll forward or removed
during a rollback.

Additionally, some DBMSs provide configuration options at the database
level to turn off logging for some types of processing. For example, in
Microsoft SQL Server, when the SELECT INTO/BULKCOPY database
option is set to TRUE,1 the following operations will not be recorded in the
database transaction log: bulk load operations, TRUNCATE TABLE, BULK
INSERT, and SELECT INTO statements. These operations usually cause a
large volume of data to be changed in the database. Logging can slow down
these processes, so logging can optionally be disabled for these operations
only. However, because these operations are not recorded in the transaction
log, SQL Server cannot use the RESTORE operation on the transaction log to
recover them. If the DBMS has no knowledge of the operations in the log, it
cannot recover the data.

Of course, SQL Server is not the only DBMS that disables logging for
certain operations. Another example is the DB2 REORG utility. A parameter
is provided to disable or enable logging during the reorganization process.
DB2 also provides for the option to create nonlogged tablespaces, for which
no database logging will occur. Without logging, these objects cannot be
recovered using the log, so care should be taken to deploy nonlogged objects
only under specific scenarios (for example, to implement a queue that is filled
and emptied during application processing).

As a DBA, you will need to learn how and when to turn off logging using

your DBMS. Moreover, keep in mind that whenever logging is turned off, the
data must be backed up both before and after the nonlogged process to ensure
point-in-time recoverability.

Locking and Contention
Concurrency operations such as deadlock detection and lock manager
settings can greatly impact database system performance. Database
processing relies on locking to ensure consistent data based on user
requirements and to avoid losing data during updates. You must balance the
need for concurrency with the need for performance. If at all possible, seek to
minimize the following situations:

Balance the need for concurrency with the need for
performance.

• Lock suspensions occur when an application process requests a lock
that is already held by another application process and cannot be
shared. The suspended process temporarily stops running until the
requested lock becomes available.

• Time-outs occur when an application process is terminated because it
has been suspended for longer than a preset interval. This interval can
usually be set by using a configuration parameter.

• Deadlocks occur when two or more application processes hold locks on
resources that the others need and without which they cannot proceed.
The deadlock detection cycle—that is, the time interval between
checking for deadlocks—can also be set by using a configuration
parameter.

When accessing a relational database, the locking process can be quite
complex. It depends on the type of processing, the lock size specified when
the table was created, the isolation level of the program or SQL statement, the
method of data access, and the DBMS configuration parameters. To tune
database locking requires a combination of system, database, and application
tuning.

The System Catalog
The physical location and setup of the system catalog will have an impact on
system performance. The DBA must decide where it will be installed, on

what type of disk, and how much space to allocate. These decisions typically
are made at installation time.

Place the system catalog on a separate disk device.

As a rule of thumb, place the system catalog on a separate disk device so
that it can be managed and tuned independently from other application data.
If possible, consider completely dedicating a disk volume or two to the
system catalog. Consider placing the indexes and tables on separate disk
volumes. In addition, if the DBMS does not already provide a separate data
cache for the system catalog, consider isolating the system catalog into its
own dedicated data cache. Doing this makes it easer to track the efficiency of
system I/O versus application I/O.

A Catalog by Any Other Name . . .
A relational DBMS requires a system catalog, but it may be called
something different depending upon the particular DBMS you are using:

• In Oracle it is referred to as the Data Dictionary.
• In SQL Server it is referred to as the System Catalog.
• In DB2 it is referred to as either the DB2 Catalog or System Catalog.
• In MySQL it is referred to as the Information Schema.

When changes need to be made to the system catalog database, utilities
such as REORG, COPY, and RECOVER or file system commands need to
be used. Changes may need to be made to increase the size of the system
catalog, to add a new index, or to migrate to a new release of the DBMS.
Usually a migration utility is provided to make system catalog changes.

DBAs should use the system catalog to actively manage their database
environment. It is a good practice to actively monitor the database objects in
the system catalog and delete obsolete objects. For example, in DB2 for
z/OS, IBM delivers sample tables with every new version. The database
object names have the DB2 version number embedded within them. Every
new release causes new sample tables to be created. The DBA should delete
the old sample tables when new ones are installed. This advice applies to all
unused database objects, not just to sample tables. If a tablespace exists that
is no longer used, it is consuming valuable resources (disk space, system

catalog space, etc.) that can be freed up when the database object is dropped.
Although you can directly query the system catalog tables using SQL,

many DBMS products provide catalog views to simplify writing such
queries.

Other Configuration Options
Every DBMS will have many configuration and tuning options that are
particular to that DBMS. The DBA needs to become an expert in the options
that are available and understand the impact of each permissible setting.

Some example configuration options that may be encountered include the
following:

• Nested trigger calls. Some DBMSs can enable and disable nested
trigger calls. A nested trigger call is when one trigger causes another
trigger to fire. Some DBMSs may provide additional control over
trigger nesting by providing a maximum value for it. By setting this
value, the DBA can control how many levels of nested trigger calls are
allowable. Control over triggers can have an enormous impact on
performance. For example, if an application hits the maximum number
of nested triggers, all of the changes caused by all previous triggers
need to be rolled back—potentially causing considerable performance
degradation.

• Security options. The functionality of security and authorization can be
controlled by DBMS configuration options. Some DBMSs allow
database security to be turned over to external security and control
software.

• Identity values. The identity property can be assigned to a column such
that the DBMS automatically assigns numerically sequential values
when data is inserted in the table. The DBMS can allow the
configuration of the pool size from which identity values are obtained.

• Distributed database. To configure a distributed database
implementation, the DBMS most likely will provide options for
connecting databases at various locations.

General Advice
When configuring your database environment, avoid defaults. Most
configuration options will default to a predefined value if no specific value is

assigned. The major problem with using default values is that they almost
never are the best choice for your particular environment. It is always a good
idea to specify the value of every configuration parameter even if the default
value is the one you wish to choose.

Avoid default configuration options.

Finally, beware of configuration options that change the behavior of the
DBMS. Simply setting a single configuration parameter to the wrong value
can cause a lot of damage. Consider the following parameters and their
potential impact:

• Oracle provides an optimization-mode parameter to choose between
cost-based and rule-based SQL optimization. These two methods can
create dramatically different SQL access paths with dramatically
different performance.2

• Sybase provides a parameter called ALLOW UPDATES that controls
whether the system catalog tables can be modified using SQL. When
this option is turned on, the system catalog can be changed quite easily.
This is to be avoided except under the guidance of Sybase technical
support. System catalog changes should be driven by the DBMS itself,
not by user-issued SQL.

• DB2 provides several parameters that control the behavior of database
operations such as parallel queries, data sharing, and dynamic SQL
caching.

System Monitoring
A DBMS environment should be continually monitored for performance
degradation and problems. Some DBMSs provide built-in monitors to
accomplish rudimentary monitoring. Additional performance monitoring
solutions such as Oracle Enterprise Manager, Foglight from Quest Software,
or OMEGAMON from IBM Corporation can be deployed to provide more
robust monitoring functionality, such as dynamic alerting and proactive
management of performance problems. Refer to the sidebar “Sybase
SP_MONITOR” for information on the Sybase DBMS performance monitor.

Sybase SP_MONITOR

The SP_MONITOR system procedure is a rudimentary tool supplied by
Sybase with its DBMS. When the procedure is run, it displays DBMS
activity in terms of the following performance-oriented numbers:

• last run: date and time that SP_MONITOR was last executed
• current run: date and time that SP_MONITOR was run to produce this

report
• seconds: total number of seconds since the last SP_MONITOR was run
• cpu busy: CPU time, in milliseconds, that the server CPU spent

performing Sybase work
• io busy: CPU time, in milliseconds, that the server CPU spent

performing Sybase I/O operations
• idle: CPU time, in milliseconds, that Sybase has been idle
• packets received: number of input packets read by Sybase
• packets sent: number of output packets sent by Sybase
• packet errors: number of errors detected by Sybase while reading and

writing packets
• total read: number of disk reads performed by Sybase
• total write: number of disk writes performed by Sybase
• total errors: total number of errors detected by Sybase while reading

or writing
• connections: number of logins or attempted logins to Sybase
The numbers are cumulative since the last time SP_MONITOR was

executed.

Performance monitors are available for every aspect of the system
environment, not just the DBMS, so you may be able to monitor the
operating system, network, transaction server, and any other system
middleware for performance problems. A DBA must be able to operate and
understand the output of the monitoring solutions available. The performance
monitor acts as a window into the efficiency (or lack thereof) of the database
system.

The performance monitor acts as a window into the efficiency
of the database system.

Summary
If the environment where the DBMS must operate is not performing
efficiently, it is impossible for the DBMS, and indeed any database access, to
perform efficiently. The DBA needs to understand every DBMS
configuration value and the impact it can have on the overall performance of
the system. Furthermore, the DBA must control the integration of the DBMS
with the hardware on which the DBMS runs and any allied agent software.

Review
1. What is the single most important configurable component of a

relational database management system?
2. How does the data cache (or buffer pool) improve the performance of

database processing?
3. Describe how to determine the read efficiency of the data cache.
4. What components of the DBMS require system memory to control?
5. What three concurrency problems can negatively impact performance?
6. Why are certain database operations not logged?
7. A DBMS is composed of multiple programs interacting with one

another: true or false?
8. What are the three possible statuses of a page in the data cache?
9. What benefits can accrue by caching optimized SQL in memory?

10. What type of information is recorded on the database transaction log?

Bonus Question
When a database operation is not logged, what precautions should the DBA
take before and after the nonlogged operation? Why?

Suggested Reading
Bruzzese, J. Peter, Ronald Barrett, and Wayne Dipchan. Windows Server

2008: How To. Indianapolis, IN: SAMS (2010). ISBN 978-0-672-33075-
9.

Hassell, Jonathan. Learning Windows Server 2003. 2nd ed. Sepastopol, CA:
O’Reilly (2006). ISBN 0-596-10123-6.

Henderson, Ken. The Guru’s Guide to SQL Server Architecture and
Internals. Boston, MA: Addison-Wesley (2004). ISBN 0-201-70047-6.

Johnson, Robert H. MVS Concepts and Facilities. New York, NY: McGraw-
Hill (1989). ISBN 0-07-032673-8.

Kirkwood, John. Sybase Architecture and Administration. New York, NY:
Ellis Horwood (1993). ISBN 0-13-100330-5.

Limoncelli, Thomas A., et al. The Practice of System and Network
Administration. Boston, MA: Addison-Wesley (2007). ISBN 978-0-321-
49266-1.

Nemeth, Evi, et al. UNIX and Linux System Administration Handbook. 4th
ed. Upper Saddle River, NJ: Prentice Hall (2010). ISBN 978-0-13-
148005-6.

Mullins, Craig S. DB2 Developer’s Guide. 6th ed. Boston, MA: IBM Press
(2012). ISBN 978-0-13-283642-5.

Reese, George, et al. Managing & Using MySQL. 2nd ed. Sebastopol, CA:
O’Reilly (2002). ISBN 0-596-00211-4.

Reiss, Levi, and Joseph Radin. Unix System Administration Guide. Berkeley,
CA: Osborne/McGraw-Hill (1993). ISBN 0-07-881951-2.

Samson, Steven L. MVS Performance Management. New York, NY:
McGraw-Hill (1997). ISBN 0-07-057700-5.

Taylor, Ed. Demystifying SNA. Plano, TX: Wordware (1993). 1-55622-404-
4.

———. Demystifying TCP/IP. Plano, TX: Wordware (1993). 1-55622-400-
1.

Terplan, Kornel, and Jill Huntington-Lee. Distributed Systems and Network
Management. New York, NY: Van Nostrand Reinhold (1995). ISBN 0-
442-01873-8.

Young, John. Exploring IBM’s New Age Mainframes. 5th ed. Gulf Breeze,
FL: Maximum Press (1998). ISBN 978-1885068156.

11. Database Performance

Database performance focuses on tuning and optimizing the design,
parameters, and physical construction of database objects, specifically tables
and indexes, and the files in which their data is stored. The actual
composition and structure of database objects must be monitored continually
and changed accordingly if the database becomes inefficient. No amount of
SQL tweaking or system tuning can optimize the performance of queries run
against a poorly designed or disorganized database.

No amount of SQL tweaking or system tuning can optimize
the performance of queries run against a poorly designed
database.

Techniques for Optimizing Databases
The DBA must be cognizant of the features of the DBMS in order to apply
the proper techniques for optimizing the performance of database structures.
Most of the major DBMSs support the following techniques although perhaps
by different names. Each of the following techniques can be used to tune
database performance and will be discussed in subsequent sections.

• Partitioning—breaking a single database table into sections stored in
multiple files

• Raw partition versus file system—choosing whether to store database
data in an OS-controlled file or not

• Indexing—choosing the proper indexes and options to enable efficient
queries

• Denormalization—varying from the logical design to achieve better
query performance

• Clustering—enforcing the physical sequence of data on disk
• Interleaving data—combining data from multiple tables into a single,

sequenced file
• Free space—leaving room for data growth
• Compression—algorithmically reducing storage requirements

• File placement and allocation—putting the right files in the right place
• Page size—using the proper page size for efficient data storage and I/O
• Reorganization—removing inefficiencies from the database by

realigning and restructuring database objects

Partitioning
A database table is a logical manifestation of a set of data that physically
resides on computerized storage. One of the decisions that the DBA must
make for every table is how to store that data. Each DBMS provides different
mechanisms that accomplish the same thing—mapping physical files to
database tables. The DBA must decide from among the following mapping
options for each table:

One decision that the DBA must make for every table is how
to store its data.

• Single table to a single file. This is, by far, the most common choice.
The data in the file is formatted such that the DBMS understands the
table structure, and every row inserted into that table is stored in the
same file. However, this setup is not necessarily the most efficient.

• Single table to multiple files. This option is used most often for very
large tables or tables requiring data to be physically separated at the
storage level. Mapping to multiple files is accomplished by using
partitioned tablespaces or by implementing segmented disk devices.

• Multiple tables to a single file. This type of mapping is used for small
tables, such as lookup tables and code tables, and can be more efficient
from a disk utilization perspective.

Partitioning helps to accomplish parallelism. Parallelism is the process of
using multiple tasks to access the database in parallel. A parallel request can
be invoked to use multiple, simultaneous read engines for a single SQL
statement. Parallelism is desirable because it can substantially reduce the
elapsed time for database queries.

Partitioning helps to accomplish parallelism.

Multiple types of parallelism are based on the resources that can be
invoked in parallel. For example, a single query can be broken down into

multiple requests, each using a different CPU core1 in parallel. In addition,
parallelism can be improved by spreading the work across multiple database
instances. Each DBMS offers different levels of support for parallel database
queries. To optimize database performance, the DBA should be cognizant of
the support offered in each DBMS being managed and exploit the parallel
query capabilities.

Raw Partition versus File System

For a UNIX-based DBMS environment,2 the DBA must choose between a
raw partition and using the UNIX file system to store the data in the database.
A raw partition is the preferred type of physical device for database storage
because writes are cached by the operating system when a file system is used.
When writes are buffered by the operating system, the DBMS does not know
whether the data has been physically copied to disk or not. When the DBMS
cache manager attempts to write the data to disk, the operating system may
delay the write until later because the data may still be in the file system
cache. If a failure occurs, data in a database using the file system for storage
may not be 100 percent recoverable. This is to be avoided.

If a raw partition is used instead, the data is written directly from the
database cache to disk with no intermediate file system or operating system
caching, as shown in Figure 11.1. When the DBMS cache manager writes the
data to disk, it will physically be written to disk with no intervention.

Figure 11.1. Using raw partitions to avoid file system caching

Additionally, when using a raw partition, the DBMS will ensure that enough
space is available and write the allocation pages. When using a file system,
the operating system will not preallocate space for database usage.

From a performance perspective, there is no advantage to having a
secondary layer of caching at the file system or operating system level; the

DBMS cache is sufficient. Actually, the additional work required to cache the
data a second time consumes resources, thereby negatively impacting the
overall performance of database operations.

From a performance perspective, the DBMS cache is
sufficient.

Indexing
Creating the correct indexes on tables in the database is perhaps the single
greatest performance tuning technique that a DBA can perform. Indexes are
used to enhance performance. They are particularly useful for

• Locating rows by value(s) in column(s)
• Making joins more efficient (when the index is defined on the join

columns)
• Correlating data across tables
• Aggregating data
• Sorting data to satisfy a query

Indexes are used to enhance performance.

Without indexes, all access to data in the database would have to be
performed by scanning all available rows. Scans are very inefficient for very
large tables.

Designing and creating indexes for database tables actually crosses the line
between database performance tuning and application performance tuning.
Indexes are database objects created by the DBA with database DDL.
However, an index is built to make SQL statements in application programs
run faster. Indexing as a tuning effort is applied to the database to make
applications more efficient when the data access patterns of the application
vary from what was anticipated when the database was designed.

Before tuning the database by creating new indexes, be sure to understand
the impact of adding an index. The DBA should have an understanding of the
access patterns of the table on which the index will be built. Useful
information includes the percentage of queries that access rather than update
the table, the performance thresholds set within any service-level agreements
for queries on the table, and the impact of adding a new index on running

database utilities such as loads, reorganizations, and recovery.
One of the big unanswered questions of database design is “How many

indexes should be created for a single table?” There is no set answer to this
question. DBAs will need to use their expertise to determine the proper
number of indexes for each table such that database queries are optimized and
the performance of database inserts, updates, and deletes does not degrade.
Determining the proper number of indexes for each table requires in-depth
analysis of the database and the applications that access the database.

The general goal of index analysis is to use less I/O to the database to
satisfy the queries made against the table. Of course, an index can help some
queries and hinder others. Therefore, the DBA must assess the impact of
adding an index to all applications and not just tune single queries in a
vacuum. This can be an arduous but rewarding task.

An index affects performance positively when fewer I/Os are used to
return results to a query. Conversely, an index negatively impacts
performance when data is updated and the indexes have to be changed as
well. An effective indexing strategy seeks to provide the greatest reduction in
I/O with an acceptable level of effort to keep the indexes updated.

Some applications have troublesome queries that require significant tuning
to achieve satisfactory performance. Creating an index to support a single
query is acceptable if that query is important enough in terms of ROI to the
business (or if it is run by your boss or the CEO). If the query is run
infrequently, consider creating the index before the process begins and
dropping the index when the process is complete.

Whenever you create new indexes, be sure to thoroughly test the
performance of the queries it supports. Additionally, be sure to test database
modification statements to gauge the additional overhead of updating the new
indexes. Review the CPU time, elapsed time, and I/O requirements to assure
that the indexes help. Keep in mind that tuning is an iterative process, and it
may take time and several index tweaks to determine the impact of a change.
There are no hard-and-fast rules for index creation. Experiment with different
index combinations and measure the results.

Be sure to thoroughly test the performance of the queries the
index supports.

For additional information on the structure of indexes and the types of
indexes commonly supported by DBMSs, refer to the section on designing
indexes in Chapter 4.
When to Avoid Indexing

There are a few scenarios where indexing may not be a good idea. When
tables are very small, say, less than ten pages, consider avoiding indexes.
Indexed access to a small table can be less efficient than simply scanning all
of the rows because reading the index adds I/O requests. For example, SQL
Server will always perform a table scan on tables of less than 64K (8 pages)
in size.

Index I/O notwithstanding, even a small table can sometimes benefit from
being indexed—for example, to enforce uniqueness or if most data access
retrieves a single row using the primary key.

You may want to avoid indexing variable-length columns if the DBMS in
question expands the variable column to the maximum length within the
index. Such expansion can cause indexes to consume an inordinate amount of
disk space and might be inefficient. However, if variable-length columns are
used in SQL WHERE clauses, the cost of disk storage must be compared to
the cost of scanning. Buying some extra disk storage is usually cheaper than
wasting CPU resources to scan rows. Furthermore, the SQL query might
contain alternate predicates that could be indexed instead of the variable-
length columns. Some DBMSs support index compression, which can be
used to reduce storage requirements for indexes. The pros and cons of
compressing indexes are similar to those already discussed for table and
tablespace compression.

It is also a good idea to avoid indexing a column with a very small number
of values, often referred to as cardinality. When there are only a few values,
an index is not very helpful and can become a bottleneck to maintain.
GENDER is an example of a column with a low number of distinct values.

Additionally, avoid indexing any table that is always accessed using a
scan; that is, the SQL issued against the table never supplies a WHERE
clause.

Avoid indexing any table that is always accessed using a scan.

Index Overloading

Query performance can be enhanced in certain situations by overloading an
index with additional columns. Indexes are typically based on the WHERE
clauses of SQL SELECT statements. For example, consider the following
SQL statement:

select emp_no, last_name, salary
from employee
where salary > 15000.00;

Creating an index on the salary column can enhance the performance of
this query. However, the DBA can further enhance the performance of the
query by overloading the index with the emp_no and last_name columns as
well. With an overloaded index, the DBMS can satisfy the query by using
only the index. The DBMS need not incur the additional I/O of accessing the
table data, since every piece of data that is required by the query exists in the
overloaded index.

DBAs should consider overloading indexes to encourage index-only access
when multiple queries can benefit from the index or when individual queries
are very important.

Denormalization
Another way to optimize the performance of database access is to
denormalize the tables. Denormalization was covered in detail in Chapter 4,
so we will not discuss the topic in depth here. Suffice it to say,
denormalization, the opposite of normalization, is the process of putting one
fact in many places. This speeds data retrieval at the expense of data
modification. Denormalizing tables can be a good decision when a
completely normalized design does not perform optimally.

The only reason to denormalize a relational database is to
enhance performance.

The only reason to ever denormalize a relational database design is to
enhance performance. As discussed in Chapter 4, you should consider the
following options:

• Prejoined tables—when the cost of joining is prohibitive
• Report table—when specialized critical reports are too costly to

generate

• Mirror table—when tables are required concurrently by two types of
environments

• Split tables—when distinct groups use different parts of a table
• Combined tables—to consolidate one-to-one or one-to-many

relationships into a single table
• Speed table—to support hierarchies like bills of materials or reporting

structures
• Physical denormalization—to take advantage of specific DBMS

characteristics
You might also consider

• Storing redundant data in tables to reduce the number of table joins
required

• Storing repeating groups in a row to reduce I/O and possibly disk space
• Storing derivable data to eliminate calculations and costly algorithms

Clustering
A clustered table will store its rows physically on disk in order by a specified
column or columns. Clustering usually is enforced by the DBMS with a
clustering index. The clustering index forces table rows to be stored in
ascending order by the indexed columns. The left-to-right order of the
columns, as defined in the index, defines the collating sequence for the
clustered index. There can be only one clustering sequence per table (because
physically the data can be stored in only one sequence).

A clustered table will store its rows physically on disk in order
by a specified column or columns.

Figure 11.2 demonstrates the difference between clustered and unclustered
data and indexes; the clustered index is on top, and the unclustered index is
on the bottom. As you can see, the entries on the leaf pages of the top index
are in sequential order—in other words, they are clustered. Clustering
enhances the performance of queries that access data sequentially because
fewer I/Os need to be issued to retrieve the same data.

Figure 11.2. Clustered and unclustered indexes

Depending on the DBMS, the data may not always be physically
maintained in exact clustering sequence. When a clustering sequence has
been defined for a table, the DBMS will act in one of two ways to enforce
clustering:

1. When new rows are inserted, the DBMS will physically maneuver data
rows and pages to fit the new rows into the defined clustering sequence;
or

2. When new rows are inserted, the DBMS will try to place the data into
the defined clustering sequence, but if space is not available on the
required page the data may be placed elsewhere.

The DBA must learn how the DBMS maintains clustering. If the DBMS

operates as in the second scenario, data may become unclustered over time
and require reorganization. A detailed discussion of database reorganization
appears later in this chapter. For now, though, back to our discussion of
clustering.

Clustering tables that are accessed sequentially is good practice. In other
words, clustered indexes are good for supporting range access, whereas
unclustered indexes are better for supporting random access. Be sure to
choose the clustering columns wisely. Use clustered indexes for the following
situations:

• Join columns, to optimize SQL joins where multiple rows match for
one or both tables participating in the join

• Foreign key columns, because they are frequently involved in joins and
the DBMS accesses foreign key values during declarative referential
integrity checking

• Predicates in a WHERE clause
• Range columns
• Columns that do not change often (reduces physically reclustering)
• Columns that are frequently grouped or sorted in SQL statements

Clustering tables that are accessed sequentially is good
practice.

In general, the clustering sequence that aids the performance of the most
commonly accessed predicates should be used for clustering. When a table
has multiple candidates for clustering, weigh the cost of sorting against the
performance gained by clustering for each candidate key. As a rule of thumb,
though, if the DBMS supports clustering, it is usually a good practice to
define a clustering index for each table that is created (unless the table is very
small).

Clustering is generally not recommended for primary key columns because
the primary key is, by definition, unique. However, if ranges of rows
frequently are selected and ordered by primary key value, a clustering index
may be beneficial.
Page Splitting

When the DBMS has to accommodate inserts, and no space exists, it must

create a new page within the database to store the new data. The process of
creating new pages to store inserted data is called page splitting. A DBMS
can perform two types of page splitting: normal page splits and monotonic
page splits. Some DBMSs support both types of page splitting, while others
support only one type. The DBA needs to know how the DBMS implements
page splitting in order to optimize the database.

The process of creating new pages to store inserted data is
called page splitting.

Figure 11.3 depicts a normal page split. To accomplish this, the DBMS
performs the following tasks in sequence:

1. Creates a new empty page between the full page and the next page
2. Takes half of the entries from the full page and moves them to the

empty page
3. Adjusts any internal pointers to both pages and inserts the row

accordingly

Figure 11.3. Normal page splitting

A monotonic page split is a much simpler process, requiring only two
steps. The DBMS

1. Creates a new page between the full page and the next page
2. Inserts the new values into the fresh page

Monotonic page splits are useful when rows are being inserted in strictly
ascending sequence. Typically, a DBMS that supports monotonic page splits
will invoke it when a new row is added to the end of a page and the last
addition was also to the end of the page.

When ascending rows are inserted and normal page splitting is used, a lot

of space can be wasted because the DBMS will be creating half-full pages
that never fill up. If the wrong type of page split is performed during database
processing, wasted space will ensue, requiring the database object to be
reorganized for performance.

Interleaving Data
When data from two tables is frequently joined, it can make sense to
physically interleave the data into the same physical storage structure. This
can be viewed as a specialized form of clustering (and, in fact, Oracle uses
the term cluster to define interleaved data). Interleaving data is covered in
Chapter 4 and is mentioned here as a performance tuning technique to
consider.

Interleaving can be viewed as a specialized form of clustering.

Free Space
Free space, sometimes called fill factor, can be used to leave a portion of a
tablespace or index empty and available to store newly added data. The
specification of free space in a tablespace or index can reduce the frequency
of reorganization, reduce contention, and increase the efficiency of insertion.
Each DBMS provides a method of specifying free space for a database object
in the CREATE and ALTER statements. A typical parameter is PCTFREE,
where the DBA specifies the percentage of each data page that should remain
available for future inserts. Another possible parameter is FREEPAGE,
where the DBA indicates the specified number of pages after which a
completely empty page is available.

Ensuring a proper amount of free space for each database object provides
the following benefits:

• Inserts are faster when free space is available.
• As new rows are inserted, they can be properly clustered.
• Variable-length rows and altered rows have room to expand, potentially

reducing the number of relocated rows.
• Having fewer rows on a page results in better concurrency because less

data is unavailable to other users when a page is locked.

Ensure a proper amount of free space for each database object.

However, free space also has several disadvantages:
• Disk storage requirements are greater.
• Scans take longer.
• Fewer rows on a page can necessitate more I/O operations to access the

requested information.
• Because the number of rows per page decreases, the efficiency of data

caching can decrease because fewer rows are retrieved per I/O.
The DBA should monitor free space and ensure that the appropriate

amount is defined for each database object. The correct amount of free space
must be based on

• Frequency of inserts and modifications
• Amount of sequential versus random access
• Impact of accessing unclustered data
• Type of processing
• Likelihood of row chaining, row migration, and page splits

Don’t define a static table with free space—it will not need room in which
to expand.

Compression
Compression can be used to shrink the size of a database. When data is
compressed, the database requires less disk storage. Some DBMSs provide
internal DDL options to compress database files; third-party software is
available for those that do not provide such features.

When compression is specified, data is algorithmically compressed upon
insertion into the database and decompressed when it is read. Reading and
writing compressed data consumes more CPU resources than reading and
writing uncompressed data: The DBMS must execute code to compress and
decompress the data as users insert, update, and read the data.

So why compress data? Consider an uncompressed table with a row size of
800 bytes. Five of this table’s rows would fit in a 4K data page (or block).
Now what happens if the data is compressed? Assume that the compression
routine achieves 30 percent compression on average (a very conservative
estimate). In that case, the 800-byte row will consume only 560 bytes (800 ×
0.30 = 560). After the data is compressed, seven rows will fit on a 4K page.

Because I/O occurs at the page level, a single I/O will retrieve more data,
which will optimize the performance of sequential data scans and increase the
likelihood of data residing in the cache because more rows fit on a physical
page.

Of course, compression always requires a trade-off that the DBA must
analyze. On the positive side, we have disk savings and the potential for
reducing I/O cost. On the negative side, we have the additional CPU cost
required to compress and decompress the data.

Compression always requires a trade-off, but in I/O-heavy
systems it is usually worth it.

However, compression is not an option for every database index or table.
For smaller amounts of data, it is possible that a compressed file will be
larger than an uncompressed file. This is so because some DBMSs and
compression algorithms require an internal dictionary to manage the
compression. The dictionary contains statistics about the composition of the
data that is being compressed. For a trivial amount of data, the size of the
dictionary may be greater than the amount of storage saved by compression.

File Placement and Allocation
The location of the files containing the data for the database can have an
impact on performance. A database is very I/O intensive, and the DBA must
make every effort to minimize the cost of physical disk reading and writing.

The DBA must make every effort to minimize the cost of
physical disk reading and writing.

This discipline entails
• Understanding the access patterns associated with each piece of data in

the system
• Placing the data on physical disk devices in such a way as to optimize

performance
The first consideration for file placement on disk is to separate the indexes

from the data, if possible. Database queries are frequently required to access
data from both the table and an index on that table. If both of these files
reside on the same disk device, performance degradation is likely. To retrieve

data from disk, an arm moves over the surface of the disk to read physical
blocks of data on the disk. If a single operation is accessing data from files on
the same disk device, latency will occur; reads from one file will have to wait
until reads from the other file are processed. Of course, if the DBMS
combines the index with the data in the same file, this technique cannot be
used.

Another rule for file placement is to analyze the access patterns of your
applications and separate the files for tables that are frequently accessed
together. DBAs should do this for the same reason they should separate index
files from table files.

A final consideration for placing files on separate disk devices occurs
when a single table is stored in multiple files (partitioning). It is wise in this
case to place each file on a separate disk device to encourage and optimize
parallel database operations. If the DBMS can break apart a query to run it in
parallel, placing multiple files for partitioned tables on separate disk devices
will minimize disk latency.

With modern disk systems such as RAID devices, precise file placement is
often difficult, if not impossible, to achieve. RAID storage consists of arrays
of disk drives, and the files stored on the device are split across multiple
physical disk drives. Be sure to read the documentation for your specific
DBMS and follow the guidance for the placement of critical system files
(such as log and configuration files). And keep in mind that a hard disk drive
with two partitions, one holding log files and the other partition holding data
files, is not the same as two disks, each dedicated to either log or data files.

For more details on storage and RAID please refer to Chapter 18, “Data
and Storage Management.”
Database Log Placement

Placing the transaction log on a separate disk device from the actual data
allows the DBA to back up the transaction log independently from the
database. It also minimizes dual writes to the same disk. Writing data to two
files on the same disk drive at the same time will degrade performance even
more than reading data from two files on the same disk drive at the same
time. Remember, too, that every database modification (write) is recorded on
the database transaction log.
Distributed Data Placement

The goal of data placement is to optimize access by reducing contention on
physical devices. Within a client/server environment, this goal can be
expanded to encompass the optimization of application performance by
reducing network transmission costs.

Data placement optimizes access by reducing contention on
physical devices.

Data should reside at the database server where it is most likely, or most
often, to be accessed. For example, Chicago data should reside at the Chicago
database server, Los Angeles–specific data should reside at the Los Angeles
database server, and so on. If the decision is not so clear-cut (e.g., San
Francisco data if there is no database server in San Francisco), place the data
on the database server that is geographically closest to where it will be most
frequently accessed (in the case of San Francisco, L.A., not Chicago).

Be sure to take fragmentation, replication, and snapshot tables into account
when deciding upon the placement of data in your distributed network.
Disk Allocation

The DBMS may require disk devices to be allocated for database usage. If
this is the case, the DBMS will provide commands to initialize physical disk
devices. The disk initialization command will associate a logical name for a
physical disk partition or OS file. After the disk has been initialized, it is
stored in the system catalog and can be used for storing table data.

Before initializing a disk, verify that sufficient space is available on the
physical disk device. Likewise, make sure that the device is not already
initialized.

Use meaningful device names to facilitate more efficient usage and
management of disk devices. For example, it is difficult to misinterpret the
usage of a device named DUMP_DEV1 or TEST_DEV7. However, names
such as XYZ or A193 are not particularly useful. Additionally, maintain
documentation on initialized devices by saving script files containing the
actual initialization commands and diagrams indicating the space allocated by
device.

Use meaningful device names to facilitate more efficient
usage.

Page Size (Block Size)
Most DBMSs provide the ability to specify a page, or block, size. The page
size is used to store table rows (or, more accurately, records that contain the
row contents plus any overhead) on disk. For example, consider a table
requiring rows that are 125 bytes in length with 6 additional bytes of
overhead. This makes each record 131 bytes long. To store 25 records on a
page, the page size would have to be at least 3,275 bytes. However, each
DBMS requires some amount of page overhead as well, so the practical size
will be larger. If page overhead is 20 bytes, the page size would be 3,295—
that is, 3,275 + 20 bytes of overhead.

Choosing the proper page size is an important DBA task.

This discussion, however, is simplistic. In general practice, most
tablespaces will require some amount of free space to accommodate new
data. Therefore, some percentage of free space will need to be factored into
the equation.

To complicate matters, many DBMSs limit the page sizes that can be
chosen. For example, DB2 for z/OS limits page size to 4K, 8K, 16K, or 32K;
Microsoft SQL Server supports only an 8K page size. In the case of DB2, the
DBA will need to calculate the best page size based on row size, the number
of rows per page, and free space requirements.

Consider this question: “In DB2 for z/OS, what page size should be chosen
if 0 percent free space is required and the record size is 2,500 bytes?”

The simplistic answer is 4K, but it might not be the best answer. A 4K
page would hold one 2,500-byte record per page, but an 8K page would hold
three 2,500-byte records. The 8K page could provide for more efficient
sequential I/O processing, because reading 8K of data would return three
rows, whereas reading 8K of data using two 4K pages would return only two
rows.

Choosing the proper page size is an important DBA task for optimizing
database I/O performance.

Database Reorganization
Relational technology and SQL make data modification easy. Just issue an
INSERT, UPDATE, or DELETE statement with the appropriate WHERE

clause and the DBMS takes care of the actual data navigation and
modification. In order to provide this level of abstraction, the DBMS handles
the physical placement and movement of data on disk. Theoretically, this
makes everyone happy. The programmer’s interface is simplified, and the
RDBMS takes care of the hard part—manipulating the actual placement of
data. However, things are not quite that simple. The manner in which the
DBMS physically manages data can cause subsequent performance problems.

Every DBA has encountered the situation where a query or application that
used to perform well slows down after it has been in production for a while.
These slowdowns have many potential causes—perhaps the number of
transactions issued has increased, or the volume of data has expanded.
However, the performance problem might be due to database disorganization.
Database disorganization occurs when a database’s logical and physical
storage allocations contain many scattered areas of storage that are too small,
not physically contiguous, or too disorganized to be used productively. Let’s
review the primary culprits:

Query or application slowdowns have many potential causes.

• The first possibility is unclustered data. If the DBMS does not strictly
enforce clustering, a clustered table or index can become unclustered as
data is added and changed. If the data becomes significantly
unclustered, the DBMS cannot rely on the clustering sequence. Because
the data is no longer clustered, queries that were optimized to access
data cannot take advantage of the clustering sequence. In this case, the
performance of queries run against the unclustered table will suffer.

• Fragmentation is a condition in which there are many scattered areas of
storage in a database that are too small to be used productively. It
results in wasted space, which can hinder performance because
additional I/Os are required to retrieve the same data.

• Row chaining or row migration occurs when updated data does not fit
in the space it currently occupies, and the DBMS must find space for
the row. With row chaining, the DBMS moves a part of the new, larger
row to a location within the tablespace where free space exists. With
row migrations, the full row is placed elsewhere in the tablespace. In
each case, a pointer is used to locate either the rest of the row or the full
row. Both row chaining and row migration will result in the issuance of

multiple I/Os to read a single row. Performance will suffer because
multiple I/Os are more expensive than a single I/O.

• Page splits can cause disorganized databases, too. If the DBMS
performs monotonic page splits when it should perform normal page
splits, or vice versa, space may be wasted. When space is wasted, fewer
rows exist on each page, causing the DBMS to issue more I/O requests
to retrieve data. Therefore, once again, performance suffers.

• File extents can negatively impact performance. An extent is an
additional file that is tied to the original file and can be used only in
conjunction with the original file. When the file used by a tablespace
runs out of space, an extent is added for the file to expand. However,
file extents are not stored contiguously with the original file. As
additional extents are added, data requests will need to track the data
from extent to extent, and the additional code this requires is unneeded
overhead. Resetting the database space requirements and reorganizing
can clean up file extents.

Let’s take a look at a disorganized tablespace by comparing Figures 11.4
and 11.5. Assume that a tablespace consists of three tables across multiple
blocks, such as the tablespace and tables depicted in Figure 11.4. Each box
represents a data page.

Figure 11.4. Organized tablespace

Now, let’s make a couple of changes to the data in these tables. First, we’ll

add six rows to the second table. However, no free space exists into which
these new rows can be stored. How can the rows be added? The DBMS
requires an additional extent to be taken into which the new rows can be
placed. This results in fragmentation: The new rows have been placed in a
noncontiguous space. For the second change, let’s update a row in the first
table to change a variable-length column; for example, let’s change the value
in a LASTNAME column from WATSON to BEAUCHAMP. Issuing this
update results in an expanded row size because the value for LASTNAME is
longer in the new row: “BEAUCHAMP” contains nine characters whereas
“WATSON” consists of only six. This action results in row chaining. The
resultant tablespace shown in Figure 11.5 depicts both the fragmentation and
the row chaining.

Figure 11.5. Disorganized tablespace

Depending on the DBMS, there may be additional causes of
disorganization. For example, if multiple tables are defined within a
tablespace, and one of the tables is dropped, the tablespace may need to be
reorganized to reclaim the space.

To correct disorganized database structures, the DBA can run a database or
tablespace reorganization utility, or REORG, to force the DBMS to
restructure the database object, thus removing problems such as unclustered
data, fragmentation, and row chaining. The primary benefit of reorganization
is the resulting speed and efficiency of database functions because the data is

organized in a more optimal fashion on disk. In short, reorganization
maximizes availability and reliability for databases.

Running a reorganization causes the DBMS to restructure the
database object, maximizing the availability, speed, and
efficiency of database functions.

Both tablespaces and indexes can be reorganized. How the DBA runs a
REORG utility depends on the DBMS. Some DBMS products ship with a
built-in reorganization utility. Others require the customer to purchase the
utility. Still others claim that the customer will not need the utility at all when
using their DBMS. I have found the last claim to be untrue. Every DBMS
incurs some degree of disorganization as data is added and modified.

Of course, DBAs can manually reorganize a database by completely
rebuilding it. However, accomplishing such a reorganization requires a
complex series of steps. Figure 11.6 depicts the steps entailed by a manual
reorganization.

Figure 11.6. Typical steps for a manual reorganization

If a utility is available for reorganizing, from either the DBMS vendor or a
third-party vendor, the process is greatly simplified. Sometimes the utility is
as simple as issuing a command such as

REORG TABLESPACE TSNAME

A traditional reorganization requires the database to be down. The high
cost of downtime creates pressure both to perform and to delay preventive
maintenance—a no-win situation familiar to most DBAs. Some REORG
utilities are available that perform the reorganization while the database is
online. Such a reorganization is accomplished by making a copy of the data.
The online REORG utility reorganizes the copy while the original data
remains online. When the copied data has been reorganized, an online
REORG uses the database log to “catch up” by applying to the copy any data
changes that occurred during the process. When the copy has caught up to the
original, the online REORG switches the production tablespace from the
original to the copy. Performing an online reorganization requires additional
disk storage and a slow transaction window. If a large number of transactions
occur during the online reorganization, REORG may have a hard time
catching up.

Determining When to Reorganize
System catalog statistics can help to determine when to reorganize a database
object. Each DBMS provides a method of reading through the contents of the
database and recording statistical information about each database object.
Depending on the DBMS, this statistical information is stored either in the
system catalog or in special pages within the database object itself.

One statistic that can help a DBA determine when to reorganize is cluster
ratio. Cluster ratio is the percentage of rows in a table that are actually stored
in clustering sequence. The closer the cluster ratio is to 100 percent, the more
closely the actual ordering of the rows on the data pages matches the
clustering sequence. A low cluster ratio indicates bad clustering, and a
reorganization may be required. A low cluster ratio, however, may not be a
performance hindrance if the majority of queries access data randomly
instead of sequentially.

Cluster ratio is the percentage of rows in a table that are
actually stored in clustering sequence.

Tracking down the other causes of disorganization can sometimes be
difficult. Some DBMSs gather statistics on fragmentation, row chaining, row
migration, space dedicated to dropped objects, and page splits; others do not.

Oracle provides a plethora of statistics in dynamic performance tables that
can be queried. Refer to the sidebar “Oracle Dynamic Performance Tables”
for more details.3

Tablespaces are not the only database objects that can be reorganized.
Indexes, too, can benefit from reorganization. As table data is added and
modified, the index too must be changed. Such changes can cause the index
to become disorganized.

Oracle Dynamic Performance Tables
Oracle stores vital performance statistics about the database system in a
series of dynamic performance tables. These tables are sometimes referred
to as the “V$ tables” because the table names are prefixed with the
characters V$.

The V$ tables are used by the built-in Oracle performance monitoring
facilities and can be queried by the DBA for insight into the well-being
and performance of an Oracle instance. Examples of some of the
statistics that can be found in the V$ tables include

• Free space available
• Chained rows
• Rollback segment contention and activity
• Memory usage
• Lock and latch activity
• Buffer waits
• Disk activity
Of course, there is quite a lot of additional performance information

to be found in these tables. Oracle DBAs should investigate the V$
tables and query them regularly to analyze the performance of the
Oracle system, its databases, and applications.

A vital index statistic to monitor is the number of levels. Recall from
Chapter 4 that most relational indexes are b-tree structures. As data is added
to the index, the number of levels of the b-tree will grow. When more levels
exist in the b-tree, more I/O requests are required to move from the top of the
index structure to the actual data that must be accessed. Reorganizing an

index can cause the index to be better structured and require fewer levels.
Another index statistic to analyze to determine wheher reorganization is

required is the distance between the index leaf pages, or leaf distance. Leaf
distance is an estimate of the average number of pages between successive
leaf pages in the index. Gaps between leaf pages can develop as data is
deleted from an index or as a result of page splitting. Of course, the best
value for leaf distance is zero, but achieving a leaf distance of zero in practice
is not realistic. In general, the lower this value, the better. Review the value
over time to determine a high-water mark for leaf distance that will indicate
when indexes should be reorganized.

Automation
If possible, the DBA should look into using the database utilities or third-
party tools to automate reorganizations. The automation tool can be used to
query the database statistics and trigger reorganization only for those
database objects that have surpassed the high-water mark for a combination
of statistics. For example, the DBA may want to automatically reorganize all
tablespaces where the cluster ratio is below 85 percent and all indexes where
the leaf distance has a value greater than 100.

Look into using the database utilities or third-party tools to
automate reorganizations.

Reorganizations can be costly in terms of downtime and computing
resources. Furthermore, determining when reorganization will actually create
performance gains can be difficult. However, the performance gains that can
be accrued with reorganization are tremendous when data is unclustered,
fragmented, or disorganized in any way. Wise DBAs will plan for and
schedule reorganizations to resolve disorganization problems in their
database systems.

Summary
Applications and data are constantly changing. Users require instant response
time and 24/7 availability. The database structures that support these
applications must be properly maintained to ensure optimal application
performance. Proper database design, appropriate choice of clustering, and
reorganizing databases based on statistics help to deliver efficient databases.

Furthermore, DBAs can ensure database performance by automating these
processes to reduce the risk and errors associated with manual database
maintenance.

Review
1. What is the best performance tuning technique a DBA can use to

improve database performance?
2. What is the only reason to denormalize a physical data model?
3. What is the benefit of clustering data?
4. How many indexes should be defined for a single table?
5. Discuss the pros and cons of providing database objects with free

space.
6. What are the causes of database and index disorganization?
7. How can file extents degrade database performance?
8. What performance advantages can be gained by partitioning a table?
9. Explain what the term leaf distance means and why it is important for

index performance.
10. What is the benefit of allocating tablespaces and indexes on separate

disk devices?

Suggested Reading
Colledge, Rod. SQL Server 2008 Administration in Action. Greenwich, CT:

Manning Publications (2010). ISBN 978-1-933988-72-6.
Dunham, Jeff. Database Performance Tuning Handbook. New York, NY:

McGraw-Hill (1998). ISBN 0-07-018244-2.
Informix Software Staff. Evolution of the High Performance Database.

Upper Saddle River, NJ: Informix Press/Prentice Hall (1997). ISBN 0-13-
594730-8.

Kyte, Thomas. Effective Oracle by Design. New York, NY: McGraw-Hill
(2003). ISBN 0-07-223065-7.

Lahdenmaki, Tapio, and Michael Leach. Relational Database Index Design
and the Optimizers. Hoboken, NJ: John Wiley & Sons (2005). ISBN 0-
471-71999-4.

Lewis, Jonathan. Oracle Core: Essential Internals for DBAs and
Developers. New York, NY: Apress (2011). ISBN 978-1-4302-3954-3.

Mullins, Craig S. DB2 Developer’s Guide. 6th ed. Boston, MA: IBM Press
(2012). ISBN 978-0-13-283642-5.

Purba, Sanjiv. High-Performance Web Databases. Boca Raton, FL:
Auerbach (2001). ISBN 0-8493-0882-8.

Schwartz, Baron, et al. High Performance MySQL. 2nd ed. Sebastopol, CA:
O’Reilly (2008). ISBN 978-0-596-10171-8.

12. Application Performance

Now that we have discussed performance from the system and database
perspective, it is time to turn our attention to performance from the
application code perspective. This chapter focuses on tuning and optimizing
the application code and SQL statements, as well as ensuring the application
interacts with the DBMS appropriately and efficiently. Poorly constructed
and formulated application code accounts for the majority of relational
database performance problems—as many as 80 percent of performance
problems can be traced back to the application.

Poorly constructed and formulated application code accounts
for most relational database performance problems.

Designing Applications for Relational Access
Application design issues were discussed in Chapter 5 and should be revisited
when application performance suffers. Perhaps the application was
improperly designed and portions of the application, or perhaps the entire
application, will need to be rewritten. The application must be designed for
performance at the outset—because changing the design of the application
later is either impossible, impractical, or too costly to tackle.

Design issues to examine when application performance suffers include the
following:

• Type of SQL. Is the correct type of SQL (planned or unplanned,
dynamic or static, embedded or stand-alone) being used for this
particular application?

• Programming language. Is the programming language capable of
achieving the required performance, and is the language environment
optimized for database access?

• Transaction design and processing. Are the transactions within the
program properly designed to assure ACID properties, and does the
program use the transaction processor of choice appropriately and
efficiently?

• Locking strategy. Does the application hold the wrong type of locks, or

does it hold the correct type of locks for too long?
• COMMIT strategy. Does each application program issue SQL

COMMIT statements to minimize the impact of locking?
• Batch processing. Are batch programs designed appropriately to take

advantage of the sequential processing features of the DBMS?
• Online processing. Are online applications designed to return useful

information and to minimize the amount of information returned to the
user’s screen for a single invocation of the program?

Relational Optimization
The DBA must become intimately familiar with the optimization techniques
used by each DBMS in the organization. Of course, application developers
must code efficient SQL and understand how to optimize SQL, but in the end
it is the DBA who is responsible for the performance of database
applications. As such, the DBA must be skilled in SQL coding and tuning
SQL for performance.

The optimizer is the heart of a relational database management system. It is
an inference engine responsible for determining the best possible database
navigation strategy for any given SQL request.

The optimizer is an inference engine for determining the
database navigation strategy.

The application developer specifies what data is needed by coding the SQL
statements, the DBMS supplies information about where the data is located,
and the relational optimizer decides how to efficiently navigate the database.
The end user needs no knowledge of where and how the actual data is stored.
The optimizer knows this information.

To optimize SQL, the relational optimizer must analyze each SQL
statement by parsing it to determine the tables and columns that must be
accessed. The optimizer will also access statistics stored by the RDBMS in
either the system catalog or the database objects themselves. The statistics are
used to determine the best method of accomplishing the tasks that need to be
performed to satisfy the SQL request. This process is called relational
optimization and is shown in Figure 12.1.

Figure 12.1. Relational optimization

Relational optimization is very powerful because it allows queries to adapt
to a changing database environment. The optimizer can react to changes by
formulating new access paths without requiring application coding changes to
be implemented. The application can therefore be flexible as tables expand or
contract in size, as indexes are added or removed, and as the database
becomes disorganized or reorganized.

Regardless of how the data is physically stored and manipulated, SQL can
be used to access data, and the DBMS will take the current state of the
database into account to optimize that data access. This separation of access
criteria from physical storage characteristics is called physical data
independence.

The separation of access criteria from physical storage

characteristics is called physical data independence.

Every RDBMS has an embedded relational optimizer that renders SQL
statements into executable access paths. Furthermore, each vendor’s
relational optimizer works a little differently, with different steps and using
different information. Nevertheless, the core of the process is the same from
DBMS to DBMS. The optimizer parses the SQL statement and performs
various phases of optimization, typically involving verification of syntactic
and semantic correctness, followed by query analysis and formulation of the
access paths to satisfy the query.

The relational optimizer can deploy many types of strategies available to
the DBMS for optimizing SQL statements. The internal operations and
instructions that are used by each DBMS’s optimizer are closely guarded
secrets. Modern relational optimizers are cost based, meaning that the
optimizer will attempt to formulate an access path for each query that reduces
overall cost. To function in this manner, the optimizer must evaluate and
analyze multiple factors, including estimated CPU and I/O costs, database
statistics, and the actual SQL statement.

CPU and I/O Costs
A relational optimizer uses formulas and models to estimate the machine cost
to run each potential access path for the query being optimized. Based on
CPU information, the optimizer can arrive at a rough estimate of the CPU
time required to run the query using each optimized access path it analyzes.

Furthermore, a relational optimizer must estimate the cost of the actual
writing and retrieval of the data. The optimizer estimates the cost of I/O to
the query by using a series of formulas based on the database statistics, the
data cache efficiency, and the cost of I/O to intermediate work files. These
formulas result in a filter factor, which determines the relative I/O cost of the
query.

Database Statistics
A relational optimizer is of little use without accurate statistics about the data
stored in the database. A relational DBMS provides a utility program or
command to gather statistics about database objects and to store them for use
by the optimizer (or by the DBA for performance monitoring). For example,
to collect statistics in DB2, the DBA must execute the RUNSTATS utility; to

collect statistics in SQL Server the UPDATE STATISTICS command is
issued.

A relational optimizer is of little use without accurate
statistics.

The DBA should collect modified statistics whenever a significant volume
of data has been added or modified. Failure to do so will result in the
optimizer basing its cost estimates on inaccurate statistics. This may be
detrimental to query performance.

Database statistics provide the optimizer with information about the state
of the tablespaces, tables, columns, and indexes. The DBMS collects
statistical information such as

• Number of rows in the tablespace, table, or index
• Number of unique values stored in the column
• Most frequently occurring values for columns
• Index key density (see the “Density” sidebar)

Density
Density is the average percentage of duplicate values stored in the index
key column(s) and is recorded as a percentage. For example, a density of
50 percent means that for a given index key value, we would expect to
return 50 percent of the rows. The following equation determines the
average number of rows expected to be returned when accessing a table by
the index:

Average # rows = Total # rows × Density

For example, when accessing a table with 1,000 rows by an index
with a density of 50 percent:

Average # rows = 1,000 × 0.50 = 500

When accessing a table with 20,000 rows by an index with a density
of 15 percent:

Average # rows = 20,000 × 0.15 = 3,000

This information is useful to the optimizer because it assists in
determining the size of the results set and thus whether an index is
helpful for specific access paths.

• Details on the ratio of clustering for clustered tables
• Correlation of columns to other columns
• Structural state of the index or tablespace
• Amount of storage used by the database object

When issuing RUNSTATS or the UPDATE STATISTICS command, the
DBA specifies which statistics to gather. Of course, the exact statistics
collected vary from DBMS to DBMS; additional or fewer statistics may be
available within your database system. The key, though, is to keep the
statistics as accurate as possible to ensure efficient and useful relational
optimization.

When developing an application against test databases, the statistics for the
test data will not accurately reflect the statistics for the production database.
Whenever possible, the DBA should work with the application development
team to create a script to populate production statistics into the test system.
Depending on the DBMS, this may be accomplished with SQL statements or
a data testing tool. Without production statistics, the DBMS will likely
choose different access paths in the test environment from the ones it would
choose in production—potentially causing performance problems when the
application goes into production status.

Create a script to populate production statistics into the test
system.

Query Analysis
The query analysis scans the SQL statement to determine its overall
complexity. The formulation of the SQL statement is a significant factor in
determining the access paths chosen by the optimizer. The complexity of the
query, the number and type of predicates, the presence of functions, and the
presence of ordering clauses enter into the estimated cost that is calculated by
the optimizer. The more complex the SQL statement, the more work the
query analysis must do to make sense of the SQL statement. During query
analysis, the optimizer analyzes aspects of the SQL statement and the

database system, such as

The more complex the SQL statement, the more work the
query analysis must do.

• Which tables in which database are required
• Whether any views are required to be broken down into underlying

tables
• Whether table joins or subselects are required
• Whether UNION, EXCEPT, or INTERSECT are required
• Which indexes, if any, can be used
• How many predicates (WHERE clauses) must be satisfied
• Which functions must be executed
• Whether the SQL uses OR or AND
• How the DBMS processes each component of the SQL statement
• How much memory has been assigned to the data cache(s) used by the

tables in the SQL statement
• How much memory is available for sorting if the query requires a sort

In other words, the query analysis breaks down the SQL statement into
discrete tasks that must be performed to return the query results.

A large part of query analysis is index selection. After the optimizer
determines the indexes available to be used for each predicate, it will decide
whether to use a single index, multiple indexes, or no index at all.

Joins
When multiple tables are accessed, the optimizer figures out how to combine
the tables in the most efficient manner. Combining information from multiple
tables is known as joining. When determining the access path for a join, the
optimizer must determine the order in which the tables will be joined,
compute the overall cost estimate of each access path, and choose a join
method for the particular query. The DBMS can use several different
methods for joining tables.

Combining information from multiple tables is known as
joining.

Regardless of the join method, the DBMS must make several decisions and
perform certain operations. The first decision is to choose the table to process
first—this table is referred to as the outer table. Next, a series of operations
are performed on the outer table to prepare it for joining. Rows from that
table are then combined with rows from the second table, called the inner
table, as shown in Figure 12.2. A series of operations are also performed on
the inner table before the join occurs, as the join occurs, or both.

Figure 12.2. Joining tables

Although all joins are similar in functionality, each join method works
differently behind the scenes. Let’s investigate two common join methods:
the nested-loop join and the merge-scan join. There are other join methods
such as DB2’s hybrid join and SQL Server’s hash join, but we will discuss
only the two most common methods here.

The nested-loop join works by comparing qualifying rows of the outer
table to the inner table. A qualifying row is identified in the outer table, and
then the inner table is scanned for a match. A qualifying row is one in which
the predicates for columns in the table match. When the inner table scan is
complete, another qualifying row in the outer table is identified. The inner

table is scanned for a match again, and so on. The repeated scanning of the
inner table is usually accomplished with an index to avoid undue I/O costs.
The smaller the size of the inner table, the better a nested-loop join performs,
because fewer rows need to be scanned for each qualifying row of the outer
table.

A second type of join method is the merge-scan join. In a merge-scan join,
the tables to be joined are ordered by the keys. This ordering can be
accomplished by a sort or by access via an index. After ensuring that both the
outer and inner tables are properly sequenced, each table is read sequentially,
and the join columns are matched. During a merge-scan join, no row from
either table is read more than once. Merge-scan joins are useful when an
appropriate index is not available on one (or both) of the tables.

Depending on the DBMS, other join methods may be available. For
example, star joins to support data warehousing and analytical queries are
typical in many DBMSs. Additional information on star schema and star join
can be found in Chapter 20, “Data Warehouse Administration.”
Join Order

The optimizer reviews each join in a query and analyzes the appropriate
statistics to determine the optimal order in which the tables should be
accessed to accomplish the join. To find the optimal join access path, the
optimizer uses built-in algorithms containing knowledge about joins and data
volume. It matches this intelligence against the join predicates, databases
statistics, and available indexes to estimate which order is more efficient. In
general, the optimizer will deploy an algorithm that minimizes the number of
times the inner table must be accessed for qualifying outer table rows.
However, none of today’s relational optimizers are perfect.

Access Path Choices
The relational optimizer has numerous options for creating SQL access paths.
We have already discussed the join access paths, so let’s discuss some of the
other common types of data access.
Table Scans

Table scans are the simplest form of data access. A table scan is performed
simply by reading every row of the table. Depending on the DBMS, an
alternate type of scan may exist, called a tablespace scan. The tablespace

scan reads every page in the tablespace, which may contain more than one
table. Obviously, a tablespace scan will run slower than a table scan because
additional I/O will be incurred reading data that does not apply.

Table scans are the simplest form of data access.

Another form of scanning is the partition scan. If the DBMS can determine
that the data to be accessed exists in certain partitions of a multipartition table
(or tablespace), it can limit the data that is scanned to the appropriate
partitions. A partition scan should outperform a table scan or tablespace scan
because the amount of I/O required is reduced.

Typically, the optimizer will choose to scan data for one of the following
reasons:

• The query cannot be satisfied using an index, possibly because no
index is available, no predicate matches the index, or the predicate
precludes the use of an index.

• A high percentage of the rows in the table qualify. In this case, using an
index is likely to be less efficient because most of the data rows need to
be read anyway.

• The indexes that have matching predicates have low cluster ratios and
are efficient for only small amounts of data.

• The table is so small that use of an index would actually be detrimental.
For small tables, adding index access to the table access can result in
additional I/O, instead of less I/O.

To assist the performance of a scan, the optimizer can invoke data prefetch.
Data prefetch causes the DBMS to read data pages sequentially into the data
cache even before they are requested. Essentially, data prefetch is a read-
ahead mechanism—when data scans get around to requesting the data, it will
already exist in memory. Data prefetch is particularly useful for table and
tablespace scans but can be practical for any type of sequential data access.
Whether data prefetch is available, as well as when and how it is used,
depends on the DBMS. The optimizer may choose to deploy it when the
access path is formulated, or the DBMS may choose to turn on data prefetch
when the query is being run. As a DBA, you should learn how and why your
particular DBMS prefetches data.

Data prefetch is particularly useful for table and tablespace
scans.

Indexed Access

Of the many decisions that must be made by the optimizer, one of the most
important for query performance is whether an index will be used to satisfy
the query. To determine this, the optimizer must first discover whether an
index exists. An index does not have to be defined before SQL can be written
to access a column—you can query any column of any table known to the
database.

Of course, before the relational optimizer will use an index to satisfy a
query, an appropriate index must already exist. Additionally, at least one
indexed column must be referenced within an indexable predicate in the SQL
statement. The DBMS is not capable of using an index for every WHERE
clause. You must learn what types of predicates can use indexes to ensure
that the appropriate indexes are created for the queries in your database
applications. Every DBMS has a different list of what is, and what is not,
indexable. Furthermore, what is indexable tends to change from version to
version of each DBMS.

The relational optimizer can choose to use an index in many different
ways. The first, and simplest, type of indexed access is the direct index
lookup. To perform a direct index lookup, the DBMS initiates the following
steps:

1. The value in the SQL predicate is compared to the values stored in the
root page of the index. Based on this comparison, the DBMS will
traverse the index to the next-lower set of pages.

2. If intermediate nonleaf pages exist, the appropriate nonleaf page is
read, and the value is compared to determine which leaf page to access.

3. The appropriate leaf page is read; the index leaf page contains
pointer(s) to the actual data for the qualifying rows.

4. Based on the pointer(s) in the leaf page index entries, the DBMS reads
the appropriate table data pages.

The simplest type of indexed access is the direct index lookup.

For the DBMS to perform a direct index lookup, values must be provided

for each column in the index. For example, consider the following query:
Click here to view code image

SELECT last_name, first_name, middle_initial, empno
FROM employee
WHERE position = 'MANAGER'
AND work_code = 1
AND dept = '001000';

Furthermore, assume that an index exists on the position, work_code, and
dept columns. The DBMS can perform a direct index lookup using the index
and the values supplied in the predicate for each of the columns. For a direct
index lookup to occur, all three columns must appear in the SQL statement. If
only one or two of these columns are specified as predicates, a direct index
lookup cannot be chosen because the DBMS cannot match the full index key.
Instead, an index scan could be chosen. Recall the previous discussion of
table and tablespace scans. Index scans are similar. When an index scan is
invoked, the leaf pages of the index are read sequentially, one after the other.

There are two basic types of index scans: matching index scans and
nonmatching index scans. A matching index scan is sometimes called
absolute positioning. A matching index scan begins at the root page of an
index and works down to a leaf page in much the same manner as a direct
index lookup does. However, because the complete key of the index is not
available, the DBMS must scan the leaf pages of the index looking for the
values that are available, until all matching values have been retrieved. To see
how a matching index scan works, follow the arrows in Figure 12.3.

Figure 12.3. Matching index scan

There are two basic types of index scans: matching and
nonmatching.

To clarify, consider the previous query of the employee table, but this time
the query is recoded without the predicate for the dept column. The DBMS
can use a matching index scan. The matching index scan first locates the first
leaf page with the appropriate value for position and work_code by traversing
the index, starting at the root. However, there can be multiple index entries
with this combination of values and different values for dept. Therefore, the
leaf pages will be scanned sequentially until no more valid entries are found.

For a matching index scan to be requested, you must specify the high-order
column in the index key, in other words, for the first column specified in the
index DDL. For the preceding example, the high-order column is the position
column. The high-order column provides the starting point for the DBMS to
traverse the index structure from the root page to the appropriate leaf page.

Consider the consequences of not specifying the high-order column in the
query. For example, suppose we take the original query and remove the
predicate for position but retain the other two, leaving the following SQL
statement:
Click here to view code image

SELECT last_name, first_name, middle_initial, empno
FROM employee
WHERE work_code = 1
AND dept = '001000';

In such situations, the DBMS can deploy a nonmatching index scan,
sometimes referred to as relative positioning. When a starting point cannot be
determined because the first column in the index key is not specified, the
DBMS cannot use the index tree structure. However, it can use the index leaf
pages, as shown in Figure 12.4. A nonmatching index scan begins with the
first leaf page in the index and scans subsequent leaf pages sequentially,
applying the available predicates.

Figure 12.4. Nonmatching index scan

A nonmatching index scan can be more efficient than a table or tablespace
scan, especially if the data pages that must be accessed are in clustered order.
Of course, a nonmatching index scan can be done on a nonclustered index
also.

This brings us to clustered versus unclustered index access. Any of the
preceding methods for indexed access can be used with both clustered and
unclustered indexes. However, index scans that must then access table data
pages are not likely to be very efficient when the data is not clustered:
Clustered index access, as it proceeds from leaf page to leaf page, never

requests a read for the same data page twice. Unclustered index access,
however, will request the same data page multiple times because the data is
spread throughout the table. For clarification of clustering, refer to the
discussion and diagrams in Chapters 4 and 11.

An additional index access technique that can be deployed is index
screening. With index screening, a matching index scan is done on the
leading columns of a multicolumn index, and additional predicates are
applied during the scan. This technique is useful if some columns of a
multicolumn index are not specified in the query. Consider another sample
query:

SELECT last_name, empno
FROM employee
WHERE position = 'MANAGER'
AND work_code = 1
AND salary > 50000.00;

Index screening is useful if some columns of a multicolumn
index are not specified in the query.

Now assume that an index has been created on the following columns in
the following order: position, work_code, dept, and salary. The index can be
screened by applying a matching index scan on position and work_code, and
then a nonmatching scan for the specified salary values greater than
$50,000.00, but only for those rows that match the “position =
‘MANAGER’” and “work_code = 1” predicates.

One of the most efficient types of indexed access is index-only access,
sometimes referred to as index covering. Consider again the query we just
examined. Further, assume that an index has been created on the following
columns: position, work_code, dept, salary, last_name, and empno. In such a
scenario, the DBMS can satisfy the query using only the index because all of
the requested data in the SELECT list and the predicates exists in the index.
No additional I/O to table data pages is required.

A covering index contains all of the data required to satisfy the
query without requiring access to the table.

With index-only access, the DBMS can satisfy the query by simply
scanning the leaf pages of the index. A nonmatching index-only scan can be

much faster than a tablespace or table scan because index entries are
generally smaller than table rows, and consequently more data is read with
each I/O.

To encourage index-only access, the DBA can overload the index by
adding extra columns that appear in the SELECT list of SQL statements.
Doing so can provide a large performance payback, but it comes at the cost of
additional disk storage requirements because additional columns are being
indexed.

One final type of indexed access is multi-index access. With multi-index
access, the DBMS uses more than one index to satisfy a single access path.
For example, consider another variation of our employee table query:

SELECT last_name, empno
FROM employee
WHERE position = 'MANAGER'
AND work_code = 1;

With multi-index access, the DBMS uses more than one index
to satisfy a single access path.

This time we have two indexes: one on the position column and another on
the work_code column. The query specifies two predicates, each of which is
supported by a different index. Instead of choosing to use one index or the
other, the relational optimizer can combine the two indexes to return the
correct data efficiently.

There are two types of multi-index access, depending on whether the
predicates are tied together using AND or OR. Some DBMSs support only
the AND logical operator, whereas others support both AND and OR. In
some cases the DBA can minimize the number of indexes created by
deploying multiple single-column indexes, instead of multiple multicolumn
indexes. The DBA should base this decision on the efficiency of the DBMS
in using multi-index access and the performance requirements of the
applications being deployed.
Using Indexes to Avoid Sorts

The DBMS may need to sort data to satisfy SQL requests. Sorting is quite
cost prohibitive and should be avoided if possible. The DBA can use indexes
to avoid sorts by creating them on the columns that need to be sorted. The

relational optimizer will try to use indexes to avoid sorts whenever possible.
Sorting might occur when the following clauses are specified:

• DISTINCT: When this clause is specified, the DBMS requires every
column of the resulting data to be in order so that duplicate rows can be
removed from the results set.

Use indexes to avoid sorts by creating them on the columns
that need to be sorted.

• UNION: This operation requires the columns in each SELECT list to
be ordered because the results set can have no duplicate rows. If the
DBMS supports INTERSECT and EXCEPT, the same consideration
applies to those operations.

• GROUP BY: When this clause is specified, the DBMS requires data to
be sorted by the specified columns in order to aggregate data.

• ORDER BY: When this clause is specified, the DBMS will ensure that
the results set is sorted by the specified columns.

Consider the following SQL statement:
Click here to view code image

SELECT last_name, first_name, middle_initial, empno,
position
FROM employee
WHERE position in ('MANAGER', 'DIRECTOR', 'VICE
PRESIDENT')
ORDER BY last_name;

If an index exists on the last_name column, the query can use this index
and avoid sorting. Using an index to avoid a sort trades off the additional
CPU cost required to sort for the additional I/O cost required for indexed
access. Of course, if the index is going to be used anyway, the choice is a no-
brainer. Whether or not using an index is actually faster than scanning the
data and sorting will depend on

• Number of qualifying rows
• Speed of the sort
• Index characteristics (e.g., clustered or nonclustered)

Additionally, when coding queries that specify the UNION operation, take

care to examine the requirements of your application. If there could be no
duplicate rows, or if you do not care if duplicates exist in the results set, you
can specify UNION ALL to avoid the sort for duplicate removal.
Why Wasn’t the Index Chosen?

Situations sometimes arise where you think the optimizer should have chosen
an index, but it didn’t. Any number of reasons can cause the optimizer to
avoid using an index. Consult the following checklist for ways to encourage
index selection:

• Does the query specify a search argument? If no predicate uses a search
argument, the optimizer cannot use an index to satisfy the query.

• Are you joining a large number of tables? The optimizer within some
DBMSs may produce unpredictable query plan results when joining a
large number of tables.

• Are statistics current? If large amounts of data have been inserted,
updated, and/or deleted, database statistics should be recaptured to
ensure that the optimizer has up-to-date information upon which to base
its query plans.

• Are you using stored procedures? Sometimes the DBMS provides
options whereby a stored procedure, once compiled, will not
reformulate a query plan for subsequent executions. You may need to
recompile or reoptimize the stored procedure to take advantage of up-
to-date statistics, new indexes, or any other pertinent database changes.

• Are additional predicates needed? A different WHERE clause might
possibly enable the optimizer to consider a different index.

Hashed Access

The optimizer will also consider using any existing hashing structures when
formulating access paths. A hash, or hash function, is an algorithm that
converts a key (one or more columns) into a small number, usually a storage
location on disk. The values returned by a hash function are called hash
values, hash sums, or simply hashes.

Refer to Figure 12.5 for a depiction of hash functionality. Key values are
processed by the hash algorithm (also known as a hash function, hash routine,
or randomizer) and translated into a storage location. When data is inserted,
the hash algorithm tells the DBMS where to physically store the data; when

data is accessed by the key, the algorithm tells the DBMS where to find the
data.

Figure 12.5. Hashing operation

A hash translates keys to storage locations.

A hash is more efficient than even a direct index lookup because it
generally incurs less I/O. Instead of having to traverse through multiple index
pages (from the root through nonleaf pages out to the leaf page and then to
the data), a hash converts the key to a specific location on disk. This incurs a
single I/O in the best-case scenario. If the hashing algorithm produces the
same location for multiple keys, hash collisions occur, which require an
additional I/O. A collision is shown when the key for NEELD is passed
through the hash algorithm in Figure 12.5.

Hashing is used primarily to optimize random I/O for small amounts of
data, such as for looking up a code table value or accessing a single row
based on the value of its primary key.
Parallel Access

The relational optimizer may choose to run queries in parallel. When query
parallelism is invoked by the DBMS, multiple simultaneous tasks are invoked
to access the data. Three basic types of parallelism can be supported by the
DBMS:

• I/O parallelism enables concurrent I/O streams to be initiated for a
single query. Running parallel I/O tasks can significantly enhance the
performance of I/O bound queries. Breaking the data access for the
query into concurrent I/O streams executed in parallel can reduce the
overall elapsed time for the query.

• CPU parallelism enables multitasking of CPU processing within a
query. Invoking CPU parallelism also invokes I/O parallelism because
each CPU engine requires its own I/O stream. CPU parallelism
decomposes a query into multiple smaller queries that can be executed
concurrently on multiple processors. CPU parallelism can further
reduce the elapsed time for a query.

• Finally, the DBMS can deploy system parallelism to further enhance
parallel query operations. System parallelism enables a single query to
be broken up and run across multiple DBMS instances. Allowing a
single query to take advantage of the processing power of multiple
DBMS instances can decrease the overall elapsed time for a complex
query even further.

Three basic types of parallelism can be supported by the
DBMS: I/O, CPU, and system.

Ensuring that proper query plans are formulated with the correct index
usage is a time-consuming process, but one that can pay huge dividends in
the form of enhanced performance. The DBA should train the application
development staff to understand relational optimization and to create optimal
SQL. Of course, the onus falls on the application developer to code efficient
SQL and program logic. However, the DBA is the sentry of relational
database performance. When performance problems occur, the DBA is the
one who has to search for the cause of the problem and suggest remedies to
resolve it. Furthermore, the DBA should conduct design reviews to seek out
and tune inefficient SQL before suboptimal access paths and programs are
migrated to production status.

Additional Optimization Considerations
The optimizer makes additional decisions regarding the manner in which data
is accessed for SQL queries that will impact performance. In this section we
will discuss some of these additional optimization considerations.

View Access
One of the decisions that must be made during query optimization is how to
access data from views. Remember from Chapter 4 that a view is a logical
representation of a table that is defined using SQL. Therefore, a query that
accesses a view is basically a SQL statement embedded within another SQL
statement.

When the optimizer determines the access path for the query containing the
view, it must also determine how to resolve the view SQL. Keep in mind that
both the view and the SQL accessing the view may reference multiple tables
and additional views.

Two methods can be used to optimize SQL that references views: view
merging and view materialization. The more efficient of the two methods is
view merging. As the name implies, when view merging is deployed, the
SQL in the view DDL is merged with the SQL that references the view. The
merged SQL is then used to formulate an access path against the base tables
in the views.

View merging and view materialization can be used to
optimize SQL that references views.

The second technique for accessing views is view materialization. When
the optimizer cannot combine the SQL in the view with the SQL accessing
the view, it creates an intermediate work file to hold the results of the view.
The SQL accessing the view is then run against the work file that contains the
view data. View materialization is not as efficient as view merging because
data must be retrieved and stored in a temporary work file.

Each DBMS has its own set of rules that determine when view
materialization must be used instead of view merging. Generally, column
functions, or operations requiring sorts to be invoked, tend to require view
materialization.

Query Rewrite

Some relational optimizers are intelligent enough to rewrite SQL more
efficiently during the optimization process. For example, the optimizer might
convert a subquery into an equivalent join. Alternatively, it might test out
equivalent but different predicate formulations to determine which one
creates the better access path. For example, since the following two
predicates are equivalent, the optimizer may rewrite the query both ways to
see which one produces the better access path:
Click here to view code image

WHERE column1 >= 1 AND column1 <= 100
WHERE column1 BETWEEN 1 AND 100

Additionally, the optimizer may rewrite queries by creating inferred
predicates. One example of this is a feature known as predicate transitive
closure, in which the optimizer adds a predicate to the query to improve
performance. Consider the following SQL statement:
Click here to view code image

SELECT d.dept_name, e.last_name, e.empno
FROM employee e,
 department d
WHERE e.deptno = d.deptno
AND d.deptno = '808';

That SQL statement is functionally equivalent to the following SQL
statement:
Click here to view code image

SELECT d.dept_name, e.last_name, e.empno
FROM employee e,
 department d
WHERE e.deptno = d.deptno
AND e.deptno = '808';

The only difference is the second predicate, but because deptno is the same
in both tables (due to the first join predicate), it does not matter whether we
check deptno from the employee table or the department table. However, it
might make a difference in terms of performance. For example, an index
might exist on one of the deptno columns but not the other, or perhaps one of
the tables is significantly larger than the other. A query is usually more
efficient when the predicate is applied to the larger of the two tables because

the number of qualifying rows will be reduced.
If the optimizer can perform predicate transitive closure, the SQL

developer need not worry about this. The optimizer will consider the access
path for both columns regardless of which is coded in the predicate. In
essence, the optimizer will rewrite the query to add the redundant predicate.

The DBA should find out whether the relational optimizer in use can
perform any form of query rewrite. Additionally, the rules for what types of
queries can be rewritten vary from DBMS to DBMS and optimizer to
optimizer. For example, the optimizer may not be able to perform predicate
transitive closure on some predicates, such as IN or LIKE clauses.

The rules for what types of queries can be rewritten vary with
DBMS and optimizer.

Rule-Based Optimization
The discussion up to this point has focused on cost-based optimization. Most
relational optimizers are cost based, meaning they base their access path
formulation decisions on an estimation of costs. Lower-cost access paths are
favored over costlier access paths.

However, some DBMSs support a different type of optimization that is
based on heuristics, or rules. Oracle, for example, provides both cost-based
and rule-based optimization.

Oracle provides both cost-based and rule-based optimization.

A rule-based optimizer bases its optimization decisions on SQL syntax and
structure, placement of predicates, order of tables in the SELECT statement,
and availability of indexes. With a rule-based optimizer, SQL developers
have to be aware of the rules as they write SQL. Query performance can
suffer simply by reordering columns in the SELECT list or tables in the
FROM clause.

Cost-based optimization is the trend for DBMSs because SQL statements
need not be coded following a set of esoteric “rules.” Furthermore, an
optimizer that estimates the cost of different access paths produces efficient
query execution plans more reliably.

Reviewing Access Paths

The programmer or DBA can examine the access paths chosen by the
relational optimizer. The commands and process used to accomplish this
depend on the DBMS. Usually the command to externalize access paths is
EXPLAIN or SHOWPLAN. Regardless of the name, the general process is
depicted in Figure 12.6.

Figure 12.6. The EXPLAIN process

Microsoft SQL Server and Sybase make use of a command called
SHOWPLAN. Figure 12.7 provides a text description of the access path, and
Figure 12.8 provides a graphical depiction of the access path.

Figure 12.7. Textual SHOWPLAN example

Figure 12.8. Graphical SHOWPLAN example

Oracle and DB2 use a different method, namely, the EXPLAIN statement.
When the SQL statement is prefixed with the EXPLAIN command, the
access path information determined by the optimizer is written out to a table
called a PLAN_TABLE. The DBA or programmer can then query the
PLAN_TABLE to interpret the access paths specified by the optimizer.
EXPLAIN can be run on a statement-by-statement basis, or for an entire
application program.

For example, consider the following SQL statement:
Click here to view code image

EXPLAIN plan SET STATEMENT_ID = 'emptest' FOR
SELECT position, last_name, first_name,
middle_initial, empno
FROM employee
WHERE position IN ('MANAGER', 'DIRECTOR', 'VICE

PRESIDENT')
ORDER BY position;

Because the SELECT statement is prefixed with the EXPLAIN command,
the relational optimizer will externalize access path information into the
PLAN_TABLE. The STATEMENT_ID clause provides an identifier for
locating the access path of the SQL statement within the PLAN_TABLE. The
PLAN_TABLE contains encoded columns of data that outline the nature of
query access paths to be used, such as the following:

• Whether an index is used, and if so, how many
• How many columns of the index match the query
• Whether index-only access is used
• What join method is used
• Whether parallel access is used
• Whether sorting is required

Of course, the exact columns and the permissible values of those columns
differ between Oracle and DB2.

Access path analysis tools that interpret the PLAN_TABLE and display
English text and graphical access path depictions are available for Oracle and
DB2, too. For example, review the graphical output from the Visual Explain
tool shown in Figure 12.9. Such SQL analysis tools frequently provide expert
tuning recommendations on how to fix inefficient SQL statements. Analysis
tools can make it easier for the DBA to interpret the access paths being used
and tune the SQL, if necessary.

Figure 12.9. Visual Explain tool

Analysis tools can make it easier for the DBA to interpret the
access paths being used.

Forcing Access Paths
Some DBMSs allow you to force the use of specific access paths or the order
in which tables are joined. For example, Microsoft SQL Server provides the
FORCEPLAN option. When FORCEPLAN has been set to ON, the
optimizer will join the tables in the order in which they are coded in the SQL
statement.

Oracle, on the other hand, provides hints that can be used to guide the
relational optimizer to choose specific access paths. Hints are specified
directly in the SQL query embedded within /*+ and */, for example:
Click here to view code image

SELECT /*+ USE_NL */
 e.position, e.last_name, e.empno, d.manager
FROM employee e,
 department d
WHERE d.dept_id = e.dept_id
AND position IN ('MANAGER', 'DIRECTOR', 'VICE
PRESIDENT')
ORDER BY position;

This query uses the Oracle hint USE_NL to force a nested-loop join.
Additional hints can be provided to force the choice of index, force the use of
parallelism, or force other optimization goals.

Techniques that force access path selection criteria should be used with
caution. It is usually better to let the relational optimizer choose the
appropriate access paths on its own unless

• You have in-depth knowledge of the amount and type of data stored in
the tables to be joined

• You are reasonably sure that you can determine the optimal join order
better than the optimizer, or

• Database statistics are not up-to-date, so the optimizer is not working
with sufficient information about the database environment

Alternative methods are available to encourage the optimizer to select
different access paths. The general method of encouraging access path
selection is to modify the SQL, based on in-depth knowledge of the relational
optimizer. This is sometimes called tweaking SQL. Since the optimizer
within each DBMS is very different, few SQL tweaks are useful across
multiple DBMSs.

Alternative methods are available to encourage the optimizer
to select different access paths.

One common method of tweaking SQL is to change the query such that the
results are the same, but the optimizer is incapable of using certain access
paths. For example, consider the following SQL statement:
Click here to view code image

SELECT last_name, first_name, empno, deptno
FROM employee
WHERE empno BETWEEN '001000' AND '009999'

AND (salary > 50000.00 OR 0 = 1)
ORDER by last_name;

The results of this query are exactly the same with, or without, the “OR 0 =
1” component of the last predicate. However, some DBMS products prohibit
the use of an index with such query formulations. In such cases, appending
“OR 0 = 1” will eliminate the possibility of using an index to support the
salary predicate.

DBAs must learn the fundamentals of SQL tuning and the types of
tweaking that make sense for each DBMS that they manage. Furthermore,
whenever such tweaks are deployed, be sure to fully document the reason.
Without such documentation it is quite likely that a maintenance programmer
will remove “OR 0 = 1” (or any other tweak) because it is not required.

The DBA must learn the fundamentals of SQL tuning.

SQL Coding and Tuning for Efficiency
Coding and tuning SQL is one of the most time-consuming DBA tasks. There
can be literally thousands of individual SQL statements across hundreds of
applications that access databases. The DBA is responsible for ensuring that
the following steps occur for each SQL statement in the organization:

1. Identify the business data requirements.
2. Ensure that the required data is available within existing databases.
3. Translate the business requirements into SQL.
4. Test the SQL for accuracy and results.
5. Review the access paths for performance.
6. Tweak the SQL for better access paths.
7. Code optimization hints.
8. Repeat steps 4 through 7 until performance is acceptable.
9. Repeat step 8 whenever performance problems arise or a new DBMS

version is installed.
10. Repeat the entire process whenever business needs change.
SQL tuning is a complex, time-consuming, and error-prone process,

indeed. Furthermore, it requires cooperation and communication between the
business users and application programmers for the first three steps, and

between the application programmers and the DBA for the remaining steps.

SQL tuning is a complex, time-consuming, and error-prone
process.

Surely, there must be a way to simplify SQL tuning.

A Dozen SQL Rules of Thumb
In this section, we will examine some rules of thumb that apply generally to
SQL development regardless of the underlying DBMS.
Rule 1: “It Depends!”

The answer to every question about database performance is “It depends.” A
successful DBA will know on what it depends. For example, if someone asks,
“What is the best access path for my SQL query?” the best answer is “It
depends.” Why? Well, if every row must be returned, a table scan is likely to
be more efficient than indexed access. However, if only one row is to be
returned, direct index lookup will probably perform best. For queries that
return between one and all rows, the performance of access paths will depend
on how the data is clustered, which version of the DBMS is in use, whether
parallelism can be invoked, and so forth.

A successful DBA will know on what it depends.

Be skeptical of tuning tips that use the words always or never. Just about
everything depends on other things.
Rule 2: Be Careful What You Ask For

The arrangement of elements within a query can change query performance.
To what degree depends on the DBMS in use and whether rule-based
optimization is used.

A good rule of thumb, regardless of DBMS, is to place the most restrictive
predicate where the optimizer can read it first. In Oracle, the optimizer reads
WHERE clauses from the bottom up; therefore, the most restrictive predicate
should be put at the bottom of the query. It is just the opposite in DB2.

Place the most restrictive predicate where the optimizer can
read it first.

Placing the most restrictive predicate where the optimizer can read it first
enables the optimizer to narrow down the first set of results before
proceeding to the next predicate. The next predicate will be applied to the
subset of data that was selected by the most selective condition, instead of
against the entire table.
Rule 3: KISS

A rule of thumb for all types of IT activities is to follow the KISS principle:
Keep it simple, stupid. However, in the world of SQL there is a trade-off
between simplicity and performance.

Keep it simple, stupid.

Keeping SQL simple makes development and maintenance tasks easier. A
simple SQL statement is easier to decipher and easier to change. With simple
SQL, application developers can perform their job more easily than with
complex SQL.

Nevertheless, complex SQL can outperform simple SQL. The more work
that can be performed by the DBMS and the optimizer, the better
performance is likely to be. Let’s look at an example: Some programmers
avoid joins by coding multiple SQL SELECT statements and joining the data
using program logic. The SQL is simpler because the programmer need not
understand how to write SQL to join tables. However, SQL joins usually
outperform program joins because less data is returned to the program.
Furthermore, the relational optimizer can change the join methodology
automatically if the database or data changes. Conversely, program logic
must be changed manually by a skilled programmer.
Rule 4: Retrieve Only What Is Needed

As simple as this rule of thumb sounds, you might be surprised at how often
it is violated. To minimize the amount of data returned by your SQL
statements, be sure to specify the absolute minimum number of columns in
the SELECT list. If the column is not needed to satisfy the business
requirement, do not request it to be returned in the results set.

Specify the absolute minimum number of columns in the
SELECT list.

Programmers frequently copy SQL statements that work well to use as

templates for new statements. Sometimes programmers forget to trim down
the number of columns requested when they need only a subset of the
columns in the original query. This can adversely impact performance.
The more columns that must be returned by the DBMS, the greater the
processing overhead.

Another common problem is requesting unnecessary data. Consider the
following SQL statement:

SELECT position, last_name, empno
FROM employee
WHERE last_name = 'SMITH';

There is no reason to specify the last_name column in the SELECT list of
this SQL statement. We know that last_name must be SMITH for the entire
results set because of the WHERE clause.

A similar type of problem can arise when programmers select a column
only because they want to sort by it in the ORDER BY clause. Many DBMS
products do not require the column to be selected in order to use it in an
ORDER BY. The only columns that should be selected are those required for
the business purpose driving the query.

Returning only what is needed does not apply only to columns. You should
also minimize the number of rows to be returned by coding the proper
WHERE clauses for every SQL statement. The more data that can be filtered
out of the results set by the DBMS, the more efficient the query will be
because less data must be returned to the requester.

Sometimes application programmers avoid coding appropriate WHERE
clauses in a misguided attempt to simplify SQL statements. The more
information the optimizer has about the data to be retrieved, the better the
access paths it formulates will be. A sure sign of potential abuse is finding a
SQL statement embedded in an application program that is immediately
followed by a series of IF-THEN-ELSE statements. Try to tune the query by
moving the IF-THEN-ELSE statements into SQL WHERE clauses.
Rule 5: Avoid Cartesian Products

Be sure to code predicates matching the columns of every table that will be
joined within each SQL statement. Failure to do so will result in severe
performance degradation and possibly incorrect results.

Whenever predicates do not exist for joining two tables, the RDBMS must
perform a Cartesian product. This is the combination of every row of one
table with every row of the other table. Nonmatching rows are not eliminated
because there is nothing that can be matched. The results of a Cartesian
product are difficult to interpret and contain no information other than a
simple list of all rows of each table.

The results of a Cartesian product are difficult to interpret.

Rule 6: Judicious Use of OR

The OR logical operator can be troublesome for performance. If you can
convert a SQL statement that uses OR to one that uses IN, it is likely that
performance will improve. For example, consider changing this:
Click here to view code image

SELECT e.position, e.last_name, e.empno, d.manager
FROM employee e,
 department d
WHERE d.dept_id = e.dept_id
AND position = 'MANAGER'
OR position = 'DIRECTOR'
OR position = 'VICE PRESIDENT'
ORDER BY position;

The OR logical operator can be troublesome for performance.

to this:
Click here to view code image

SELECT e.position, e.last_name, e.empno, d.manager
FROM employee e,
 department d
WHERE d.dept_id = e.dept_id
AND position IN ('MANAGER', 'DIRECTOR', 'VICE
PRESIDENT')
ORDER BY position;

Of course, your results may vary depending on the DBMS in use and the
nature of the data.
Rule 7: Judicious Use of LIKE

The LIKE logical operator is another troublesome beast. It is very easy to

create performance problems when using LIKE in SQL. For example,
consider the following SQL:
Click here to view code image

SELECT position, last_name, empno
FROM employee
WHERE dept_id LIKE '%X'
ORDER BY position;

The LIKE logical operator is another troublesome beast.

This query will return employee information for all employees working in
any department where dept_id ends in X. However, the relational optimizer
will have to scan the data in order to resolve this query—there is no way to
use an index. Because the high-order portion of the column is not known,
traversing a b-tree index structure is impossible.

You might be able to use your knowledge of the data to rewrite this query
without a leading wild-card character (%). For example, perhaps all dept_id
values start with either A or B. In that case, you could modify the SQL as
follows:
Click here to view code image

SELECT position, last_name, empno
FROM employee
WHERE dept_id LIKE 'A%X'
OR dept_id LIKE 'B%X'
ORDER BY position;

In this case, the DBMS may be able to use a nonmatching index scan if an
index exists on the dept_id column.

Once again, your results will vary with the DBMS in use and the nature of
the data accessed.
Rule 8: Avoid Sorts When Possible

Sorting data is an inhibitor of optimal performance in SQL queries. Your
DBMS will sort data as needed to satisfy your database requests. Follow the
guidance in the “Using Indexes to Avoid Sorts” section earlier in this chapter
for mitigating the impact of sorting when using ORDER BY, GROUP BY,
DISTINCT, UNION, INTERSECT, and EXCEPT.

When performance is important, remember to look for sorts
and find ways to eliminate them.

Keep in mind that sorting is an I/O-intensive operation and can degrade
query performance, sometimes significantly. When performance is important,
remember to look for sorts and find ways to eliminate them.
Rule 9: Know What Works Best

The flexibility of SQL allows the same process to be coded in multiple ways.
However, one way of coding usually provides better performance than the
others. The DBA should understand the best way to code SQL for each
DBMS in use. Furthermore, the DBA should provide information on proper
query formulation for performance to the application development staff.

One way of coding usually provides better performance than
the others.

Rule 10: Issue Frequent COMMITs

When coding programs to run as batch transactions, it is important to issue
regular SQL COMMIT statements. As discussed in Chapter 5, the COMMIT
statement finalizes modifications to the database. When a COMMIT is
issued, locks on the modified database objects and data can be released.

An additional consideration for Oracle DBAs is the impact of a COMMIT
on the rollback segments. Rollback segments are used by Oracle to store
completed transactions before the changes are actually written to the table.
When you issue a COMMIT in Oracle, not only is the data finalized to the
table, but the contents of the rollback segment are removed, too. Oracle
rollback segments are used to store “before” images of the data in case
transactions are rolled back before changes are committed.

Therefore, as a DBA you must ensure that application developers issue
enough COMMIT statements to minimize the impact of locking on
availability and to keep rollback segments to a manageable size.

Issue enough COMMIT statements to minimize the impact of
locking on availability.

Rule 11: Beware of Code Generators

Beware of application code generators and similar tools that automatically

create SQL. Code generators have a notorious reputation for creating poorly
performing SQL. Be sure to keep a close watch on the SQL generated by
such tools and use techniques to improve poorly written SQL before it
reaches production status.

Code generators have a notorious reputation for creating
poorly performing SQL.

Many of these tools use gateways that require each SQL statement to be
recompiled and optimized each time it is requested. However, some gateways
provide a caching mechanism to store compiled and optimized SQL on the
server. Such a cache can help to improve performance for frequently
recurring SQL statements.
Rule 12: Consider Stored Procedures

Performance degradation due to repeated network traffic can be minimized
by using a stored procedure because only a single request is needed to
execute it. Within the stored procedure, multiple SQL statements can be
issued and the results processed and sent to the requesting program or user.
Without the stored procedure, each of the multiple SQL statements, as well as
all of the results, would have to be sent across the network. Additionally,
SQL in stored procedures may perform better than the same SQL outside of
the stored procedure if the DBMS parses and compiles the statements before
run time.

SQL in stored procedures may perform better than the same
SQL outside of the stored procedure.

Another potential benefit of using stored procedures is improving database
security. This can be accomplished by encapsulating only the business logic
needed for specific users into the code of the stored procedure and then
granting access to the stored procedure instead of the underlying tables. This
approach can diminish the potential security issues that ad hoc and dynamic
SQL can cause (such as SQL injection attacks).

Additional SQL Tuning Tips
SQL tuning is a complicated task that requires a full-length book of its own
(several good ones are referenced at the end of the chapter). In fact, each
DBMS requires its own book-length treatment of SQL tuning to do the topic

justice. However, the following SQL tuning suggestions are useful for DBAs
to apply, regardless of the DBMS:

• Create indexes to support troublesome queries.
• Whenever possible, do not perform arithmetic in SQL predicates. Use

the host programming language (Java, COBOL, C, etc.) to perform
arithmetic.

• Use SQL functions to reduce programming effort.
• Look for ways to perform as much work as possible using only SQL;

optimized SQL typically outperforms host language application code.
• Build proper constraints into the database to minimize coding edit

checks. (See Chapter 13, “Data Integrity,” for more details.)
• Do not forget about the “hidden” impact of triggers. A DELETE from

one table may trigger many more operations. Although you may think
the problem is a poorly performing DELETE, the trigger is really the
culprit.

SQL tuning requires a full-length book of its own.

Identifying Poorly Performing SQL
A large part of the task of tuning SQL is identifying the offending code. A
SQL performance monitor is the best approach to identifying poorly
performing statements. Such a tool constantly monitors the DBMS
environment and reports on the resources consumed by SQL statements.
Some DBMSs provide rudimentary bundled support for SQL monitoring, but
many third-party tools are available. These tools provide in-depth features
such as the ability to identify the worst-performing SQL without the overhead
of system traces, integration to SQL coding and tuning tools, and graphical
performance charts and triggers. Consult Chapter 23, “DBA Tools,” for more
information on SQL performance monitors and other DBA tools.

A SQL performance monitor is the best approach to
identifying poorly performing statements.

Summary
Application performance management and SQL tuning is a complex area that
requires the active participation of programmers and DBAs. Each DBMS

operates differently, and DBAs as well as programmers will need to
understand all of the minute details of SQL and application performance
management for their DBMS.

The relational optimizer combines access path strategies to form an
efficient access path for each SQL request. However, the optimizer is a very
complex piece of software, and DBMS vendors do not share with their
customers all the intricacies of how their optimizer works. Therefore, quite
often, SQL performance tuning becomes an iterative artistic process, instead
of a science.

Review
1. Define what is meant by physical data independence.
2. Describe the impact of using the LIKE operation with a wild-card

character at the beginning of the value.
3. What factors influence the optimizer during SQL access path selection?
4. Name and describe the two predominant relational join methods.
5. Under what circumstances is a nonmatching index scan performed?
6. A query is written to access a single table. Furthermore, that query will

return only a single row because an equality operator (=) is coded on
the primary key for the table. A unique index exists to support the
primary key. What type of access is likely to be the most efficient for
that query?

7. How can stored procedures be used to optimize performance in a
client/server application?

8. Under what circumstances will a table scan outperform indexed access?
9. Why is it important to use caution before implementing SQL tweaks

and hints?
10. Describe the three possible types of parallel query access.

Suggested Reading
Cumming, Andrew, and Gordon Russell. SQL Hacks: Tips & Tools for

Digging into Your Data. Sebastopol, CA: O’Reilly (2007). ISBN 0-596-
52799-3.

Faroult, Stephane. The Art of SQL. Sebastopol, CA: O’Reilly (2006). ISBN

0-596-00894-5.
Gulutzan, Peter, and Trudy Pelzer. SQL Performance Tuning. Boston, MA:

Addison-Wesley (2003). ISBN 0-201-79169-2.
Harrington, Jan L. SQL Clearly Explained. 3rd ed. Burlington, MA: Morgan

Kaufmann (2010). ISBN 978-0-12-375607-8.
Khoshafian, Setrag, et al. A Guide to Developing Client/Server SQL

Applications. San Mateo, CA: Morgan Kaufmann (1992). ISBN 1-55860-
147-3.

Lewis, Jonathan. Cost-Based Oracle Fundamentals. New York, NY: Apress
(2006). ISBN 1-59059-636-6.

Molinaro, Anthony. SQL Cookbook. Sebastopol, CA: O’Reilly (2006). ISBN
978-0-596-00976-2.

Rozenshtein, David, et al. Optimizing Transact-SQL: Advanced
Programming Techniques. Fremont, CA: SQL Forum Press (1995). ISBN
0-9649812-0-3.

Smirnova, Sveta. MySQL Troubleshooting. Sebastopol, CA: O’Reilly
(2012). ISBN 978-1-449-31200-8.

Tow, Dan. SQL Tuning. Sebastopol, CA: O’Reilly (2004). ISBN 0-596-
00573-3.

Williams, Hugh E., and David Lane. Web Database Applications with PHP
and MySQL. 2nd ed. Sebastopol, CA: O’Reilly (2004). ISBN 0-596-
00543-1.

13. Data Integrity

Ensuring the integrity of the organization’s databases is a key component of
the DBA’s job. A database is of little use if the data it contains is inaccurate
or if it cannot be accessed due to integrity problems. DBAs have many tools
at their disposal to ensure data integrity.

DBAs have many tools at their disposal to ensure data
integrity.

Types of Integrity
With respect to databases, we will discuss two aspects of integrity:

• Database structure integrity
• Semantic data integrity

Keeping track of database objects and ensuring that each object is created,
formatted, and maintained properly is the goal of database structure integrity.
Each DBMS uses its own internal format and structure to support the
databases, tablespaces, tables, and indexes under its control. System and
application errors can cause faults within these internal structures, and it is
the DBA’s job to identify and correct such faults before insurmountable
problems are encountered.

The second type of integrity is semantic data integrity. This refers to the
meaning of data and the relationships that need to be maintained between
different types of data. The DBMS provides options, controls, and procedures
to define and assure the semantic integrity of the data stored within its
databases. DBAs must understand how the DBMS enables automatic
semantic data integrity checking. And, as an ongoing component of the job,
the DBA has to implement semantic data integrity into the database design,
as well as initiate processes to check and correct integrity problems that creep
into the database over time.

Database Structure Integrity
Structural database integrity and consistency are of paramount importance in
the ongoing administration of databases. The DBMS uses internal structures

and pointers to maintain database objects in the proper order. If those
structures are damaged in any way, database access will be compromised.

The DBMS uses internal structures and pointers to maintain
database objects in the proper order.

Types of Structural Problems
One potential problem experienced by relational databases is index
corruption. You will recall from previous chapters that an index provides an
alternate path to data in the database by using an ordered b-tree structure.
Basically, the leaf pages of an index are pointers to physical data locations in
the base table. If the pointers do not point to the correct data, the index is
useless. In fact, it could be worse than useless if it is used to access incorrect
data and causes transactions to corrupt the database.

If the pointers do not point to the correct data, the index is
useless.

An index can become corrupted in several ways, depending on the DBMS
in use and the operations performed on the index and the corresponding table.
For example, if the table is recovered to a previous point in time but the index
is not rebuilt, the index will not accurately reflect the current contents of the
data.

However, indexes are not the only database objects that use pointers. When
certain data types are used, the DBMS may require pointers. For example,
very large objects such as DB2 LOB columns and XML columns, or SQL
Server text and image columns, are not stored contiguously with the rest of
the data. Instead, the columns assigned these data types are stored in a
separate file, and the primary file for the table contains a pointer to the
physical data location of the large object. It is possible for these pointers to
get out of sync with the data, rendering the data inaccessible.

Another, though somewhat rare, database structural integrity problem is
table data page header corruption. Each individual physical page (or block)
in the database file stores housekeeping information, known as the header, at
the beginning of the page. This header enables the DBMS to easily and
rapidly read the page contents. If the header becomes corrupted, the DBMS
may not be able to interpret the data stored on the page. Such situations

usually require the database file to be recovered from backup files. (For more
information on backup and recovery operations, refer to Chapter 16.)

Backup files are another potential area for a structural integrity problem.
Each DBMS formats and maintains a specific structure for its database
backup files. If the backup file is not formatted correctly, or if data is in the
wrong location in the backup file, it cannot be used by the DBMS for
recovery purposes. Media failures, tape degradation, and bugs can cause such
problems.

Managing Structural Problems
Each DBMS provides different utility programs to check on different aspects
of database structural integrity. It is possible to investigate the integrity of a
database using these utility programs. For example, Sybase and Microsoft
SQL Server provide the DBCC utility program, DB2 supplies the CHECK
and REPAIR utilities, and Informix offers the TBCHECK utility.

You can investigate the integrity of a database using DBMS
utility programs.

To elaborate on the functionality of such utilities, let’s focus on the DBCC
utility. Figure 13.1 shows some of the options for which DBCC can be used.
Another example of a structural integrity utility is DB2’s REPAIR utility,
which is briefly discussed in the sidebar titled “The DB2 REPAIR Utility.”

Figure 13.1. The DBCC utility

The DBA should exhibit extreme care when running the DBCC utility. It is
possible to both read and write to database files when using DBCC. To
ensure the safety of your database files, never use the write capabilities
without guidance from the DBMS vendor’s technical support group.

Use extreme care when running the DBCC utility.

Consistency Options

The DBCC utility provides two options for basic consistency checking:
• DBCC CHECKTABLE(table_name) checks the consistency of the data

and index pages of a table. When DBCC is run using this option, it will
report on the number of data pages, the number of rows, the number of
text and image columns, as well as any integrity violations.

The DB2 REPAIR Utility
The REPAIR utility is designed to modify DB2 data and associated data
structures when there is an error or problem. You can use the REPAIR
utility to perform tasks such as testing DBD definitions, repairing DBDs
by synchronizing with the system catalog metadata, resetting pending
states, producing dumps, and surgically replacing specific data areas of

tablespaces and indexes (among other functions).
As with all database structural integrity utilities, care should be taken

when using the REPAIR utility. Furthermore, it is wise first to consult
with your DBMS support center (in this case, IBM) before running such
utilities. Certain options of the REPAIR utility can damage your
database and the data stored therein if used improperly.

• DBCC REINDEX(table_name) defragments the indexes built on the
specified table.

Database Checking

Additional DBCC options exist for checking the integrity of a database:
• DBCC CHECKDB(database_name) runs CHECKTABLE (see above)

on every table in the database. This option checks the consistency of the
data and index pages of all defined tables.

• DBCC CHECKCATALOG(database_name) checks the consistency of
the system catalog tables for the specified database. It will report on the
size and number of segments used, as well as detect and report on any
integrity errors.

• DBCC CHECKALLOC(database_name) checks the consistency of the
specified database and reports on the current extent structure. The
CHECKALLOC option may find spurious allocation problems if
DBCC is run while transactions are modifying the database. This option
also reports on the number of allocations and the pages used per
allocation.

• DBCC CHECKFILEGROUP(filegroup_name) checks the allocation
and structural integrity of all tables and indexed views in the specified
database and issues a report of the findings.

Memory Usage

The DBCC command can be used to monitor current memory allocation and
usage. If the MEMUSAGE keyword is specified, for example, DBCC
MEMUSAGE, the utility will report on the configured memory allocation
and memory usage of the top 20 memory users. The following information is
displayed:

• Configured memory—the amount of memory configured for the DBMS

• Code size—the amount of memory used by code
• Kernel and structures—the amount of memory used for the kernel and

the server

The DBCC command can be used to monitor current memory
allocation and usage.

• Page cache—the amount of memory used for data cache
• Procedure buffers and headers—the amount of memory used for

procedure cache
• Buffer cache detail—a listing of the top 20 users of data cache,

indicating the database and object being accessed and how many 2K
buffers are being used

• Procedure cache detail—a listing of the top 20 users of procedure
cache, indicating the type of usage and the memory utilization

Additional Options

Various other DBCC options are available, including the ability to generate
reports containing information on database internals (for example, creation
date and internal identifier), to print formatted table pages showing the header
contents, to dump and display the contents of buffers and caches, as well as
to “zap” the database (that is, make quick changes to any of the database
contents). Once again, though, it is not a good idea to “zap” the database
without guidance from the manufacturer.

Semantic Data Integrity
Semantic data integrity deals with the DBMS features and processes that can
be used to ensure the accuracy and viability of the data contents of a
database. Whereas structural database integrity refers to the consistency of
the “holders” of the data (the database objects), semantic data integrity refers
to the consistency of the data itself.

DBAs constantly struggle with the question of how best to enforce data
integrity—by using DBMS features or by using application code. This is an
important issue and is debated often. In general, using DBMS features to
support data integrity usually offers the better solution, for several reasons.

It is easier to discover and maintain a semantic integrity rule by using

DBMS features rather than by reading program code. If you prefer to read
code, remember that you may need to be able to read several languages
(COBOL, Java, Visual Basic, etc.) in a heterogeneous environment, often for
the same rule. Additionally, you will need to know how to distinguish the
active code from the old code from the new enhancement code.

Many forms of semantic data integrity can be enforced by using features of
the DBMS. Refer to the sidebar “SQL Server 2012 Semantic Integrity” for a
quick overview of SQL Server’s support in this area. When DBMS facilities
are used to enforce data integrity, less code needs to be written, and therefore
less code needs to be tested. This can reduce the time and cost to get the
“product” out the door.

Many forms of semantic data integrity can be enforced by
using features of the DBMS.

SQL Server 2012 Semantic Integrity
Microsoft SQL Server 2012 includes several features for managing
semantic integrity and data quality. Perhaps the most intriguing featuring is
Data Quality Services (DQS), which facilitates the ability for data
professionals to maintain the quality of their data and ensure that the data
is suited for the business purpose. DQS is a knowledge-driven solution that
provides both computer-assisted and interactive ways to manage the
integrity and quality of SQL Server data. DQS enables you to discover,
build, and manage knowledge about your data. You can then use that
knowledge to perform data cleansing, matching, and profiling. You can
also leverage the cloud-based services of reference data providers in a
DQS data quality project.

DQS provides the following features to resolve data quality issues:
• Data cleansing
• Data matching
• Reference data services
• Profiling
• Monitoring
• Knowledge base
SQL Server also features Master Data Services for the management of

master data. Using Microsoft SQL Server Master Data Services, a data
professional can ensure the integrity of information and consistency of
data across different applications. The Master Data Services software
helps to ensure quality in a master data hub using rules and automated
workflows.

Before investigating third-party software solutions for semantic data
integrity, be sure you thoroughly investigate the functionality and
feature set of your in-house DBMS products. Many contain features that
can be used to improve the quality and integrity of your database data.

Entity Integrity
Entity integrity is the most basic level of data integrity provided by relational
databases. Entity integrity means that each occurrence of an entity must be
uniquely identifiable. In other words, entity integrity requires the
specification of a primary key for each entity and that no component of the
primary key be set to null.

Entity integrity means that each occurrence of an entity must
be uniquely identifiable.

In practice, no major RDBMS product forces entity integrity because
entities, or tables, can be created without specifying a primary key. However,
it is considered a bad practice to create tables without a primary key because
it makes identifying rows of the table difficult.

A primary key is required to set up referential integrity (RI) between
tables. A primary key constraint can consist of one or more columns from the
same table that are unique within the table. A table can have only one
primary key constraint, which cannot contain nulls.

The DBMS will require the creation of a unique index on the columns of
the primary key constraint to prohibit duplicate column values. Some
DBMSs, such as Sybase, will automatically generate the unique index when
the primary key constraint is created.

An example of a primary key constraint follows:
Click here to view code image

CREATE TABLE EMP

(empno INTEGER PRIMARY KEY,
 emp_address VARCHAR(70),
 emp_type CHAR(8),
 emp_dept CHAR(3) NOT NULL WITH DEFAULT,
 salary DECIMAL(7,2) NOT NULL,
 commission DECIMAL(7,2),
 bonus DECIMAL(7,2)
) IN db.ts;

This example shows the primary key constraint specified at the column
level: It applies to the empno column, which is defined as the primary key for
this table. However, in practice it is quite common for primary keys to consist
of multiple columns. For this reason, constraints can be defined at the table
level, as well. For example, if the primary key of this table were to be defined
as the combination of the empno and emp_type columns, you could add the
following specification to the end of the table, right after the specification of
the last column defined:

PRIMARY KEY pkemp
 (empno, emp_type)

Of course, the primary key specification would have to be removed from
empno at the column level before this would work because you cannot
specify more than one primary key per table. Furthermore, notice that we
have named the primary key constraint pkemp in this example.

Unique Constraints
A unique constraint is similar to a primary key constraint. Each table can
have zero, one, or many unique constraints consisting of one or more
columns each. The values stored in the column, or combination of columns,
must be unique within the table—that is, no other row can contain the same
value.

Unique constraints differ from primary key constraints in that they cannot
be used to support referential constraints. Furthermore, the unique constraint
columns may be set to null.

Unique constraints cannot be used to support referential
constraints.

As in the case of primary key constraints, the DBMS will require the
creation of a unique index on the columns of the unique constraint to prohibit

duplicate column values. The DBA should create unique constraints for
columns, or combinations of columns, that must be unique within the table.
Unique constraints are more efficient than trying to enforce uniqueness
programmatically.

Data Types
Data type and data length are the most fundamental integrity constraints
applied to data in the database. Simply specifying the data type for each
column when a table is created will enable the DBMS to automatically ensure
that only the correct type of data is stored in that column. Processes that
attempt to insert or update the data to the wrong type will be rejected.
Furthermore, a maximum length is assigned to the column to prohibit larger
values from being stored in the table.

The DBA must choose the data type and length of each column wisely. It
is best to choose the data type that most closely matches the domain of
correct values for the column. For example, a numeric column should be
defined as one of the numeric data types: integer, decimal, or floating-point.

The DBA must choose the data type and length of each
column wisely.

Specifying a character data type for a column that will contain numeric
data imposes additional work on the application programs to edit-check the
values. Furthermore, the program is likely to be less efficient at edit-checking
data than the DBMS would be. Additionally, data that is inserted or modified
outside the scope of an application program will not be edit checked at all
and thereby has the potential of introducing data integrity problems into the
database.
User-Defined Data Types

A user-defined data type, or UDT for short, provides a mechanism for
extending the type of data that can be stored in databases and the way that the
data is treated. In other words, the DBA can create user-defined data types to
further clarify the legal values for a column. The UDT, once defined and
implemented, extends the functionality of the DBMS by enabling the DBA to
specify the UDT in CREATE TABLE DDL statements just like built-in data
types.

A user-defined data type extends the type of data that can be
stored in databases.

UDTs can be beneficial when you need to store data that is specifically
tailored to your organization’s requirements. For example, UDTs are useful
for organizations that must handle multiple currencies. When there is a
separate data type for each currency, errors are less likely to be made in
monetary calculations. For example, perhaps your company handles
monetary amounts from Canada, the United States, the European Union, and
Japan. The DBA can create four UDTs, such as
Click here to view code image

CREATE DISTINCT TYPE canadian_dollar AS DECIMAL(11,2);
CREATE DISTINCT TYPE US_dollar AS DECIMAL(11,2);
CREATE DISTINCT TYPE euro AS DECIMAL(11,2);
CREATE DISTINCT TYPE japanese_yen AS DECIMAL(15,2);

After a user-defined data type has been created, it can be used in the same
manner as a system-defined data type. Of course, the actual syntax for
creating and using UDTs differs from DBMS to DBMS. Sybase and
Microsoft SQL Server use system-stored procedures to create UDTs, whereas
Oracle and DB2 use CREATE statements such as those in the previous
example.

When separate data types are created, the DBMS enforces strong typing; in
other words, the DBMS will prohibit nondefined operations between
different types. For example, the following operation will not be allowed due
to strong typing:

TOTAL_AMT = US_DOLLAR + CANADIAN_DOLLAR

If this operation were allowed to proceed, the TOTAL_AMT calculated
would be useless because you cannot perform operations on different
currencies without converting them to a common currency. So, UDTs and
strong typing help us to avoid data integrity problems.

Another benefit of creating user-defined data types is additional
consistency throughout the database. For example, if we build a Social
Security number UDT, and use the UDT for every column that contains
Social Security numbers, we ensure that each Social Security number is
stored the same way.

Furthermore, UDTs provide a higher level of abstraction to your database
design. It is much easier to discuss the Salary data type (with all its implied
definitions, properties, and constraints) than it is to talk about
DECIMAL(11,2) or SMALLMONEY data types (with no implied
characteristics other than their inherent type).

Default Values
When columns are created within tables, they can be assigned a default value
that will be used when SQL INSERT statements are issued that do not
provide an explicit value for that column. This allows programmers to ignore
columns and the DBMS to automatically provide a default value.

Each column can have only one default value. The column’s data type,
length, and property must be able to support the default value specified. For
example, a numeric column cannot be assigned a character default value.
Furthermore, the default may be null, but only if the column is created as a
nullable column.

Each column can have only one default value.

Check Constraints
A check constraint is a DBMS-defined restriction placed on the data values
that can be stored in a column or columns of a table. When a check constraint
is defined, it places specific data value restrictions on the contents of a
column through the specification of a Boolean expression. The expression is
explicitly defined in the table DDL and is formulated in much the same way
that SQL WHERE clauses are formulated. Any attempt to modify the column
data (that is, during INSERT and UPDATE processing) will cause the
expression to be evaluated. If the modification conforms to the Boolean
expression, the modification is permitted to proceed. If not, the statement will
fail with a constraint violation.

A check constraint is a DBMS-defined restriction placed on
the data values that can be stored in a column or columns.

Check constraints can be defined when the table is created, or added later
by altering the table. If you know SQL, it is easy to learn how to code check
constraints because they are written using recognizable SQL syntax. The
check constraint syntax consists of two components: a constraint name and a

check condition.
The constraint name identifies the check constraint to the database. The

same constraint name cannot be specified more than once for the same table.
If a constraint name is not explicitly coded, the DBMS automatically
generates a unique name for the constraint. Each DBMS uses a different
algorithm for generating constraint names, but the name is typically derived
from the name of the first column in the check condition.

The check condition defines the actual constraint logic. The check
condition can be defined using any of the basic predicates (>, <, =, <>, <=,
>=), as well as BETWEEN, IN, LIKE, and NULL. Furthermore, AND and
OR can be used to string conditions together in a check constraint.

Some restrictions, however, apply to creating check constraints:
• The check constraint can refer only to columns in the table in which it

is created.
• A limited subset of SQL constructs is permissible within a check

constraint definition. Typically, SQL constructs such as subselects,
column functions, host variables, negation (i.e., NOT), and special
registers are prohibited within check constraints.

• The first operand of the check constraint is the name of a column
contained in the table; the second operand is either another column
name or a constant.

• If the second operand is a constant, it must be compatible with the data
type of the first operand. If the second operand is a column, it must be
the same data type as the first column specified.

Check Constraint Benefits

So, what are the benefits of check constraints? The primary benefit is the
ability to enforce business rules directly into the database without requiring
additional application logic. Once defined, the business rule is physically
implemented and cannot be bypassed.

Because no additional programming is required, DBAs can implement
check constraints without involving the application programming staff. This
effectively minimizes the amount of code that must be written by the
programming staff. Given the significant application backlog within most
organizations, this can be the most crucial reason to deploy check constraints.

Check constraints provide better data integrity. As check constraints are
always executed whenever the data in the column upon which they are
defined is to be modified, the business rule is not bypassed during ad hoc
processing and dynamic SQL. When business rules are enforced using
application programming logic instead, the rules cannot be checked during ad
hoc processes.

Check constraints provide better data integrity.

Check constraints promote consistency. Because they are implemented
once—in the table DDL—each constraint is always enforced. Constraints
written in application logic, on the other hand, must be executed by each
program that modifies the data to which the constraint applies. This can cause
code duplication and inconsistent maintenance, resulting in inaccurate
business rule support.

Typically, check constraints coded in DDL will outperform the
corresponding application code to perform the same edit checking. The
overall impact of check constraints is to increase application development
productivity while at the same time improving data integrity.
Check Constraint Examples

Check constraints enable the DBA or database designer to specify more
robust data integrity rules directly into the database. Consider the following
example:
Click here to view code image

CREATE TABLE EMP
(empno INTEGER PRIMARY KEY,
 CONSTRAINT check_empno
 CHECK (empno BETWEEN 100 and 25000),
 emp_address VARCHAR(70),
 emp_type CHAR(8)
 CHECK (emp_type IN ('temp', 'fulltime',
'contract')),
 emp_dept CHAR(3) NOT NULL WITH DEFAULT,
 salary DECIMAL(7,2) NOT NULL
 CONSTRAINT check_salary
 CHECK (salary < 50000.00),
 commission DECIMAL(7,2),
 bonus DECIMAL(7,2)

) IN db.ts;

This CREATE statement for the EMP table contains three different check
constraints:

• The name of the first check constraint is check_empno. It is defined on
the empno column. The constraint ensures that the empno column can
contain values that range from 100 to 25,000 (instead of the domain of
all valid integers).

• The second check constraint for this table is on the emp_type column.
This is an example of an unnamed constraint and, though possible, is
not recommended. It is best to always provide an explicit constraint
name in order to ease identification and administration. This specific
constraint restricts the values that can be placed into emp_type to
“temp,” “fulltime,” and “contract”; no other values would be accepted.

• The last check constraint on this table is named check_salary. It
effectively ensures that no employee can have a salary of more than
$50,000. (Who wants to work there?)

This first check constraint example depicts column-level constraints.
However, check constraints also may be coded at the table level. A column-
level check constraint is defined in the DDL immediately after the column.
Appropriately enough, a table-level check constraint is defined after all of the
columns of the table have already been defined.

It is quite common for business data integrity rules to require access to
multiple columns within a single table. When this situation occurs, it is wise
to code the business rule into a check constraint at the table level instead of at
the column level. Of course, any column-level check constraint can also be
defined at the table level as well. In terms of functionality, there is no
difference between an integrity constraint defined at the table level and the
same constraint defined at the column level. Let’s augment our sample table
DDL to add several table-level check constraints:
Click here to view code image

CREATE TABLE EMP
 (empno INTEGER PRIMARY KEY,
 CONSTRAINT check_empno
 CHECK (empno BETWEEN 100 AND 25000),
 emp_address VARCHAR(70),
 emp_type CHAR(8)

 CHECK (emp_type IN ('temp', 'fulltime',
'contract')),
 emp_dept CHAR(3) NOT NULL WITH DEFAULT,
 salary DECIMAL(7,2) NOT NULL
 CONSTRAINT check_salary
 CHECK (salary < 50000.00),
 commission DECIMAL(7,2),
 bonus DECIMAL(7,2)
 CONSTRAINT comm_vs_salary
 CHECK (salary > commission),
 CONSTRAINT comm_bonus
 CHECK (commission=0 OR bonus=0),
) IN db.ts;

Now the CREATE statement for the EMP table has been modified to
contain two table-level check constraints having the following ramifications:

• The first table-level check constraint for the EMP table is named
comm_vs_salary. This constraint ensures that no employee can earn
more in commission than in salary.

• The second table-level check constraint is named comm_bonus. This
constraint will ensure that an employee cannot earn both a commission
and a bonus.

Nulls and Other Potential Problems

An additional consideration for check constraints is the relational null. Any
nullable column that is defined with a check constraint can be set to null.
When the column is set to null, the check constraint evaluates to unknown.
Because null indicates the lack of a value, the presence of a null will not
violate the check constraint.

Any nullable column that is defined with a check constraint
can be set to null.

Running database utilities can cause problems with check constraints. For
example, depending on the DBMS, the LOAD utility may or may not enforce
check constraints as data is being loaded to the table. If constraints are not
enforced, data can be loaded that does not conform to the check constraints
defined on the table, causing data integrity problems. If constraints are
enforced during the LOAD process, someone will have to manually edit the
rows that were not loaded so that they adhere to the check constraint

definitions on the table.
Another potential problem with check constraints is inconsistent coding

from table to table. It is likely that similar columns of the same data type and
length will exist in multiple tables throughout the database. If all of these
columns must adhere to the same edit-check requirements, the DBA must
create the same check constraint on each column across multiple tables. It is
possible that errors can be made. Refer to the sidebar “Rules” for a discussion
of a different type of constraint available in Sybase and Microsoft SQL
Server that helps to alleviate this problem.

Rules
Both Sybase and Microsoft SQL Server offer a special type of check
constraint called a rule. Although rules are similar to check constraints,
they are “freestanding” database objects.

Like a check constraint, a rule defines the parameters for data
validation. Whenever data is inserted or updated, the rule is checked to
ensure that the data modification complies with the rule. Both columns
and UDTs can have rules defined for them.

After a rule has been created, it must be bound to columns and UDTs
before it has any effect on the database. Binding is accomplished using
the SP_BINDRULE system procedure. For example, the following
statements can be used to create a rule that forces the state code to
represent only Illinois, Wisconsin, or Indiana, and then binds the rule to
the state column in two different tables:

Click here to view code image

CREATE rule state_rule AS @state IN ("IL", "WI", "IN")
EXEC sp_bindrule "state_rule", "publishers.state"
EXEC sp_bindrule "state_rule", "authors.state"

Once a rule is bound to a column or user-defined data type, it will
function like a check constraint. Whenever data values are inserted or
updated, the rule will be invoked to ensure that the values conform to
the rule definition. Rules can be removed from columns or user-defined
data types by using the SP_UNBIND system procedure when the rule is
no longer required.

Rules can be more reliable than check constraints because a rule need

be created only once, after which it is bound to the appropriate columns
and data types. So, if one constraint applies to multiple columns, less
work is required with a rule than with a check constraint. The check
constraint must be explicitly coded within the DDL of every table that
must be checked.

Microsoft has indicated that rules will be removed in a future version of
Microsoft SQL Server. For this reason it is probably a good idea to avoid
creating any new rules and focus on using constraints instead. Sybase has not
indicated that rules will be deprecated from ASE, though. Additionally, it is
possible to define unworkable check constraints on a table. Relational DBMS
products provide the additional capability to specify column defaults. When a
row is inserted or loaded into a table and no value is specified for the column,
the column will be set to the value that has been identified in the column
default specification. For example, the DBA could define a default for the
emp_type column of our sample EMP table as follows:
Click here to view code image

emp_type CHAR(8) DEFAULT 'fulltime'
 CHECK (emp_type IN ('temp', 'fulltime',
'contract')), ...

If a row is inserted without specifying an emp_type, the column will
default to the value “fulltime.” However, most DBMSs are not designed to
perform semantic checking on constraints and defaults. For example, the
DBMS would allow the DBA to define defaults that contradict check
constraints. Furthermore, it is possible for the DBA to define check
constraints that contradict one another. Care must be taken to avoid creating
this type of problem. Examples of contradictory constraints follow.

In the following case, no value is both greater than 10 and less than 9, so
nothing could ever be inserted into the table.

CHECK (empno > 10 AND empno <9)

In the next case, the default value is not one of the permitted emp_type
values according to the defined constraint. No defaults would ever be
inserted, so a value must always be provided when rows are inserted.
Click here to view code image

emp_type CHAR(8) DEFAULT 'new'
 CHECK (emp_type IN ('temp', 'fulltime',
'contract')), ...

In this final case, the constraints are redundant. No logical harm is done,
but both constraints will be checked, thereby impacting the performance of
applications that modify the table in which the constraints exist.

CHECK (empno > 10)
CHECK (empno >= 11)

Of course, other potential semantic problems could occur, such as
• When the parent table indicates a neutralizing DELETE RI constraint

but a check constraint is defined on the child table stating CHECK
(COL1 IS NOT NULL)

• When two constraints are defined on the same column with
contradictory conditions

• When the constraint requires that the column be null, but the column is
defined as not null

Check constraints provide a very powerful vehicle for supporting business
rules in the database. They cannot be bypassed and therefore provide better
data integrity than corresponding logic programmed into the application. It is
a wise course of action for DBAs to define check constraints in the database
instead of coding similar edit-checking logic into application programs.

Triggers
Triggers are event-driven specialized procedures that are attached to database
tables. A trigger is a piece of code that is executed in response to a data
modification statement, that is, an INSERT, UPDATE, or DELETE. To be a
bit more precise, triggers are event-driven specialized procedures that are
stored in, and managed by, the DBMS. Each trigger is attached to a single,
specified table. Triggers can be thought of as an advanced form of rule or
constraint that is written using an extended form of SQL. A trigger cannot be
directly called or executed; it is automatically executed (or “fired”) by the
RDBMS as the result of an action—a data modification to the associated
table.

A trigger is a piece of code that is executed in response to a
data modification statement.

Once a trigger is created, it is always executed when its “firing” event
occurs (UPDATE, INSERT, or DELETE). Therefore, triggers are automatic,
implicit, and non-bypassable. A database with triggers defined on it is
sometimes called an active database because simple data modification results
in additional actions taking place—as defined in the trigger code.

Triggers are similar to stored procedures. Both consist of procedural logic
that is stored in or managed by the database. However, stored procedures are
not event driven and are not attached to a specific table. A stored procedure is
explicitly executed by invoking a CALL to the procedure (instead of being
implicitly executed like triggers). Additionally, a stored procedure can access
many tables without being specifically associated to any of them.

Triggers are useful for implementing code that must be executed on a
regular basis due to a predefined event. Using triggers, you can eliminate
scheduling and data integrity problems because the trigger will be fired
whenever the triggering event occurs. You need not remember to schedule or
code an activity to perform the logic in the trigger—it happens automatically.

Triggers can be implemented for many practical uses. Quite often, it is
impossible to code business rules into the database by using only DDL. For
example, most DBMSs do not support complex constraints (only value-based
CHECK constraints) or certain types of referential constraints (such as
pendant DELETE processing or cascading UPDATEs). Using triggers, a very
flexible environment is established for implementing business rules and
constraints in the DBMS. This is important because having the business rules
in the database ensures that everyone uses the same logic to accomplish the
same process.

Triggers are quite flexible and can be coded to suit many purposes. For
example, triggers can

• Access and modify other tables
• Print informational messages
• Specify complex restrictions

For example, consider a basic student enrollment database such as might
be used by a college or university. A course can be attended by many
students, and a student can attend many courses. Triggers can be used to
support scenarios such as the following:

• Perhaps the university places a limit, say, five, on the number of

courses in which a student can enroll per semester. A trigger can be
coded to check that no more than five rows are inserted into the course
enrollment table for the same student. Similarly, if a course size limit is
required, a trigger can be coded to check that no more students than the
limit are inserted into the course enrollment table.

• A trigger can be created to ensure that each professor is assigned to at
least one course each semester, or to limit the number of courses each
professor can teach each semester.

• Triggers can be used to perform calculations such as ensuring that the
student has paid the proper tuition for the semester.

• Triggers can be coded to ensure that the student has successfully
completed prerequisite courses.

The number of business rules that can be implemented using triggers is
truly limited only by your imagination, or more appropriately, your business
needs.

The number of business rules that can be implemented using
triggers is limited only by your imagination.

When Does a Trigger Fire?

Triggers can be coded to fire at two different times: before the firing activity
occurs or after the firing activity occurs. A “before” trigger executes before
the firing activity occurs; an “after” trigger executes after the firing activity
occurs.

Some DBMSs support both “before” and “after” triggers, whereas others
support only one type of trigger. Knowing how the triggers in your database
function is imperative. Without this knowledge, properly functioning triggers
cannot be coded, supported, or maintained effectively.

Consider, for example, the case where the firing activity occurs before the
trigger is fired. In other words, the UPDATE, INSERT, or DELETE occurs
first, and as a result of this action, the trigger logic is executed. If necessary,
the trigger code may be able to roll back the data modification. What if the
trigger is fired before the actual firing event occurs? In this situation, a
rollback would not be required for the firing event code because it did not yet
occur. However, a rollback may be required for any data modifications that
occurred prior to this firing event within the same transaction.

If multiple triggers are coded on the same table, which trigger is fired first?
It can make a difference as to how the triggers are coded, tested, and
maintained. The rule for order of execution depends on the DBMS. For
example, DB2 fires triggers of the same type on the same table in the order in
which they were created. If two DELETE triggers exist on the same table, the
one that was physically created first would be executed first. Be sure to
understand how your DBMS fires triggers and keep the rules in mind as you
make changes to your database. If you need to drop a table and recreate it to
implement a schema change, make sure you create the triggers in the desired
(same) order to keep the functionality the same.

The rule for order of trigger execution depends on the DBMS.

Nested Triggers

As we’ve already learned, a trigger is fired by an INSERT, UPDATE, or
DELETE. However, a trigger also can contain INSERT, UPDATE, and
DELETE statements within itself. Therefore, a data modification fires a
trigger that can cause another data modification that fires yet another trigger.
When a trigger contains INSERT, UPDATE, and/or DELETE logic, the
trigger is said to be a nested trigger.

Most DBMSs, however, place a limit on the number of nested triggers that
can be executed within a single firing event. If this were not done, it could be
quite possible for triggers to fire ad infinitum until all of the data is removed
from an entire database.

If RI is combined with triggers, additional cascading UPDATEs and/or
DELETEs can occur. If an UPDATE or DELETE results in a series of
additional UPDATEs or DELETEs that need to be propagated to other tables,
the UPDATE or DELETE triggers for the second table also will be activated.
This combination of multiple triggers and referential constraints is capable of
setting a cascading effect into motion, which can result in multiple data
changes. DB2 limits this cascading effect to 16 levels in order to prevent
endless looping; if more than 16 levels of nesting occur, the transaction is
aborted. Other DBMSs provide options to enable and disable cascading
triggers.

The ability to nest triggers provides an efficient method for implementing
automatic data integrity. Because triggers generally cannot be bypassed, they
provide an elegant solution to the enforced application of business rules. Use

caution, however, to ensure that the maximum trigger nesting level is not
reached. Failure to heed this advice can create an environment where certain
types of updates cannot occur at all.

Nesting triggers provides an efficient method for
implementing automatic data integrity.

Using Triggers to Implement Referential Integrity

One common use for triggers is to support RI. Triggers can be coded, in lieu
of declarative RI, to support any type of referential constraint you wish to
place on the database. Of course, when you use triggers, it necessitates
writing procedural code for each rule for each constraint, whereas declarative
RI constraints are coded in the DDL that is used to create relational tables.

Triggers can be coded to support any type of referential
constraint.

Additional guidance on using triggers to support RI can be found later in
this chapter.
Transition Variables and Tables

In order to use triggers to support RI rules, it is sometimes necessary to know
the values impacted by the action that fired the trigger. For example, consider
the case where a trigger is fired because a row was deleted. The row, and all
of its values, has already been deleted because the trigger is executed after its
firing action occurs. But if this is the case, how can we ascertain if
referentially connected rows exist with those values? We may need to access
it in its original, unmodified format.

Each DBMS has a different method of accessing versions of the data both
before and after the modification from inside a trigger. In Sybase and
Microsoft SQL Server, triggers use tables called INSERTED and DELETED;
in DB2 the triggers specify OLD and NEW. Regardless of the specific
nomenclature, these tables are generically referred to as transition tables (see
Figure 13.2).

Figure 13.2. Transition tables

Each trigger has two tables, one with a “before” image of the data and
another with an “after” image of the data. Transition tables are accessible
only from triggers. For Sybase and Microsoft SQL Server, the transition
tables operate as follows:

Transition tables are accessible only from triggers.

• When an INSERT occurs, the inserted table contains the rows that were
just inserted into the table to which the trigger is attached.

• When a DELETE occurs, the deleted table contains the rows that were
just deleted from the table to which the trigger is attached.

• When an UPDATE occurs, it is treated as a DELETE followed by an
INSERT, so the inserted table contains the new values for the rows that
were just updated in the table; the deleted table contains the old values
(before they were updated) for the updated rows.

The DB2 and Oracle implementation of transition tables (or variables) is
simpler and works as follows:

• When an INSERT occurs, the values inserted can be referenced with
the NEW transition variable.

• When a DELETE occurs, the values deleted can be referenced with the
OLD transition variable.

• When an UPDATE occurs, the inserted values are referenced using
NEW, and the deleted values are referenced using OLD.

A Sample Trigger

Sometimes examining a sample piece of code can help to clarify concepts.
So, let’s take a quick look at a (DB2) trigger:

Click here to view code image

CREATE TRIGGER salary_update
 BEFORE UPDATE OF salary
 ON emp
 FOR EACH ROW MODE DB2SQL
 WHEN (new.salary > (old.salary * 1.5))
 BEGIN atomic
 SIGNAL SQLSTATE '75001' ('Raise exceeds 50%');
 END;

This trigger ensures that the value of the salary column cannot be increased
by more than 50 percent for any individual update. Note the use of transition
variables to check the newly updated salary against the previous, old value
for salary.
Trigger Granularity

Because SQL is a set-level language, any single SQL statement can impact
multiple rows of data. For example, one DELETE statement can actually
cause zero, one, or many rows to be removed. Triggers need to take this into
account.

Therefore, there are two levels of granularity that a trigger can have:
statement level or row level. A statement-level trigger is executed once upon
firing, regardless of the actual number of rows inserted, deleted, or updated.
A row-level trigger, once fired, is executed once for each and every row that
is inserted, deleted, or updated.

A trigger can have statement-level or row-level granularity.

Different business requirements will drive the type of trigger granularity
that should be chosen. But keep in mind that a row-level trigger can have a
significant impact on performance because it may have to run multiple times
for every SQL data modification statement issued.
INSTEAD OF Triggers

An additional type of trigger, an INSTEAD OF trigger, is significantly
different from the three other types of triggers. INSTEAD OF triggers are
defined on views and contain the logic required to enable nonupdateable
views to become updateable. As such, there are INSERT, UPDATE, and
DELETE types of INSTEAD OF triggers.

INSTEAD OF triggers can be created to make nonupdateable
views updateable.

Typically, a view that consists of multiple base tables cannot be updated;
however, with an INSTEAD OF trigger, this problem can be overcome.
INSTEAD OF triggers can be created to direct inserts, updates, and deletes to
the appropriate underlying tables of the view. When INSTEAD OF triggers
are used, your application code does not have to include complex algorithms
to specify which operations should be performed against views and which
should be performed against base tables. Instead, all actions are performed
against the view, and the activated trigger determines which underlying base
tables are to be impacted.

One way to think of INSTEAD OF triggers is that they contain the inverse
of the logic in the body of the view. If the view joins tables, the trigger
should break the join apart to modify the correct data. Only one INSTEAD
OF trigger is allowed for each type of operation on a given subject view: that
is, one for inserts, one for updates, and one for deletes. Therefore, you can
have a grand total of three INSTEAD OF triggers per view.
Trigger Synopsis

Triggers are a powerful feature of modern DBMS products. Triggers enable
the DBA to create non-bypassable, event-driven logic that is intrinsically
intermingled with data. Before implementing triggers, though, be sure to be
aware of the additional DBA duties required to support an active database
environment. These issues were discussed in the “Procedural DBAs:
Managing Database Logic” section of Chapter 1.

Referential Integrity
Referential integrity is a method for ensuring the “correctness” of data within
a DBMS. People tend to oversimplify RI, stating that it is merely the
identification of relationships between relational tables. It is actually much
more than this. However, the identification of the primary and foreign keys
that constitute a relationship between tables is a component of defining
referential integrity.

Referential integrity is a method for ensuring the “correctness”
of data.

RI embodies the integrity and usability of a relationship by establishing
rules that govern that relationship. The combination of the primary and
foreign key columns and the rules that dictate the data that can be housed in
those key columns is the beginning of understanding and using RI to ensure
correct and useful relational databases.

RI rules, applied to each relationship, determine the status of foreign key
columns when inserted or updated, and of dependent rows when a primary
key row is deleted or updated. In general, a foreign key must always either
contain a value within the domain of foreign key values (values currently in
the primary key column) or be set to null.

The concept of RI is summarized in the following “quick and dirty”
definition: RI guarantees that an acceptable value is always in the foreign key
column. “Acceptable” is defined in terms of an appropriate value as housed
in the corresponding primary key, or a null.

Referential integrity guarantees that an acceptable value is
always in the foreign key column.

The combination of the relationship and the rules attached to that
relationship is referred to as a referential constraint. The rules that
accompany the RI definition are just as important as the relationship.

Two other important RI terms are parent table and child table. For any
given referential constraint, the parent table is the table that contains the
primary key, and the child table is the table that contains the foreign key.
Examine Figure 13.3. The parent table in the employed-by relationship is the
DEPT table. The child table is the EMP table. So the primary key (say,
DEPT-NO) resides in the DEPT table and a corresponding foreign key of the
same data type and length, but not necessarily the with same column name,
exists in the EMP table.

Figure 13.3. Parent and child tables

Three types of rules can be attached to each referential constraint: an
INSERT rule, an UPDATE rule, and a DELETE rule. Let’s see how these
rules govern a referential constraint.

Three types of rules can be attached to each referential
constraint.

INSERT Rule

The INSERT rule indicates what will happen if you attempt to insert a value
into a foreign key column without a corresponding primary key value in the
parent table. There are two aspects to the RI INSERT rule:

1. It is never permissible to insert a row into a dependent table with a
foreign key value that does not correspond to a primary key value. This
is known as the restrict-INSERT rule.

2. Whether actual values must be specified instead of nulls.
For each relationship, the DBA must decide whether the foreign key

value(s) must be specified when the row is initially inserted into the table. To
determine this, ask the following question: “Does it make sense, in business
terms, to know the primary key value in the parent table when adding a
dependent row?”

If a foreign key value is specified, it must be equal to one of the values
currently in the primary key column of the parent table. This implements the
restrict-INSERT rule. If a foreign key value is optional, it can be set to null.
UPDATE Rule

The basic purpose of the UPDATE rule is to control updates such that a
foreign key value cannot be updated to a value that does not correspond to a
primary key value in the parent table. There are, however, two ways to view
the update rule: from the perspective of the foreign key and from that of the
primary key.

Foreign key perspective. Once you have assigned a foreign key to a row,
either at insertion or afterward, you must decide whether that value can be
changed. Again, this is determined by looking at the business definition of
the relationship and the tables it connects. However, if you permit a foreign
key value to be updated, the new value must either be equal to a primary key
value currently in the parent table or be null.

Primary key perspective. If a primary key value is updated, three options
exist for handling foreign key values:

• Restricted UPDATE. The modification of the primary key column(s) is
not allowed if foreign key values exist.

• Neutralizing UPDATE. All foreign key values equal to the primary key
value(s) being modified are set to null. Of course, neutralizing
UPDATE requires that nulls be permitted on the foreign key column(s).

• Cascading UPDATE. All foreign key columns with a value equal to the
primary key value(s) being modified are modified as well.

DELETE Rule

Referential integrity rules for deletion define what happens when an attempt
is made to delete a row from the parent table. Similar to the primary key
perspective of the UPDATE rule, three options exist when deleting a row
from a parent table:

• Restricted DELETE. The deletion of the primary key row is not
allowed if a foreign key value exists.

• Neutralizing DELETE. All foreign key values equal to the primary key
value of the row being deleted are set to null.

• Cascading DELETE. All foreign key rows with a value equal to the
primary key of the row about to be deleted are deleted as well.

Pendant DELETE

The final type of referential constraint is the pendant DELETE. This special
type of referential integrity deals with the treatment of parent table rows
when no foreign keys from the child table refer back to the primary key.
Pendant DELETE RI specifies that the parent table row be deleted after the
last foreign key row that refers to it is deleted.

Pendant DELETE processing cannot be implemented using declarative RI.
However, triggers can be used to code the program logic to check for this
condition and execute the deletion of the primary key row.

Pendant DELETE processing cannot be implemented using
declarative RI.

Please see Table 13.1 for a summary of referential integrity and the rules
that apply to its application.

Table 13.1. Referential Integrity Rules

Setting Up Relationships

A declarative referential constraint is added by coding the primary key in the
parent table and one or more foreign keys in dependent tables. Constraints
can be added using the CREATE TABLE and ALTER TABLE statements.
When implementing declarative referential integrity between a parent and a
dependent table, certain rules must be followed.

For the parent table:
• A primary key must be identified in the CREATE TABLE or ALTER

TABLE statement.
• SQL Server automatically defines a unique clustered index for the

primary key when the primary key constraint is specified in the
CREATE TABLE or ALTER TABLE statement. Other DBMSs—for
example, DB2—require the DBA to manually create the unique index
to support the primary key.

For the dependent table:

• A foreign key that references the parent table must be identified in the
CREATE TABLE or ALTER TABLE statement.

• Although not usually required, it is strongly recommended that an
index be defined for the foreign key also. An index on the foreign key
will not be a unique index unless you are defining a one-to-one
relationship. Creating an index on the foreign key will enhance the
performance of RI operations.

All constraints will be named, whether explicitly or implicitly. It is better
to explicitly name each referential constraint in the DDL. Failure to do so will
cause the DBMS to assign a system-generated name, making future
referencing of the constraint more difficult.
Declarative RI Implementation Concerns

Sometimes a referential constraint needs to be set up within a single table.
For example, a table of departments may need to record which department is
subordinate to which other department. A MANAGED_BY_DEPT column
may need to be a foreign key of the DEPT_NO primary key—all within the
same table. A table is able to reference itself in a declarative RI constraint.
This is referred to as a self-referencing constraint.

Constraints are checked before triggers are fired. If declarative RI
constraints and triggers coexist in the same tables, be sure that they are
compatible with one another. For example, you should not code a DELETE
trigger to delete foreign keys in conjunction with a declarative constraint,
because the declarative constraint will prohibit the trigger from ever firing.

Tables can be altered to add or drop declarative RI. Indeed, sometimes it is
not possible to specify all referential constraints within the initial CREATE
TABLE statements. A primary key in the parent table must exist before a
foreign key can be defined that references the parent table. With self-
referencing constraints, the primary key definition can be included when the
table is initially created, but the foreign key will have to be added later by
using an ALTER TABLE statement.

Tables can be altered to add or drop declarative RI.

DBMS Support for Referential Integrity

Keep in mind that each DBMS supports different levels of declarative RI and
different options for its use. The DBA must learn which RI options are

provided by the DBMS in use and provide guidance to the application
developers as to what can be handled by the DBMS and what must be coded
into the application. Furthermore, the DBA must understand triggers and how
they can be used to implement RI when declarative RI support is lacking in
the DBMS.

Each DBMS supports different levels of declarative RI.

Referential Integrity Using Triggers

If the DBMS you are using does not provide the declarative RI functionality
required by your applications, triggers can be coded in lieu of declarative RI.
By using triggers, it is possible to support all conceivable RI rules. Of course,
using triggers necessitates writing procedural code for each rule for each
constraint. Complete referential integrity can be implemented using four
types of triggers for each referential constraint:

1. A DELETE trigger on the parent table can be used to code
• DELETE RESTRICT
• DELETE CASCADE
• DELETE NEUTRALIZE

2. An UPDATE trigger on the parent table can be used to code
• UPDATE RESTRICT
• UPDATE CASCADE
• UPDATE NEUTRALIZE

3. An INSERT trigger on the dependent table can be used to code
• INSERT RESTRICT

4. An UPDATE trigger on the dependent table can be used to code the
restriction that a foreign key cannot be updated to a non-primary-key
value.

Indeed, nested and recursive triggers can be coded to support a very robust
implementation of referential integrity. Furthermore, triggers can be the only
automatic method of implementing system-managed RI under certain
circumstances:

• When deleted, inserted, and updated information needs to be explicitly
referenced in order to determine the action to take. Triggers provide a

method of doing this, which we will discuss shortly.
• When an RI rule that is not supported by the DBMS is necessary. For

example, Sybase declarative RI supports only restricted DELETEs and
UPDATEs; the declarative RI provided by DB2 supports restricted
DELETEs and UPDATEs, neutralizing DELETEs and UPDATEs, and
cascading DELETEs, but not cascading UPDATEs. Each DBMS
provides different degrees of declarative RI support.

• When pendant DELETE processing is required. This is sometimes
referred to as “reverse” RI. Pendant DELETE processing is the
situation where the parent row must be deleted when the last dependent
row that references it is deleted. The only way to implement this type of
constraint is with a trigger.

Nested and recursive triggers can be coded to support a very
robust implementation of referential integrity.

Of course, if your RI needs can be satisfied using declarative RI, you
should use declarative RI instead of triggers. Triggers must be hand coded
and tested, meaning that they may contain bugs or function improperly.
Declarative RI is built into the DBMS and is unlikely to fail (unless the
DBMS itself has bugs). Additionally, declarative RI almost always
outperforms trigger-based RI. So, as a rule of thumb, favor declarative RI
over trigger-based RI.

Let’s examine some sample triggers to clarify how transition tables and
variables are properly used. The following (SQL Server) trigger implements
the cascading DELETE RI rule:
Click here to view code image

CREATE TRIGGER title_del
ON titles FOR DELETE
AS
IF @@rowcount = 0
 RETURN
DELETE titleauthor
 FROM titleauthor, deleted, title
 WHERE titles.title_id = deleted.title_id
RETURN

When a row in the parent table (titles) is deleted, the DELETE is cascaded

to the dependent table (titleauthor). A second example follows that
implements the restricted INSERT RI rule. When a row in the dependent
table (titleauthor) is inserted, we must first check to see whether a viable
primary key exists in the parent table (titles).

Let’s look at another example. The following trigger is coded to implement
the restricted INSERT RI rule. When a row in the dependent table
(titleauthor) is inserted, we must first check to see whether a viable primary
key exists in the parent table (titles).
Click here to view code image

CREATE TRIGGER title_ins
ON titleauthor FOR INSERT
AS
DECLARE @rc int
SELECT @rc = @@rowcount
IF @rc = 0
 RETURN
IF (select count(*)
 FROM titles, inserted
 WHERE titles.title_id = inserted.title_id)!=@rc
 BEGIN
 RAISERROR 20001 "Invalid title: title_id
 does not exist on titles table"
 ROLLBACK transaction
 RETURN
 END
 RETURN

A final (SQL Server) example depicts neutralizing updates:
Click here to view code image

CREATE TRIGGER title_upd
ON titles FOR UPDATE
AS
IF UPDATE (title_id)
 IF (select count(*)
 FROM deleted, titles
 WHERE deleted.title_id = title.titleid) = 0
 BEGIN
 UPDATE titleauthor
 SET titleauthor.titleid = null
 FROM titleauthor, deleted
 WHERE titleauthor.titleid = deleted.title_id

 END
RETURN

The first check is to see whether the title_id was actually updated. If so, the
trigger checks to make sure that the title_id was not updated to the same
value it previously held. If it was, the neutralizing update should not occur. If
these two checks are passed, the update occurs. When a row in the parent
table (titles) is updated, we check to see whether any corresponding rows
exist in the dependent table (titleauthor). If so, the foreign key columns must
be set to null.
User-Managed versus System-Managed RI

System-managed declarative RI has not always been available, and your
installation may have applications with user-managed RI already in place. It
may be necessary to support both user- and system-managed RI in this
situation.

It may be necessary to support both user- and system-managed
RI.

Furthermore, even though system-managed RI is now available, sometimes
user-managed RI may be a more appropriate solution. One such instance is
when it is always necessary for applications to access the parent and
dependent tables (even when system-managed RI is implemented). For
example, consider an application program that always inserts the order row
into the ORDR_TAB (parent) table before inserting the order item rows into
the ORDR_ITEM_TAB (dependent) table; another application always
accesses the rows in the ORDR_ITEM_TAB table for historical information
before deleting them and then deleting the parent row from the ORDR_TAB
table. Since these applications already access both tables, the additional
overhead of system-managed RI may not be worthwhile.

However, the benefit of system-managed RI is that the integrity of the data
is enforced during ad hoc access, such as interactive SQL and data warehouse
queries. When RI is maintained only in programs, data integrity violations
can occur if data modification is permitted outside the scope of the
application programs that control RI. It is usually a wise move to implement
system-managed rather than user-managed RI. But remember, most DBMSs
provide two methods of implementing system-managed RI: declarative

constraints and triggers.
RI versus Check Constraints versus Program Logic

Referential integrity, check constraints, and writing application program logic
are all valid methods of enforcing data integrity. This chapter illustrated the
functionality and strengths of each. But let’s stop to examine a particular
requirement and the impact of implementing it using each of these methods.

Consider comparing the consequences of enforcing a domain. For
example, suppose there are three valid employee types when the database is
created: T (temporary), F (full-time), and C (contract). Subsequently, after
implementation, a fourth employee type is added, say, P (part-time). It will be
easier to support the new value using RI by creating an employee type table
to store the values. To support the new type, all that is required is inserting a
row into the employee type table—the referential constraints will now allow
the new value.

To support this new value using a check constraint, the DBA most likely
will be required to drop and recreate the check constraint. During the period
when the check constraint does not exist, an outage will be required,
otherwise data integrity violations could occur. Certainly, such a scenario
should be avoided when a 24/7 environment is required.

Finally, if program logic is required to support a new value for the domain,
a programmer must be deployed to modify the program, test it, and then
migrate it to the production environment. This is a lot more work than either
of the previous two scenarios.

As a rule of thumb, then, use the facilities of the DBMS to enforce data
integrity unless a very compelling reason exists not to do so.

Use the facilities of the DBMS to enforce data integrity
wherever possible.

RI Rules of Thumb

Regardless of the type of RI you plan to implement in your databases, you
should heed the following rules of thumb.

Be aware that there are certain situations in which referential integrity can
be bypassed. This can cause severe data integrity problems as well as
significant confusion. One common problem area for most DBMSs is the

BULK LOAD utility. Loading data into database tables without checking
foreign key references speeds up the load process. However, this also means
that data integrity problems may be introduced during the bulk data load
process.

Additionally, some DBMSs provide SQL switches that turn RI on and off.
Avoid using these. Turning off RI is very likely to cause data integrity
problems. Programs and ad hoc data modifications are likely to insert or
update foreign key columns to values that do not conform to any existing
primary key value in the parent table.

Primary and foreign key columns can have different names, null attribute
qualifiers (e.g., NULL versus NOT NULL), and default values. The column
attributes, for example, CHAR(5), must be the same. It is not possible to
create a declarative constraint between two columns with different attributes.
Likewise, though possible, it is not wise to create a trigger-based constraint
between columns with differing attributes.

Keep in mind that when multiple relationships exist for the dependent row,
they must all be verified before the row can be inserted. It is possible for an
insert to pass three of four referential constraints, but to fail on the fourth.

When composite keys are used for a “primary key–foreign key”
relationship, a single row must exist in the parent table with key values that
match all the columns of the foreign key for the row being inserted into the
dependent table.

In general, avoid using declarative RI to create very large groups of
referentially related tables. The larger the group of referentially related tables,
the more difficult they become to manage. Keep in mind that referentially
related tables must be backed up and recovered together to keep the
relationships intact.

Referentially related tables must be backed up and recovered
together.

Consider using check constraints instead of referential constraints for code
tables and reference tables that are small and relatively static in nature. If the
number of values in a table is small, a check constraint will probably
outperform referential constraints. For example, consider a table that contains
status codes for projects, such as the one in Table 13.2. Instead, we could

simply code a check constraint consisting of those values on any child tables,
for example:
Click here to view code image

CREATE TABLE PROJECT
(projno INTEGER PRIMARY KEY,
 deptno INTEGER NOT NULL,
 mg_empno INTEGER,
 status INTEGER NOT NULL
 CHECK (status BETWEEN 0 AND 3),
 start_date DATE,
) IN db.ts;

Table 13.2. PROJECT_STATUS Codes

The check constraint on the status column performs the same function as
creating a foreign key on the status column to the STATUS_CODE column
in the PROJECT_STATUS table (see Table 13.2). And it will be more
efficient. However, if the project status codes change frequently, it will be
more difficult to maintain the values using check constraints than it would be
to add values to the PROJECT_STATUS table.

Temporal Database Systems
Recall from Chapter 4 that a temporal DBMS makes it possible to store
different database states and to query the data “as of” those different states. A
DBMS that provides temporal support must be defined differently to manage
the temporal integrity of the data. Data stored in a temporal database differs
from traditional data in that a time period is attached to the data to indicate
when it was valid or changed in the database.

Temporal support makes it possible to store different database
states and to query the data “as of” those different states.

A temporal database implementation requires setting up constraints for the
table indicating the valid time range for each row. This typically is done by
specifying the business or system time period start and end dates. For
example, consider the following DDL to create a new table with a business
time specification:
Click here to view code image

CREATE TABLE COURSE
 (COURSENO INTEGER NOT NULL,
 TITLE VARCHAR(20) NOT NULL,
 CREDITS SMALLINT NOT NULL WITH DEFAULT 3,
 PRICE DECIMAL(7,2) NOT NULL,
 BUS_START DATE NOT NULL,
 BUS_END DATE NOT NULL,

 PERIOD BUSINESS_TIME(BUS_START, BUS_END),

 PRIMARY KEY(COURSENO, BUSINESS_TIME WITHOUT
OVERLAPS)
);

In this example, two DATE columns are specified, indicating the
beginning of the time period (BUS_START) and the end (BUS_END). The
PERIOD BUSINESS_TIME clause is used to specify these two columns as
identifying the time period. It is a good idea to ensure the temporal integrity
of the data by enforcing BUS_START values to always be before BUS_END
values. The DBMS may automatically generate an implicit constraint to
enforce this condition.

The WITHOUT OVERLAPS clause is specified as part of the primary key
constraint for the table. This indicates that primary key values must be unique
for any point within the business time. In other words, there cannot be two
states, or versions, of the course that are valid at the same time. If WITHOUT
OVERLAPS is not specified, overlaps can occur.

The data, including the time period dates, must be supplied by the
application. All data, including past, present, and future effective-dated rows,
is maintained in the table. Temporal SQL enables queries to be issued that
specify temporal predicates such as AS OF, FROM/TO, and BETWEEN. For
example, the following SQL selects the price of the English 101 course
offering as of April 3, 2012:

Click here to view code image

SELECT Price
FROM Course FOR BUSINESS_TIME AS OF '2012-04-03'
WHERE Title = 'ENGLISH 101';

The temporal constraints are helpful, too, when data is to be modified in
the table. Inserting data is a simple matter of supplying the appropriate values
for all required columns including the business time start and end columns. If
you have defined a temporal uniqueness constraint on the table, the DBMS
reviews any attempted INSERT to ensure that it does not conflict with the
existing time periods.

To update data in a temporal table, you can write traditional UPDATE
statements. Alternatively, you also can use the new FOR PORTION OF
BUSINESS_TIME clause to restrict the UPDATE to a specific business time
period. The temporal syntax is powerful because an UPDATE that spans
multiple time periods is managed by the DBMS via modifying the time
ranges appropriately. For example, consider the Course table data for the
Introduction to DBA class as follows:

Suppose that you need to change the price for this course for the time
period from November 1, 2011, to February 2, 2012. This UPDATE spans
the two existing rows for the course because it begins within the time period
of the first row and ends within the time period of the second. You could, of
course, issue several UPDATE and INSERT statements to adjust the data to
include the wanted change. But it is simpler to use the FOR PORTION OF
BUSINESS_TIME clause as follows:
Click here to view code image

UPDATE Course
FOR PORTION OF BUSINESS_TIME FROM '2011-11-01' TO
'2012-02-02'
SET Price = 325.00
WHERE CourseNo = 100;

Both rows are impacted by the UPDATE statement because the portion of
business time that is updated overlaps partially with the business period of

each row. To make this change, the DBMS splits each of the two original
rows into two rows. The time periods for these rows are then adjusted
accordingly to match the requirement of the UPDATE and the changed
column values. (In this case, Price is applied to the appropriate rows.) After
this UPDATE statement is issued, the data for CourseNo 100 now consists of
four rows instead of two, each with the appropriate temporal range.

You can also DELETE data from a table with business time periods. You
can use either a standard DELETE, which impacts rows without regard to
time period, or you can restrict the DELETE to a specific time range using
the FOR PORTION OF BUSINESS_TIME clause. Similar to the UPDATE,
when data is to be deleted that is not completely contained within the
specified time range, the DBMS takes appropriate measures to retain the data
that must be preserved.

Temporal support offers powerful constraints for managing time in the
database. Keep in mind, though, that not every DBMS offers temporal
support. DB2 for z/OS Version 10 is an example of one that does.

Summary
Today’s DBMSs provide a wealth of features to support data integrity.
Because one of the major problems plaguing production systems today is data
quality, it is imperative that DBAs understand, implement, and administer
DBMS features such as constraints, referential integrity, and triggers in their
database designs. Failure to do so can be a prescription for disaster.

However, no DBMS can ensure the integrity of its data 100 percent
reliably all of the time. Other methods—programs, manual inspections,
automated data cleansing, and data quality products—may be needed to
assure the quality of specific databases.

No DBMS can ensure the integrity of its data 100 percent
reliably all of the time.

However, every DBA should take advantage of the mechanisms provided
by the DBMS to ensure data integrity. When DBMS-provided methods are
used, fewer data integrity problems are likely to be found in the database.
Moreover, having fewer data integrity problems means higher-quality
databases and more proficient end users.

Review
1. Define what is meant by entity integrity.
2. Describe the difference between database structural integrity and

semantic data integrity.
3. What is the preferred method of implementing referential integrity in a

relational database?
4. What is a trigger, and how can triggers be used to enhance data

integrity?
5. What is the difference between a check constraint and a rule?
6. What are transition variables and tables, and what benefit do they

provide?
7. Name and describe four types of database structural integrity problems

that may be encountered by a DBA.
8. What is a user-defined data type, and how can it be used to enhance

data integrity?
9. Describe the three RI DELETE rules and the impact of each on foreign

key rows in the child table when a DELETE is issued for the primary
key row in the parent table.

10. Describe the purpose of the start and end date/time columns within the
context of a temporal database.

Suggested Reading
Chisholm, Malcolm. Managing Reference Data in Enterprise Databases:

Binding Corporate Data to the Wider World. San Diego, CA: Academic
Press/Morgan Kaufmann (2001). ISBN 1-55860-697-1.

Codd, E. F. The Relational Model for Database Management, Version 2.
Reading, MA: Addison-Wesley (1990). ISBN 0-201-14192-2.

Date, C. J., et al. Temporal Data and the Relational Model. San Francisco,
CA: Morgan Kaufmann (2003). ISBN 1-55860-855-9.

Johnston, Tom, and Randall Weiss. Managing Time in Relational
Databases. Burlington, MA: Morgan Kaufmann (2010). ISBN 978-0-12-
375041-9.

Owens, Kevin T. Building Intelligent Databases with Oracle PL/SQL,

Triggers, and Stored Procedures. Upper Saddle River, NJ: Prentice Hall
(1996). ISBN 0-13-443631-8.

Parsaye, Kamran, et al. Intelligent Databases. New York, NY: John Wiley
& Sons (1989). ISBN 0-471-50345-2.

Piattini, Mario, and Oscar Diaz, eds. Advanced Database Technology and
Design. Norwood, MA: Artech House (2000). ISBN 0-89006-395-8.

Rob, Peter, and Carlos Coronel. Database Systems: Design, Implementation,
and Management. 10th ed. Boston, MA: Course Technology (2012).
ISBN 978-1-111-96960-8.

Saracco, Cynthia Maro. Universal Database Management: A Guide to
Object/Relational Technology. San Francisco, CA: Morgan Kaufmann
(1998). ISBN 1-55860-519-3.

Widom, Jennifer, and Stefano Ceri. Active Database Systems: Triggers and
Rules for Advanced Database Processing. San Francisco, CA: Morgan
Kaufmann (1996). ISBN 1-55860-304-2.

14. Database Security

Database security and protection are receiving more attention and budget
from organizations due to the steady increase in data breaches and the
resultant regulations (see next chapter) designed to abate them. However,
database security still requires more focus and effort. According to a 2005
report from Forrester Research, 75 percent of enterprises do not have a
DBMS security plan.

Data Breaches
Data breaches continue to dominate both business and IT news, with bigger
and uglier data breaches being regularly announced. A recent incident came
from Epsilon, an e-mail marketing firm that sends billions of e-mails
annually. The breach involved the exposure of e-mails for customers of many
well-known brands, including the rewards programs of Ritz-Carlton and
Marriott, banks such as Citibank and Capital One, and other companies such
as Kroger and Walgreens.

How bad is this problem? The Privacy Rights Clearinghouse
(www.privacyrights.org/data-breach) keeps track of every data breach that is
reported. According to its research, more than 544 million records were
breached between January 10, 2005, and early 2012—over the course of
almost 3,000 separate data breach events.

Can we put a price tag on all of that unprotected and lost data? We can try.
A Forrester Research survey of companies that had experienced a data

breach concluded that the average security breach can cost a company
between $90 and $305 per lost record. But coming up with a precise figure
can be difficult because of the additional, extenuating circumstances
surrounding data breaches. The cost has to factor in such details as the
expenses of legal fees, call centers, lost employee productivity, regulatory
fines, customer losses, stock losses, and the nebulous cost of bad publicity.

The average security breach can cost a company between $90
and $305 per lost record.

Another research group, Ponemon Institute, conducts an annual study of

http://www.privacyrights.org/data-breach

data breaches. According to its sixth annual U.S. Cost of a Data Breach
Study, data breach costs increased to $214 per compromised record in 2010.
This is a significant increase from the 2006 report, which pegged the average
cost per lost customer record at $182.

If you are still skeptical, you can always roll your own numbers using the
free Web-based data loss calculator provided by Darwin Professional
Underwriters, Inc., at www.tech-404.com/calculator.html.

The obvious conclusion is that data breaches are costly, even at the low
end of $90 per record. Consider a typical data breach case. On February 27,
2008, Health Net Federal Services reported that thousands of doctors in 11
states had their personal information (including Social Security numbers)
openly posted on a company Web site. According to the Privacy Rights
Clearinghouse, the total number of records involved was 103,000. So what
did that cost? At the low end, the cost was $9.3 million, but at the high end it
ballooned to over $31.4 million. Using the Ponemon estimate, which is sort
of in the middle, the cost ranged from $18.7 million to $22 million.

An additional interesting data point comes from the 2011 Data Breach
Investigation Report, a study conducted by the Verizon RISK Team with
cooperation from the U.S. Secret Service and the Dutch High Tech Crime
Unit. According to this report, 76 percent of all data breached was
compromised from servers. Furthermore, database servers yielded the
majority of breached data.

So the cost of a data breach can be quite steep. And database servers are
favorite sources for hackers to target. Thus, it makes sense to spend some
time and money up-front to better secure and protect the data in your
database systems.

Database Security Basics
The basic security and authorization approach taken by DBMS vendors to
secure database access is that all database resources are controlled by the
DBMS. No default authorizations are given to any user just because the user
logs in to the DBMS. Therefore, for a user to be able to perform any DBMS
operation or function, one of the following conditions must exist:

• The user has been granted the ability to perform that function or
operation, or

http://www.tech-404.com/calculator.html

• That operation or function has been granted generically to all users.

All database resources are controlled by the DBMS.

Using the security features of the DBMS, the DBA can set up the
environment such that only certain users or certain application programs are
allowed to perform certain operations on certain data within the database.
Each user’s function within the organization should determine the authorized
level of database access. For example, only general-ledger programmers,
batch jobs, and programs can access and modify the general-ledger databases.
Different checks can be established for each type of access to each type of
information, and different users can be assigned different access rights to
different database objects.

The operational challenge of effectively administering database security
arises because setting up and managing database authorization requires
technical expertise and elevated privileges. Many aspects of database security
require different utilities, system procedures, and commands to implement.
When users require access to multiple databases, on multiple servers
distributed across different physical locations, database security
administration becomes quite complicated indeed. The commands must be
repeated for each database, and there is no central repository for easily
modifying and deleting user security settings on multiple databases
simultaneously.

Although the DBA typically is responsible for administering database
security, some organizations have transferred this task to a separate security
administration function that controls all of the IT security for the company.
However, even in many shops where security administration is a separate
entity, database security is still handled by the DBA group because database
security is managed differently from a typical IT authorization scenario.

When the security administration group handles security policies, this
group usually relies on third-party security software such as IBM’s RACF or
Computer Associates’ ACF2 and Top Secret. These products automate the
security function and do not require the administrator to have elevated
privileges to manage security policies. However, most of these security
administration products run only on mainframes. Additionally, most IT
security departments are understaffed and lack the technical DBMS expertise
required to administer database security. Granting untrained security

personnel the privileges required to administer database security can result in
accidental disruption of database service or performance problems. So, DBAs
are forced to manage database security as a component of their job.

DBAs must manage database security as a component of their
job.

At a high level, database security boils down to answering four questions:
• Who is it? (authentication)
• Who can do it? (authorization)
• Who can see it? (encryption)
• Who did it? (audit)

Strong authentication is the cornerstone of any security implementation
plan. It is impossible to control authorization and track usage without it.
Before authorization to use database resources can be granted, a login needs
to be established for each user of the DBMS. Logins are sometimes referred
to as accounts, or user IDs. The login will have a password associated with it
such that only those who know the password can use the login ID. Some
DBMSs use the operating system login ID and password as the DBMS login
ID and password; others require an additional login ID and password to be
created specifically for database access and security.

Strong authentication is the cornerstone of any security
implementation plan.

When the DBMS controls the addition of logins, the DBA is required to
provide certain information about the login when it is created. Typically,
other than the actual login name or ID, the following information either can
or must be provided:

• Password—the key phrase, word, or character string associated with
the new login that must be provided by the user before access to the
database is permitted

• Default database—the name of the database to which the user will
initially be connected during login

• Default language—the default language assigned to the login when
using the DBMS if multiple languages are supported

• Name—the actual full name of the user associated with this login
• Additional details—additional details about the user for which the login

has been created: e-mail, phone number, office location, business unit,
and so on (this is useful for documentation purposes)

Passwords should be changed regularly over time to make it difficult for
hackers and miscreants to gain access to the DBMS surreptitiously. Refer to
the sidebar “Password Guidance” for tips on creating useful passwords. As a
DBA, you may decide to set up automated procedures—such as an e-mail
notification system—to coerce users into changing their login password every
month or so. Users who do not change their login password can be disabled
until they call to complain. Of course, this adds to the workload of the DBA,
but it does enhance the security of the DBMS.

Passwords should be changed regularly over time.

When a DBMS user no longer requires access to the DBMS, or leaves the
company, the DBA should drop that user’s login from the system as soon as
possible. However, this could become a complicated task—a login cannot be
dropped if the person is currently using a database, or if the user owns any
database objects.

For this reason it is wise to limit the database users who can create
database objects to DBAs only, especially in a production environment.

Limit the database users who can create database objects to
DBAs only.

In lieu of dropping a login, the DBMS may provide an option to lock the
login. Locking a login prohibits the user from accessing the DBMS, but it
does not actually drop the login from the system. The login can subsequently
be unlocked, thereby enabling access to the server. Such a process is very
useful if you simply wish to prohibit access, say, for those users who have
not recently changed their login password.

Keep in mind that logins that are dropped must be created anew if they are
ever required again. For this reason, follow these rules of thumb regarding
login administration:

• Lock logins that may need to be reactivated.
• Drop logins that will never need to be reactivated.

Password Guidance
As a DBA, you are responsible for securing the DBMS and granting data
access to authorized users. One way of assuring proper DBMS usage is to
develop and disseminate tips on creating useful passwords. A password
that is useful and proper will be difficult to guess.

If passwords are too simplistic or too related to some aspect of the
person using the password, unscrupulous individuals may be able to
guess the password and use it to surreptitiously access the database.

The following guidelines should be followed for proper password
creation:
1. Avoid passwords that are too short. Each password should be at least

six characters long, more if possible.
2. Each password should consist of at least a combination of alphabetic

characters and numeric characters. Using other allowable symbols
makes the password harder to guess.

3. Avoid creating a password that is a complete word (in either the native
language of the user or any foreign language).

4. Do not embed personal statistics in the password. Street addresses,
Social Security numbers, phone numbers, and the like are easily
guessed and do not belong in passwords.

5. Consider concatenating two unrelated words with a symbol or number
between them. For example, “toe3star” is a viable password.

Use mnemonic devices to help you remember passwords. For
example, use a sentence such as “Moondance by Van Morrison is my
favorite album” to remember that your password is “mbvmimfa” (the
first letters of each word in the sentence). However, do not make the
sentence too obvious—for example, using “My name is Craig S.
Mullins” to remember “mnicsm” is not a good idea because it might be
quite easily guessed.

Other common and weak password archetypes include sports teams
and sports celebrities (like “ChiBulls99” or “TigerWoods”), naughty
words (curse words/anatomy), and names of family members. In
general, if you think it can be easily guessed, avoid using it.

As a DBA, you should work with your organization’s security

administration team to create guidelines such as these and distribute
them to your database users.

Some DBMSs provide additional controls and parameters on logins and
passwords. For example, some DBMSs provide profile parameters for
passwords that can be used to limit the following:

• Number of failed login attempts before the account is locked
• Number of days a password is valid, the grace period for changing an

expired password
• Number of days the account can remain locked when the password

expires
• Reusability of passwords (number of days before a password can be

reused and the maximum number of times a password can be reused)
When such controls are available, be sure to use them when doling out

login accounts to better secure the DBMS environment.
Keep in mind, though, that each DBMS is different, and there may be no

capability to force a user to periodically change a password. If a password is
never changed, the likelihood of it being compromised increases over time. If
the database is able to force a periodic password change, it is often limited in
its ability to completely enforce corporate password standards that reduce the
risk of the password being guessed. These standards usually include
minimum length and alphanumeric requirements. Most DBMSs do not even
provide a simple interface by which end users can change their own
password. The problem is compounded if users have accounts on multiple
databases across multiple servers.

Enforce corporate password standards.

Database Users
In addition to a login account, which is required to access the DBMS, some
database systems require an additional account in order to use specific
databases. In this situation, a user name is created for the login account and is
attached to each database required by the user. As shown in Figure 14.1, the
following accounts may be required:

• A login, sometimes called an account, is used to access the DBMS, or

database server. For this reason it is sometimes also known as a server
user ID, or SUID.

• A user name is sometimes referred to as a database ID. The user name
is associated with the login account. Users are required by some DBMS
implementations to be set up with a database user name in order to
access each database.

Figure 14.1. DBMS and database logins

Guest usage of a database is permitted by configuring a special user name
that permits users to access the database as a GUEST. Adding a GUEST user
for a database allows any login with the special user name to access the
database.

Granting and Revoking Authority
The DBA controls database security and authorization using Data Control
Language, or DCL. DCL is one of three subtypes of SQL. (The other two are
DDL and DML.) DCL statements are used to control which users have access
to which objects and commands. These statements are the manner in which
database security is enacted. DCL statements comprise two basic types:

• GRANT assigns a permission to a database user.
• REVOKE removes a permission from a database user.

DCL statements comprise two basic types: GRANT and
REVOKE.

The GRANT statement is issued with two accompanying lists: a list of
privileges to be assigned to a list of users. To use the GRANT statement, the
user must be the owner of the database object, have been granted high-level
group authority, or have been given the WITH GRANT OPTION when the
privilege was granted.

The WITH GRANT OPTION allows a user to pass the authority to grant
privileges along to others. Generally, the use of this clause depends on
whether an installation practices centralized or decentralized administration
of privileges.

• Decentralized administration is generally easier to establish, but more
difficult to control. As more and more users obtain the authority to
grant privileges, the scope of authority is widened and becomes
unwieldy.

• Centralized administration is generally easier to administer but places a
burden on the centralized administrator as the sole arbiter of privileges
within the environment.

Avoid issuing GRANT and REVOKE statements from within an
application program. Ideally, an individual who understands the security
needs of the organization—usually the DBA—grants database authorization.
Furthermore, application programs designed to grant database privileges must
be executed by a user who has the appropriate authority to issue the GRANTs
and REVOKEs coded into the application program. This could create a
loophole in your database security infrastructure.

Some DBMSs provide additional functionality for conferring or
prohibiting database authority. For example, Microsoft SQL Server includes
the DENY statement to specifically deny privileges to a specific user.

Types of Privileges
There are different types of privileges that can be granted and revoked from
database users. Every DBMS provides certain basic types of privileges, such
as the ability to access data, to create database objects, and to perform system
functions. Each DBMS will also have additional types of privileges,
depending on the features it supports.

The following types of privileges are commonly provided by modern
DBMSs:

• Table: to control who can access and modify the data within tables
• Database object: to control who can create new database objects and

drop existing database objects
• System: to control who can perform certain types of system-wide

activities
• Program: to control who can create, modify, and use database

programs
• Stored procedure: to control who can execute specific functions and

stored procedures
Granting Table Privileges

Table privileges are granted to enable users to access tables, views, and
columns within tables and views. The following privileges can be granted for
tables and views:

• SELECT: to enable the user to select from this table/view
• INSERT: to enable the user to insert rows into this table/view
• UPDATE: to enable the user to update this table/view
• DELETE: to enable the user to delete rows from this table/view
• ALL: to enable the user to select, insert, update, and delete using this

table/view
For example, to enable user7 to delete rows from the Titles table, the

following statement can be issued:

GRANT DELETE on Titles to user7;

Some table privileges can be specified at the column level. Doing so can
be desirable when certain users must be permitted to modify specific columns
of a table but not other columns. The SELECT and UPDATE privileges can
be granted for specific columns. For example, to enable user7 to update only
the au_id column in the Titles table, the following statement can be issued:

GRANT UPDATE on Titles (au_id) to user7;

Typically, the DBA will grant table privileges to programmers in a test
environment for development purposes. Additionally, programmers and end
users may require table privileges on production tables for certain tasks.
However, most production access should be controlled using program and

stored procedure privileges, instead of direct table privileges.
Granting Database Object Privileges

Database object privileges control which users have permission to create
database structures. The actual privileges that can be granted will depend on
the DBMS and the types of database objects supported. Generally, the DBMS
will provide options to grant CREATE privileges on each type of database
object, including databases, tablespaces, tables, indexes, triggers, defaults,
and user-defined data types.

Database object privileges control which users have
permission to create database structures.

For example, to enable user5 and user9 to create tables and indexes, the
following statement can be issued:

GRANT CREATE table,
 CREATE index
TO user5,
 user9;

The ability to create database objects is usually reserved for DBAs. If these
privileges are granted to others, the number of existing database objects can
be quite difficult to control. Furthermore, it becomes very difficult to track
which database objects are really being used, and which were created and
then abandoned. For these reasons, DBAs should keep this authority to
themselves, with only rare exceptions perhaps for SAs or very skilled
developers.

The ability to create database objects is usually reserved for
DBAs.

Granting System Privileges

System privileges control which users can use certain DBMS features and
execute certain DBMS commands. The system privileges available will vary
from DBMS to DBMS but may include the ability to archive database logs,
shut down and restart the database server, start traces for monitoring, manage
storage, and manage database caches.

System privileges cannot be granted at the database level. System
privileges are granted at a system-wide level across the DBMS. For example,

to enable user6 to start performance traces, the following statement can be
issued:

GRANT TRACE
TO user6;

System privileges cannot be granted at the database level.

System privileges should be granted with care and should usually be
reserved for the DBA and SA.
Granting Program and Procedure Privileges

Granting the EXECUTE privilege gives the user permission to execute a
program or a stored procedure. For example, to enable user1 and user9 to
execute the stored procedure named proc1, the following statement can be
issued:

GRANT EXECUTE on proc1
TO user1, user9;

Granting privileges to users on programs and procedures is easier to
control than granting privileges on individual tables and columns. The
procedural logic in the program and procedure controls which specific tables
and columns can be modified. Furthermore, the DBA can better maintain the
integrity of production data if the only way it can be changed is
programmatically.

Granting to PUBLIC
As an alternative to granting access to a database user, the DBA can choose
to grant a particular authorization to PUBLIC. When authorization is granted
to PUBLIC, the DBMS will allow anyone who can log in to the DBMS that
particular authority. Grants made to PUBLIC cannot be given with the WITH
GRANT OPTION, as everyone is in PUBLIC.

For example, to grant everyone the authority to delete rows from the titles
table, the following statement can be issued:

GRANT DELETE on titles to PUBLIC;

Administering security can be a complex duty. Using the PUBLIC
authority to permit blanket access to certain database objects and resources
often appears easier than specifically controlling access by user. However,

DBAs should exercise caution when granting any privileges to PUBLIC.

Exercise caution when granting any privileges to PUBLIC.

Whenever a privilege is granted to PUBLIC, the DBA loses control over
that database object or resource—anyone can access or use the object or
resource as specified by the GRANT statement. Inevitably, users will abuse
PUBLIC resources, and gaining control over the resource again will be quite
difficult.

Reserve usage of PUBLIC authority for those few database objects and
resources that should be available to everyone. Alternatively, PUBLIC
authority can be a useful shortcut if another security mechanism is in place.
For example, you could grant program authority to PUBLIC for transactions
that are run under a transaction processor and use the security facilities of the
transaction processor to control access.
PUBLIC Authority and the System Catalog

A common dilemma faced by DBAs is whether or not to grant PUBLIC
access to the system catalog tables. On the one hand, the metadata contained
in the system catalog is useful information that will be needed by most
DBAs, developers, and analysts as they create and maintain applications that
access production databases. On the other hand, the system catalog frequently
contains sensitive information that can be exploited by hackers. For example,
system catalog tables that contain authorization details can be queried to learn
who has access to which tables. These tables typically contain user ID and
database login information, too. Furthermore, being able to query the system
catalog exposes the names of all the tables that have been created in the
system, making it easier for a hacker to attempt to access data (or to attempt a
SQL injection attack).

The bottom line is that you should refrain from granting blanket PUBLIC
access to the system catalog tables.

Refrain from granting blanket PUBLIC access to the system
catalog tables.

Revoking Privileges
The REVOKE statement is used to remove privileges that were previously
granted. The syntax for REVOKE is the “flip side” of the GRANT syntax.

Additionally, privileges will be automatically revoked by the DBMS when a
database object is dropped.

For example, to revoke the ability to update the au_id column of the titles
table from user7:

REVOKE UPDATE on titles (au_id) from user7;

Revoking a PUBLIC privilege will not remove that privilege from any user
to whom it was granted in a separate GRANT statement.
Cascading REVOKEs

When privileges are revoked, the DBMS must decide whether additional
revokes are necessary, based on the privileges being revoked. When one
revoke causes the DBMS to revoke additional related privileges, it is called
cascading REVOKEs. Consider the authority hierarchy depicted in Figure
14.2. Joe has been granted the ability to grant a privilege, say X, to others. He
grants X to Pete and Phil with the GRANT option. Pete in turn grants X to
Bruce. Joe also grants X to Don, but without the GRANT option.

Figure 14.2. Cascading REVOKEs

Now let’s investigate the impact of cascading REVOKEs by outlining
what happens if we revoke the X privilege from Joe. In this case, not only
will Joe no longer have the X privilege, but the DBMS will also remove the
authority from Pete, Phil, and Don. Furthermore, because Phil’s X privilege
was revoked, the effect of the revoke will cascade to Bruce, too.

To minimize the impact of cascading REVOKEs, avoid granting privileges
using the WITH GRANT OPTION. The fewer users who can grant
subsequent privileges, the easier it is to manage and administer a viable
DBMS security infrastructure.

Some DBMS products provide an option of the REVOKE statement

enabling authority to be revoked without cascading.
Chronology and Revokes

The timing of a GRANT or REVOKE statement may have a bearing on its
impact. For example, in some DBMSs it is possible to grant a privilege to all
users except a specific user by issuing the following statements:

GRANT DELETE on titles to public;
COMMIT;
REVOKE DELETE on titles from userx;

The timing of a GRANT or REVOKE statement may have a
bearing on its impact.

The first statement grants everyone the authority to delete data from the
titles table. Because the REVOKE statement is issued after the GRANT to
public, the individual userx is barred from deleting data from this table. Some
DBMSs (e.g., DB2) do not permit such exclusions, because the PUBLIC
authority will override any revokes; other DBMSs (e.g., Microsoft SQL
Server) do permit such exclusions.

The DBA needs to understand exactly how GRANTs and REVOKEs work
for each DBMS being administered in order to properly manage privileges on
database objects and resources.

Label-Based Access Control
As database systems and applications become more sophisticated, the need
for low-level access control to the data becomes more critical. A growing
number of DBMSs offer label-based access control (LBAC) to ensure that
each piece of data is secured such that only authorized users can perform
authorized functions. With LBAC it is possible to support applications that
need a more granular security scheme. LBAC can be set up to specify who
can read and modify data in individual rows and/or columns.

LBAC provides for a more granular security scheme,
specifying who can read and modify data in individual rows
and/or columns.

For example, you might want to set up an authorization scenario such that
employees can see their own data but no one else’s. Or, your authorization

needs might dictate that each employee’s immediate manager is able to see
his payroll information as well as all of his employees’ data, and so on up
through the org chart. Setting up such a security scheme is virtually
impossible without LBAC.

An administrator must configure the LBAC system by creating security
label components, which are database objects used to represent the conditions
determining whether a user can access a piece of data. A security policy,
composed of one or more security label components, is used to describe the
criteria for determining who has access to what data. The security
administrator defines the policy by creating security labels that are composed
of security label components.

Once created, a security label can be associated with individual columns
and rows in a table to protect the data held there. An administrator allows
users access to protected data by granting them security labels. When a user
tries to access protected data, that user’s security label is compared to the
security label protecting the data. The protecting label will block some
security labels but not others.

Any individual user can hold security labels for multiple security policies.
For any given security policy, however, a user can hold at most one label for
read access and one label for write access. A security administrator can also
grant exemptions to users. An exemption allows users to access protected
data that their security labels might otherwise prevent them from accessing.
Together, security labels and exemptions are called LBAC credentials.

Any attempted access to a protected column when the LBAC credentials
do not permit that access will fail. If users try to read protected rows not
allowed by their LBAC credentials, the DBMS simply acts as if those rows
do not exist. Even aggregate functions, such as COUNT(*), will ignore rows
when the LBAC credentials do not allow read access. This is important
because sometimes even having knowledge that the data exists (without
being able to access it) must be protected.

To use LBAC, you will need to add a specially named column to act as the
security label. The security label column is matched with the multilevel
security hierarchy set up by the administrator. For example, you might want
to set up a hierarchy using colors, as shown in Figure 14.3. Of course, the
hierarchy need not be so complex—you might choose to use something
simpler, such as TOP SECRET, SECRET, and UNCLASSIFIED.

Figure 14.3. Sample LBAC security hierarchy

Consult your DBMS documentation for where and how to establish this
hierarchy. For example, with DB2 for z/OS the hierarchy is established in
security software, such as RACF. At the top of the hierarchy in the example
(Figure 14.3), the RAINBOW security label includes everything—all colors
are included in the rainbow. Middle levels of the hierarchy that represent
additional security groupings can be created. In this case we have a second
level of COOL, WARM, and PASTEL. Under COOL, we see the cool colors,
BLUE, GREEN, and VIOLET. Even further categorization is possible as
shown with the various shades of BLUE. And so on throughout the hierarchy.
Such a hierarchy provides great flexibility for assigning various levels of
security to data in your tables—and thereby appropriately securing the data
from unauthorized user access.

Assigning a security label column in your table, and populating that
column with the appropriate specification from the hierarchy, makes it
possible to control whether or not an individual user can access that particular
row. So assigning a row to the security label of RAINBOW makes the data
accessible to anyone, whereas assigning the row to NAVY would be much
more particular and prohibitive. Users with authority to access RAINBOW
can access data because all colors fall under the rainbow. BLUE data can
access any row associated with BLUE, or any subordinate blue shade
(NAVY and CYAN).

Assigning a security label makes it possible to control whether

or not an individual user can access a particular row.

LBAC offers a very powerful security setup. Such strict security controls
are common requirements for government databases, for example.

Security Reporting
Once granted, the DBA will need to monitor and report on the privileges held
by users. Database security is maintained in the system catalog. The DBA
can use SQL to retrieve the needed information from the appropriate system
catalog tables. Alternatively, some DBMSs provide views and system-stored
procedures that simplify the retrieval of database security.

As a further consideration, though, be sure to adequately protect the
security of the system catalog, especially within the production system. Only
the DBA, SA, and security administrator require access to the database
security information stored in the system catalog.

Be sure to adequately protect the security of the system
catalog.

User security requirements and expectations tend to evolve over time. As
new applications are added and business requirements change, database
security will need to change. Security reviews should be performed on a
regular basis to ensure that database security as implemented continues to
match the current user requirements. Reports from the system catalog tables
can be used to provide the input for such reviews.

Authorization Roles and Groups
In addition to granting privileges to individual users, the DBMS may provide
the capability to assign users

• Specific privileges to a role, which is then granted to others, or
• Specific built-in groups of privileges

Of course, the terminology is not strict among the major DBMSs. Some
DBMSs refer to roles as groups, and vice versa. As a DBA, you will need to
understand how each DBMS you manage implements roles and groups and
how each of these features can be used to simplify database security
administration.

Roles
Once defined, a role can be used to grant one or more preassigned privileges
to a user. A role is essentially a collection of privileges. The DBA can create
a role and assign certain privileges to that role. Then the role can be assigned
to one or more users. The administration of database security is simplified in
this way. For example, consider the following sequence of statements:

The DBA can create a role and assign certain privileges to that
role.

Click here to view code image

CREATE role MANAGER;
COMMIT;
GRANT select, insert, update, delete on employee to
MANAGER;
GRANT select, insert, update, delete on job_title to
MANAGER;
GRANT execute on payroll to MANAGER;
COMMIT;
GRANT MANAGER to user1;
COMMIT;

This script creates a new role named MANAGER, grants privileges on
certain tables and procedures to the role, and then assigns user1 the
MANAGER role. Additional users can be assigned the MANAGER role, and
the DBA will not need to remember to issue each of the individual GRANT
statements, because they have already been assigned to the MANAGER role.

Groups
Group-level authority is similar to roles. However, each DBMS provides
built-in groups that cannot be changed. Each DBMS implements group-level
database security in different ways and with different group names and
privileges. There are some similarities across DBMSs, though. The following
groups are common among the major DBMSs:

• System administrator. Sometimes abbreviated SA or SYSADM, the
system administrator group is the most powerful within the DBMS. A
user granted SA-level authority typically can execute all database
commands and access all databases and objects. The system
administrator is usually responsible for installing the DBMS and is

viewed as the owner of system resources and system catalog tables.
• Database administrator. Sometimes abbreviated as DBADM or DBA,

the database administrator group gives all privileges over a specific
database, plus the ability to access, but not modify, data in tables within
that database. Users assigned DBA-level authority can drop and alter
any objects within the database (tablespaces, tables, and indexes).

• Database maintenance. Sometimes abbreviated as DBMAINT, the
database maintenance group includes the specific database privileges
for maintaining database objects (such as the ability to run utilities and
issue commands). Like the DBA group, the DBMAINT-level privilege
is granted on a database-by-database basis.

• Security administrator. The security administrator role has the privilege
set permitting the granting and revoking of database security across the
DBMS. Any database security-related activities can be performed by
the security administrator, including login and password administration,
auditing, security configuration, as well as grants and revokes. Another
common name for the security administrator role is SSO.

• Operations control. Sometimes referred to as OPER or SYSOPR, the
operations control role has the authority to perform operational
database tasks such as backup and recovery, or terminating runaway
tasks.

Each DBMS provides built-in groups that cannot be changed.

Limit the Number of SA Users

A single organization should limit the number of users who are assigned the
SA role or group-level authority.1 A user with SA capabilities is very
powerful. Only corporate DBAs and systems programmers should be granted
this level of authority. End users, managers, and application development
personnel do not need SA authority to do their jobs.

A user with SA capabilities is very powerful.

Group-Level Security and Cascading REVOKEs

Depending on the group, some users who have been assigned group-level
privileges can grant privileges to other users. If the group-level authority is
revoked from such a user, any privileges that user granted will also be

revoked. This is similar to the cascading REVOKEs that occur as a result of
the WITH GRANT option.

Before revoking a group-level authorization from a user, be sure to
ascertain the impact of cascading REVOKEs, and be prepared to reapply the
required privileges that will be removed due to the cascading effect.

Other Database Security Mechanisms
Modern relational DBMS products support many capabilities and qualities
that can aid in securing data. Some of these capabilities are not primarily
security features. For example, views and stored procedures can be used for
security purposes, even though that is not their main purpose.

Using Views for Security
Most database security is performed using the native security of the DBMS.
However, it is possible to simplify some aspects of database security by
creating views to protect your data.

Your organization has deployed an employee table that houses pertinent
information about all employees. Columns within the table exist to store the
employee’s first and last name, middle initial, address, telephone number,
salary, and so on. Granting the SELECT privilege on the employee table to a
group of users can cause a security problem. While application security is
maintained with this scenario, personal security is not because the user could
access the personal details, including salary information, of fellow
employees.

A view could be created that omits the sensitive information from the
employee table. When the view is created without the sensitive columns,
users can be granted the SELECT privilege on the view and will be able to
access employee information that is deemed appropriate. For example:

A view can be created that omits sensitive information.

Click here to view code image

CREATE view emp_all
AS
SELECT first_name, last_name, middle_initial,
 street_address, state, zip_code
FROM employee;

This simple example shows a view that specifies only certain columns
from the base table. Once the view has been created and the user has been
granted the SELECT privilege on the view, only the information specified in
the view can be retrieved. Eliminating columns from a base table to create a
view is referred to as vertical restriction.

Of course, the definition of sensitive will vary from organization to
organization. In our example, the salary and telephone information were
removed. It is quite simple to understand why salary is sensitive, but what
about telephone number? And if telephone number is sensitive, perhaps the
employee’s address should be as well. Views allow you to easily specify the
column-level security deemed necessary for your organization.

Vertical restriction using views is an alternative to specifying columns
when granting table privileges. It also can be easier to implement and
administer.

Views can also be used to provide row-level security based on the content
of data. This is called horizontal restriction and is implemented by coding the
appropriate WHERE clauses into the view. For example:
Click here to view code image

CREATE view emp_dept20
AS
SELECT first_name, last_name, middle_initial,
 street_address, state, zip_code
FROM employee
WHERE deptno = 20;

When users select from the view, only rows that match the predicate will
be returned. This view will return only those employees who work in
department 20. When users modify rows of the view, if the WITH CHECK
OPTION has been specified, the predicates will ensure that values cannot be
updated or inserted out of the range. Additionally, rows that do not match the
predicate cannot be deleted using the view when WITH CHECK OPTION is
specified.

Using Stored Procedures for Security
Stored procedures can be used to provide an additional level of security. The
privilege to execute a stored procedure must be explicitly granted or revoked,
regardless of the security implemented on the underlying base tables.

The privilege to execute a stored procedure must be explicitly
granted or revoked.

Stored procedures can be coded that access only row- and/or column-level
subsets of data. The ability to execute these stored procedures can then be
granted to users. If no privileges on the underlying base tables are granted,
users will be able to access the data only by executing the stored procedure,
thereby providing the requisite security.

In addition to providing a level of security, this method can provide better
performance if the algorithms in the procedure are coded properly.
Logic-Oriented Security

Sometimes it is necessary to implement security based on an algorithm. For
example, what happens if only a subset of users can access a specific table
during a specific time of day? This criterion can be coded into the stored
procedure. Whenever the stored procedure is executed, it checks the user and
the time of day before permitting access.

Some DBMS products offer special functionality for database security. See
the sidebar “Oracle Virtual Private Database” for an example of such
functionality.

Encryption
Another security feature for data protection is encryption. Data encryption is
a process whereby data is transformed using an algorithm to make it
unreadable to anyone without the decryption key. The general idea is to make
the effort of decrypting so difficult as to outweigh the advantage to a hacker
of accessing the unauthorized data. The general flow of encryption and
decryption is depicted in Figure 14.4.

Encryption transforms data, rendering it unreadable to anyone
without the decryption key.

Figure 14.4. Encryption and decryption

Oracle Virtual Private Database
Oracle provides row-level access control through its Virtual Private
Database (VPD) technology. VPD is enabled by associating one or more
security policies with tables or views. When the table is accessed, either
directly or indirectly, the database will consult a function that implements
the policy. The policy is basically a SQL predicate (or WHERE clause)
that the database appends to the user’s SQL statement. This dynamically
modifies the user’s data access.

With VPD, a user is able to retrieve and manipulate only data that
matches the WHERE clause in the policy. In essence, this works
something like creating a dynamic view (using WITH CHECK
OPTION) that is always applied and enforced.

Encryption has been used by governments and military organizations for
years to enable secret data transmission and communication. Because of the
added data protection and regulatory requirements of late, encryption is being
more commonly used in many business systems and applications.

There are two types of situations where data encryption can be deployed:
data in transit and data at rest. In a database context, data “at rest” encryption
protects data stored in the database, whereas data “in transit” encryption is
used for data being transferred over a network.

Data at Rest Encryption
Encrypting data at rest is undertaken to prohibit “behind the scenes” snooping
for information. Consider, for example, a database containing a top-secret
military plan. Of course, this data can, and should, be protected using
traditional database security and authorization methods, such as granting
access to only those with the proper clearance. Additional precaution can be
taken by using LBAC techniques if the database contains data needing
varying levels of clearance requirements. But what if the data is accessed
outside the control of the DBMS?

When the data at rest is encrypted, even if a hacker surreptitiously gains
access to the data behind the scenes, without the decryption key the data will
be meaningless.

Without the decryption key the data will be meaningless.

Other examples of data at rest encryption in database systems include
encrypting backup data and encrypting user IDs and passwords.

Data at rest encryption most commonly is supported by using SQL
functions or through an add-on encryption product. Oracle supports
transparent data encryption through the use of a “wallet” (see the sidebar).

Data in Transit Encryption
Encrypting data in transit is undertaken to prohibit network packet sniffing. If
the data is encrypted before it is sent over the network and decrypted upon
receipt at its destination, it is protected along its journey. Anyone nefariously
attempting to access the data en route will receive only encrypted data. And
again, without the decryption key, the data cannot be deciphered.

Data in transit encryption most commonly is supported using DBMS
system parameters and commands or through an add-on encryption product.

Encryption Techniques
There are various encryption techniques and algorithms supported by modern

DBMSs. Among the more common are Data Encryption Standard (DES),
Triple DES (TDES), and Advanced Encryption Standard (AES)-128 bit data
encryption/decryption, as well as Secure Hash Algorithm (SHA-1) and SHA-
256 hashing.

Oracle Transparent Data Encryption
Transparent data encryption enables you to encrypt individual table
columns or an entire tablespace. When a user inserts data into an encrypted
column, transparent data encryption automatically encrypts the data. When
users select the column, the data is automatically decrypted.

Data is encrypted using a wallet, which is an operating system file
located outside the database. The database uses the wallet to store the
encryption key. The wallet is created using the ALTER SYSTEM
command (or within Oracle Enterprise Manager). The wallet itself is
encrypted and requires a password as its encryption key. To access the
contents of the wallet you must know the password. After the wallet is
created, you must open the wallet using the password so that the
database can access the master encryption key. The location of the
wallet is specified in the sqlnet.ora file.

So, when a user enters data, Oracle retrieves the master key from the
wallet, decrypts the encryption key using the master key, uses the
encryption key to encrypt the data entered by the user, and stores the
encrypted data in the database. When a user accesses data, the process is
similar. Oracle decrypts the data and displays it in clear text format.

SQL Injection
Another aspect of database security is designing your applications properly in
order to avoid SQL injection attacks. SQL injection is a form of Web hacking
whereby SQL statements are specified in the fields of a Web form to cause a
poorly designed Web application to dump database content to the attacker.
SQL injection is a favorite technique of Web hackers, and stories abound in
the news of the technique being used for nefarious purposes (see the sidebar
titled “Examples of SQL Injection Attacks”).

SQL injection is a form of Web hacking whereby SQL

statements are specified in a Web form to expose data to the
attacker.

In order for SQL injection to succeed, the application software used by the
Web site must be vulnerable to an injection attack. SQL injection relies upon
programs that do not adequately filter for string literal escape characters
embedded in SQL statements or where user input is not strongly typed. So
instead of data being input into a form, SQL statements are supplied. The
SQL is “injected” from the Web form into the database, causing it to be
executed and to access (or even modify) unintended data.

Perhaps it is easiest to comprehend SQL injection by example. Consider a
Web-based application using dynamic SQL. The Web site requires users to
log in with their e-mail address and a password. Almost all sites of this type
also offer an option to retrieve your password by supplying your e-mail
address. Perhaps the SQL looks something like this:

SELECT userid, password
FROM uid_pwd_table
WHERE field = '$EMAIL';

Examples of SQL Injection Attacks
There are many examples of SQL injection being used to attack popular
Web sites. For example:

On January 13, 2006, Russian hackers broke into a Rhode Island
government Web site and obtained credit card data from residents who
had done business online with state agencies (www.xiom.com/whid-
2006-3).

On June 29, 2007, a hacker defaced the Microsoft Web site in the
United Kingdom using a SQL injection attack
(www.cgisecurity.com/2007/06/hacker-defaces.html).

In January 2008, tens of thousands of PCs were infected by an
automated SQL injection attack that exploited a vulnerability in
application code that accesses Microsoft SQL Server databases
(www.pcworld.com/businesscenter/article/146048/mass_sql_injection_attack_targets_chinese_web_sites.html

On September 19, 2010, during the Swedish election, a voter
attempted an injection by hand-writing SQL statements as part of a
write-in vote (http://alicebobandmallory.com/articles/2010/09/23/did-

http://www.xiom.com/whid-2006-3
http://www.cgisecurity.com/2007/06/hacker-defaces.html
http://www.pcworld.com/businesscenter/article/146048/mass_sql_injection_attack_targets_chinese_web_sites.html
http://alicebobandmallory.com/articles/2010/09/23/did-little-bobby-tables-migrate-to-sweden

little-bobby-tables-migrate-to-sweden).
In June 2011, the Public Broadcasting System (PBS) was hacked,

through use of SQL injection (http://blog.imperva.com/2011/05/pbs-
breached-how-hackers-probably-did-it.html).

In September 2011, Turkish hackers accessed NetNames DNS records
and changed entries redirecting users (of the Telegraph, the Register, the
National Geographic, and others) to a site set up by them (www.zone-
h.org/news/id/4741).

Other Web sites attacked by SQL injection in 2011 included
Barracuda Networks, mysql.com, Lady Gaga’s Web site, Nokia’s
developer site, and Canon, among other prominent organizations.

The variable $EMAIL represents the input from the form on the Web site.
A savvy hacker can attempt a SQL injection attack by entering

anything' OR '1'='1

If the application does not check the input properly, the injection causes
the SQL to now look like this:

SELECT userid, password
FROM uid_pwd_table
WHERE field = 'anything' OR '1'='1';

This will cause a complete dump of every user ID and password in the
database because the OR ′1′=′1′ component will always evaluate to TRUE. It
does not matter what the first part of the injection was; it could be anything,
because the second part of the injection gives the hacker everything in the
table.

Another form of SQL injection relies upon improper typing, for example,
not checking whether data that should be numeric is actually numeric.
Consider, for example:
Click here to view code image

statement := "SELECT * FROM userinfo WHERE id = " +
in_var + ";"

In this case, the SQL is being built into the statement variable; the in_var is
the variable used to supply the input. Let’s assume that the id column is

http://blog.imperva.com/2011/05/pbs-breached-how-hackers-probably-did-it.html
http://www.zone-h.org/news/id/4741

numeric. However, if the program does not check the data type of the in_var
variable to ensure that numeric data is supplied, SQL injection can occur. For
example, instead of just supplying a numeric value, the hacker can supply
something like this:

4;DROP TABLE customer

If this SQL statement is built and executed, the customer table (if one
exists) will be dropped from the database.

SQL Injection Prevention
Using well-designed query language interpreters and coding applications
appropriately can prevent SQL injection attacks. When possible, use static
SQL (see the next section for more details).

Always validate user input by testing type, length, format, and range. The
program should make absolutely no assumptions about the size, type, or
content of the data that is received. Test the size and data type of input and
enforce appropriate limits. Doing so can help to prevent buffer overruns. Test
the content of string variables and allow only expected values to be
processed. Any input that contains binary data, escape sequences, and
comment characters should be summarily rejected.

Always validate user input by testing type, length, format, and
range.

Avoid concatenating user input that has not been validated. String
concatenation is the primary point of entry for SQL injection attacks.
Furthermore, consider using stored procedures to validate user input.

Analyze input and reject anything that contains special characters such as
the semicolon (;), the string delimiter (′), comment delimiters (--, /*...*/), V$
(the beginning of Oracle DBA views), and xp_ (the beginning of SQL Server
catalog stored procedures).

For Microsoft SQL Server users, beware of the Transact-SQLprocedure
xp_cmdshell. This procedure spawns a Windows command shell and passes
in a string for execution. So it is entirely possible for a SQL injection attack
not only to steal or damage data, but to upload and execute its own code,
probe the network, and even launch attacks against other sites from the victim
of the SQL injection. Use of xp_cmdshell is disabled by default, and it is a

good idea to keep it that way to thwart malicious users from attempting to
elevate their privileges using the command.

With foreknowledge of SQL injection techniques and proper development
procedures, all SQL injection attacks can be prevented.
Static versus Dynamic SQL

Using static SQL instead of dynamic SQL can improve the security of your
database applications and data. Static SQL is hard-coded into the application
and cannot be changed at run time. Dynamic SQL is flexible and can change
at run time. When the SQL can change at run time, a sufficiently motivated
and skilled hacker can potentially change the SQL or potentially deploy a
SQL injection attack to gain access to unauthorized data.

Using static SQL instead of dynamic SQL can improve
security.

Static SQL is common in mainframe DB2 applications, but not so much
for other platforms and database systems. The DB2 BIND command
“hardens” the SQL and optimizes access to the data. See the sidebar on the
DB2 BIND command for additional details.

If you are using a CLI, such as ODBC or JDBC, to access the database,
static SQL is probably not an option. However, you can use stored
procedures to gain a measure of protection similar to that of static SQL.

The DB2 BIND Command
The BIND command can be thought of as a compiler for SQL statements.
In general, the BIND command reads SQL statements embedded in the
application program and produces an executable access path to the data as
directed by the SQL statements being bound. Once the SQL is statically
bound, it cannot be changed without undergoing the BIND process again.

Binding performs many functions to create packages that access the
requested data, including reading the SQL statements in the program,
syntax checking, metadata validation, authorization validation, and
optimization.

An added security feature of DB2 binding is provided with the
ENABLE and DISABLE options, which can be specified to control the
environment in which the plan or package being bound can be executed.

ENABLE ensures that the program operates in only the enabled
environments. DISABLE permits execution of programs everywhere
except for those environments explicitly disabled. ENABLE and
DISABLE are mutually exclusive parameters; only one can be used per
program package. For example, if a program is bound specifying
ENABLE(CICS), only the CICS transaction manager is permitted to
execute the program. Binding in this manner enables DBAs to
effectively prohibit programs that are designed to be executed in one
environment (e.g., online CICS) from being surreptitiously used in
another (e.g., batch).

Auditing
Auditing is a DBMS facility that enables DBAs to track the use of database
resources and privileges. When auditing is enabled, the DBMS will produce
an audit trail of database operations. Each audited database operation
produces an audit trail of information, including what database object was
impacted, who performed the operation, and when. Depending on the level of
auditing supported by the DBMS, an actual record of what data actually
changed may also be recorded. Tracking who does what to which data when
is important because there are many threats to the security of your data. (See
the “Threats to Security” sidebar.)

Auditing enables DBAs to track the use of database resources
and privileges.

Keep in mind that auditing tracks what a particular user has done once
access has been allowed. Auditing occurs post activity; it does not do
anything to prohibit access. Audit trails help promote data integrity by
enabling the detection of security breaches, also referred to as intrusion
detection. An audited system can serve as a deterrent against users tampering
with data because it helps to identify infiltrators.

Auditing occurs post activity; it does not do anything to
prohibit access.

Threats to Security

External agents trying to compromise your security and access your
company data are rightly viewed as a threat to security. However, industry
studies have shown that many security threats are internal—within your
organization. The most typical security threat is a disgruntled or
malevolent current or ex-employee who has valid access to the DBMS.
Auditing is crucial because you may need to find an instance of
unauthorized access by an authorized user.

Database auditing is covered in more detail in Chapter 15, “Regulatory
Compliance and Database Administration.”

External Security
In addition to database security, the DBA must ensure that certain resources
used by the DBMS are protected from being accessed outside the control of
the DBMS. If database resources are not accessed using DBMS commands
and SQL statements, database security mechanisms cannot be relied on to
enforce proper user authentication.

When using external security mechanisms to protect database-related
resources, the DBA should focus primarily on the data sets and files used by
the DBMS. Data sets to protect at the operating system or file system level
include

• System catalog data files
• Active and archive log files
• User data sets for tablespaces
• User data sets for indexes
• Audit data files
• Performance trace files
• Program and script files (both source and executable code)

Focus primarily on the data sets and files used by the DBMS.

Ingenious users intent on mischief may be able to figure out the format of
these files and access unauthorized data if you fail to protect these data sets
and files. An additional level of protection can be achieved by compressing
the data within the DBMS. This places the additional burden on the hacker of

trying to decompress the data. Of course, compression is not sufficient
protection.

If data encryption software is available for use within database files,
consider using it. Data encryption is a security technique that encodes legible
data into a scrambled format, making the files unreadable without the
encryption key. The general idea is to make the effort of decrypting so
difficult as to outweigh the advantage to the hacker of accessing the
unauthorized data.

Additional security may need to be applied to DBMS system resources,
such as the physical storage and address spaces used to run the DBMS, the
DBMS console, and files used to install the DBMS.

Job Scheduling and Security
Most organizations schedule tasks to be run at predetermined times, and
when those tasks involve database access, authority must be granted to the
scheduler. Scheduling is usually accomplished using a third-party job
scheduler such as CA-7, Control-M, or AutoSys. When scheduling software
is used to control the submission and scheduling of batch programs and
scripts, the DBA will have to determine the best way to grant database
security to the scheduler.

It is not a very good idea to grant SYSADM authority to the job scheduler.
Doing so would permit any job to perform any database task—creating
potentially severe security problems. Instead, determine how to grant
individual authorization to specific jobs using the facilities of the scheduling
package and the DBMS. Many job schedulers can be set up to generate a user
ID for each job. The generated ID can be granted the proper authority based
on the types of actions that are authorized for that particular job.

It is not a good idea to grant SYSADM authority to the job
scheduler.

Another common security mistake made at some shops is embedding
actual passwords into database utility jobs and scripts. If the password is
hard-coded into the job, anyone can read it and use it elsewhere in the
system. This does not protect the security of your data.

Non-DBMS DBA Security

The DBA will need to possess a fairly high level of operating system
authority in order to perform the job of administering and managing the
organization’s databases and data. For example, in the UNIX environment
some installation tasks require root authority. This situation can be handled in
two ways: Either grant the DBA root authority to do the installation or turn
the specific installation tasks requiring root authority over to the UNIX
system administrator. Either option is viable. My preference is to grant the
authority to the DBAs if the DBA staff possesses the requisite level of UNIX
skills to understand the ramifications of having root authority. Either way,
though, the DBAs and SAs will need to cooperate in order to create an
effective operating system security approach that enables the DBAs to
perform their job while at the same time protecting the security and integrity
of the platform.

DBMS Fixpacks and Maintenance
Another important consideration with regard to database security is the
development and implementation of a DBMS maintenance plan. Like any
system software, the DBMS itself must be periodically patched to remedy
security defects and other software bugs in the DBMS code. Failing to apply
patches as they are delivered from the DBMS vendor via fixpacks,
downloads, and other maintenance streams can cause security issues in your
databases.

Refer to the sidebar on Oracle Database patches for a discussion of how
one vendor, Oracle, manages the software maintenance of its DBMS.

Oracle Database Patches
Oracle has implemented a consistent process for patching its system
software, including its DBMS. There are two types of patches for which
DBAs need to be prepared: Critical Patch Updates and Security Alerts.

Critical Patch Updates are the primary means of releasing security
fixes for Oracle products to customers with valid support contracts.
They are released on the Tuesday closest to the seventeenth day of
January, April, July, and October.

Security Alerts are issued by Oracle for vulnerability fixes deemed to
be too critical to wait for the next Critical Patch Update.

Of course, you should evaluate each patch on a case-by-case basis. You
may want to apply critical security patches as soon as they are available. On
the other hand, you may want to delay applying patches that are not deemed
to be urgent by the DBMS vendor. Remember, when you apply a patch, you
are changing your system software and you could be introducing additional
flaws and defects. Unless you have the time and resources to conduct a
thorough and rigorous test of every patch, only urgent or critical patches
should be applied quickly.

Some fixpacks contain literally hundreds of software patches. Although it
is a good idea to strive for currency in your DBMS software, use prudent
judgment before applying every patch the DBMS vendor supplies to you.

Summary
Database security is an important component of a DBA’s job. Without a
comprehensive database security plan and implementation, the integrity of
your organization’s databases will become compromised. DBAs should learn
the security mechanisms at their disposal to assure that only authorized users
are accessing and changing data in the company’s databases.

DBAs should learn the security mechanisms at their disposal.

Furthermore, DBAs should implement auditing operations to verify that
the database security measures being deployed are adequate.

Review
1. What is the purpose of a login?
2. Explain two ways that views can be used to implement data security.
3. Once a password has been established for a login, it cannot be changed:

true or false?
4. What two SQL DCL statements are used to establish and remove

database privileges?
5. If a password needs to be deactivated for a period of time, but may

need to be reactivated later, it can be __________________ instead of
__________________.

6. What is a cascading REVOKE and what effect can it have on database
security?

7. Is “2926Glenmore” a good password? Why or why not?
8. What is the effect of granting a privilege to PUBLIC?
9. Why is it important to protect some database resources using security

mechanisms external to the DBMS?
10. Explain four useful ways of helping to prevent SQL injection attacks.

Suggested Reading
Afyouni, Hassan A. Database Security and Auditing: Protecting Data

Integrity and Accessibility. Boston, MA: Thomson (2006). ISBN 0-619-
21559-3.

Ben Natan, Ron. Implementing Database Security and Auditing. Oxford,
UK: Elsevier Digital Press (2005). ISBN 978-1-55558-334-7.

Bond, Rebecca, et al. Understanding DB2 9 Security. Indianapolis, IN: IBM
Press (2007). ISBN 0-13-134590-7.

Castano, Silvana, Mariagrazia Fugini, Giancarlo Martella, and Pierangela
Samarati. Database Security. Wokingham, England: Addison-
Wesley/ACM Press (1995). ISBN 0-201-59375-0.

Clarke, Justin. SQL Injection Attacks and Defense. Burlington, MA:
Syngress (2009). ISBN 978-1-59749-424-3.

Denning, Dorothy E. Cryptography and Data Security. Reading, MA:
Addison-Wesley (1982). ISBN 0-201-10150-5.

Ingram, Aaron, and Josh Shaul. Practical Oracle Security. Rockland, MA:
Syngress (2007). ISBN 978-1-59749-198-3.

Kenan, Kevin. Cryptography in the Database: The Last Line of Defense.
Boston, MA: Symantec Press/Addison-Wesley (2006). ISBN 0-321-
32073-5.

Litchfield, David, et al. The Database Hacker’s Handbook: Defending
Database Servers. Indianapolis, IN: John Wiley & Sons (2005). ISBN 0-
7645-7801-4.

Oram, Andy, and John Viega. Beautiful Security. Sebastopol, CA: O’Reilly
(2009). ISBN 978-0-596-52748-8.

Thuraisingham, Bhavani. Database and Applications Security: Integrating
Information Security and Data Management. Boca Raton, FL: Auerbach

(2005). ISBN 0-8493-2224-3.

15. Regulatory Compliance and Database
Administration

If you’ve been head-down in the trenches, you might have missed the
sweeping changes being thrust upon the data world due to regulatory
compliance. And even if you’ve noticed, chances are that the sheer volume
and nature of the regulations were too mind-boggling to fully digest. This
chapter provides an introduction to the regulatory landscape and its impact on
database administration and management.

There are many industry and governmental regulations driving the need to
improve data protection, management, and administration. Let’s review a
couple of the high-visibility regulations.

One of the more visible governmental regulations is the Sarbanes-Oxley
(SOX) Act, officially known as the U.S. Public Company Accounting
Reform and Investor Protection Act of 2002. The goal of SOX is to regulate
corporations in order to reduce fraud and conflicts of interest, to improve
disclosure and financial reporting, and to strengthen confidence in public
accounting. But the cost of the law and its impact on IT and database
management are significant. Section 404 of SOX specifies that CFOs must do
more than simply vouch that their company’s finances are accurate; they
must guarantee the processes used to add up the numbers. Those processes
are typically computer programs that access data in a database, and DBAs
create and manage that data as well as many of those processes. The SOX act
also requires that financial data be hardened against unauthorized access,
invalid transactions, and any other type of modification that might invalidate
financial reporting integrity. If the financial data is in the database, the
management and administration practices in use for that database system
must be shown to comply. So the Sarbanes-Oxley Act requires that additional
rigor and structure be infused into database administration practices and
procedures. Of course, DBAs managed corporate database systems prior to
SOX. The accounting and regulatory demands of SOX require those practices
to be strengthened and formalized. Specifically, database security and access
control practices may need to be modified. And a more comprehensive
approach to the auditing of data access may be required, especially as it

relates to unusual or suspect activity.
Furthermore, the Sarbanes-Oxley Act demands that a company’s financial

data must be completely recoverable in the event of a logical or physical
failure without loss of data that would invalidate the integrity of the financial
reports. And that recovery must be possible in a timely manner. Many
organizations may have gone for a long time without testing the viability of
their backups for database recovery.

Many organizations may have gone for a long time without
testing the viability of their backups.

Consider also the Health Insurance Portability and Accountability Act,
more commonly referred to simply as HIPAA. This legislation contains
language specifying that health care providers must protect individuals’
health care information, even going so far as to state that the provider must be
able to document everyone who even so much as looked at their information.
HIPAA audits frequently require the examination of the processes used to
create, document, and review exception reports and logs. When confronted
with a HIPAA audit, organizations can be required to produce a list of
exceptions to policy, such as “When were patient records accessed during off
hours and by whom?” Without database auditing software, it is impossible to
produce a list of users who looked at a specific row or set of rows in any
database.

The Gramm-Leach-Bliley Act (GLB Act), also known as the Financial
Modernization Act of 1999, is a federal law enacted in the United States to
control the ways that financial institutions deal with the private information
of individuals. The GLB Act consists of three sections:

• The Financial Privacy Rule, which regulates the collection and
disclosure of private financial information

• The Safeguards Rule, which stipulates that financial institutions must
implement security programs to protect such information

• The Pretexting provisions, which prohibit the practice of pretexting
(accessing private information using false pretenses)

The GLB Act also requires financial institutions to give customers written
privacy notices that explain their information-sharing practices.

The E-Government Act was passed in 2002 as a response to terrorist

threats. Title III of the act is named the Federal Information Security
Management Act (FISMA). FISMA basically states that federal agencies,
contractors, and any entity that supports them must maintain security
commensurate with potential risk. Officials are graded on the potential effect
a security breach would have on their operations.

SOX, HIPAA, GLB, and FISMA are examples of governmental
regulations. But there are industry regulations that can be just as daunting in
terms of compliance. The most visible industry regulation is certainly PCI
DSS, which stands for Payment Card Industry (PCI) Data Security Standard
(DSS). It was developed by the major credit card companies to help prevent
credit card fraud, hacking, and other security issues. A company that
processes, stores, or transmits credit card numbers must be PCI DSS
compliant or it risks losing the ability to process credit card payments.

Regulatory compliance holds a powerful sway over upper-level
management at most medium-size to large organizations because of its potent
impact. Business executives are keenly aware of the need to comply,
although they are not always aware of all the details that involves. This is so
because failure to comply can result in prosecution, which may involve huge
fines and even imprisonment (see the sidebar titled “The Reality of
Prosecution”). Regulatory compliance can impose upon C-level executives
the need to be able to prove that corporate data (and therefore database
systems) is protected and that processes and procedures enacted upon the data
are accurate and required.

Regulatory compliance holds an important sway over upper-
level management at most medium-size to large organizations.

The cost of compliance can be significant, but so can the cost of
noncompliance, especially when you factor in the potential for fines and lost
business. And it is not possible to just ignore the regulations and hope that no
one notices.

The Reality of Prosecution
Prosecution for compliance failure is not just an idle threat. Consider these
examples of successful prosecutions:

On May 25, 2006, Ken Lay (former CEO of Enron Corporation) was
found guilty of ten counts against him. Because each count carried a

maximum five- to ten-year sentence, Lay could have faced 20 to 30
years in prison. However, he died about three and a half months before
his scheduled sentencing. Jeff Skilling (another former Enron CEO) was
found guilty of 19 out of 28 counts against him, including one count of
conspiracy and one count of insider trading. Skilling was sentenced to
24 years and four months in federal prison.

In June 2005, 800,000 WorldCom investors were awarded $6 billion
in settlements; the payouts were funded by the defendants in the case,
including investment banks, audit firms, and the former directors of
WorldCom. The judge in the case noted that the settlements were “of
historic proportions.” Additionally, Bernard Ebbers, former CEO of
WorldCom, was convicted of fraud and sentenced to 25 years in prison.

In September 2005, Dennis Kozlowski (former Tyco CEO) and Mark
Swartz (former Tyco CFO) were sentenced to eight to 25 years in prison
for stealing hundreds of millions of dollars from Tyco. Additionally,
Kozlowski had to pay $70 million in restitution; Swartz, $35 million.

In June 2005, John Rigas (founder and former Adelphia CEO) was
sentenced to 15 years in prison. His son, Tony, was also convicted of
bank fraud, securities fraud, and conspiracy; he received a 20-year
sentence.

Not every prosecution results in a conviction, though. In March 2005,
Richard Scrushy, founder and former CEO of HealthSouth, was
acquitted of charges relating to a $2.7 billion earnings overstatement.
Scrushy blamed his subordinates for the fraud.

A Collaborative Approach to Compliance
Ensuring compliance requires a collaborative effort among business users, IT,
and the legal department. This can prove to be a challenge because these
three disparate groups are quite distinct and rarely communicate collectively.
IT talks to legal only when they have to—and that is usually just to get
approval on contract language for a software purchase. IT and business
communicate regularly (at least they should), but perhaps not as effectively as
they might. But all three are required:

Compliance requires a collaborative effort among business

users, IT, and the legal department.

• Business must understand the legal requirements imposed on their data
and systems as dictated in regulations.

• Legal must be involved to interpret the legal language of the
regulations and ensure that the business is taking proper steps to protect
itself.

• IT must be involved to implement the policies and procedures to enact
the technology to support the regulatory mandates.

Organizations need to map and categorize their business data in accordance
with how each data element is impacted by regulations. They need to be able
to answer questions such as “Which data elements are under the control of
which regulation? And what does the regulation require in the way we
manage that data?”

Once mapped, controls and policies need to be enacted that enforce
compliance with the pertinent regulations. This can require better protection
and security, enforce longer data retention periods, impose stricter privacy
sanctions, mandate improved data quality practices, and so on.

Why Should DBAs Care about Compliance?
Compliance starts with the CEO, but it works its way down into the trenches
and impacts database administration. The CEO relies on the CIO to ensure
that IT processes are compliant; the CIO relies on the IT managers, one of
whom (the DBA manager) controls the database systems; and the DBA
manager relies on DBAs to ensure that data is protected and controlled.

The impact of regulatory compliance upon database administration is
various. DBAs are not responsible for developing and enforcing compliance,
but their job is impacted based upon compliance-related projects and
responsibilities. The primary impact of compliance on the DBA is in
investigating, installing, and managing the technology that supports
compliance, particularly regarding data and the DBMS.

The primary impact of compliance on the DBA is in
investigating, installing, and managing the technology that
supports compliance.

Compliance-related tasks that impact database administration include

• Metadata management and data quality
• Database and data access auditing
• Data masking and obfuscation
• Long-term data retention and database archiving
• Closer tracking of traditional DBA tasks (e.g., change management,

backup and recovery)
The remainder of the chapter will delve into these subjects in sufficient

depth to educate DBAs on the impact of compliance on their job.

Metadata Management, Data Quality, and Data
Governance
Ensuring data quality is a big part of regulatory compliance. Its importance
cannot be understated. Poor data quality costs the typical company at least 10
percent of revenue; 20 percent is probably a better estimate.1 According to
software marketing and technology expert Hollis Tibbetts,2 “Incorrect,
inconsistent, fraudulent and redundant data cost the U.S. economy over $3
trillion a year.”

Ensuring data quality is a big part of regulatory compliance.

The cost of poor data quality notwithstanding, high-quality data is crucial
for complying with regulations. Think about it. If the data is not accurate,
how can you be sure that the proper controls are being applied to the right
pieces of data to comply with the appropriate regulations?

Metadata
Good data quality starts with metadata. Chapter 22 of this book is dedicated
to metadata management, so it will not be covered here. Suffice it to say,
accurate data definitions are required in order to apply the controls for
compliance to the correct data.

What Is Metadata?
Metadata characterizes data, providing documentation such that data can
be understood and more readily consumed by an organization. Metadata
answers the who, what, when, where, why, and how questions for users of
the data.

Metadata is required to place the data into proper categories for
determining which regulations apply. For example, SOX applies to financial
data, HIPAA applies to health care data, and so on. Some data will apply to
multiple regulations and some data will not be regulated at all. Without
proper metadata definitions, it is impossible to apply regulatory compliance
to data.

Data Quality
The next step is to ensure that the data, once accurately defined, is itself
accurate. Imposing regulatory controls on the wrong data does no good at all.
This raises the question “How good is your data quality?” Estimates show
that, on average, data quality is an overarching industry problem. According
to data quality expert Thomas C. Redman,3 payroll record changes have a 1
percent error rate; billing records have a 2 to 7 percent error rate; and the
error rate for credit records is as high as 30 percent.

But what can a DBA do about poor-quality data? Data quality is a business
responsibility, but the DBA can help by instating technology controls.
Building constraints into the database can improve overall data quality, as
well as defining referential integrity in the database as defined in Chapter 4.
Additional constraints should be defined in the database as appropriate to
control uniqueness, as well as data value ranges using CHECK constraints
and triggers.

Data profiling can discover the quality, characteristics, and
potential problems of information.

Another technology tactic that can be deployed to improve data quality is
data profiling. Data profiling is the process of examining the existing data in
the database and collecting statistics and other information about that data.
With data profiling, you can discover the quality, characteristics, and
potential problems of information. Using the statistics collected by the data
profiling solution, business analysts can undertake projects to clean up
problematic data in the database.

Data profiling can dramatically reduce the time and resources required to
find problematic data. Furthermore, it allows business analysts and data
stewards to have more control of the maintenance and management of

enterprise data.

Data Governance
Data governance programs are becoming more popular as corporations work
to comply with more and stricter governmental regulations. A data
governance program oversees the management of the availability, usability,
integrity, and security of enterprise data. A sound data governance program
includes a governing body or council, a defined set of procedures, and a plan
to execute those procedures.

So an organization with a strong data governance practice will have better
control over its information. When data management is instituted as an
officially sanctioned mandate of an organization, data is treated as an asset.
That means data elements are defined in business terms; data stewards are
assigned; data is modeled and analyzed; metadata is defined, captured, and
managed; and data is archived for long-term data retention.

All of this should be good news to data professionals who have wanted to
better define and use data within their organizations. The laws are finally
catching up with what we knew our companies should have been doing all
along.

Database Auditing and Data Access Tracking
In a world replete with regulations and threats, organizations today have to go
well beyond just securing their data. Protecting this most valuable asset
means that companies have to perpetually monitor their systems in order to
know who did exactly what, when, and how to their data.

Increased regulations demand the implementation of policies and
procedures to protect sensitive data. For example, medical professionals must
comply with HIPAA, thereby making them ever vigilant in the techniques
used to manage and protect the data under their care. When sensitive data is
stored in a DBMS, extra attention must be paid to how data in those
databases is governed.

Consider also the impact on organizations that accept credit and payment
cards. Such companies must comply with PCI DSS to maintain the right to
process credit card transactions. Thus, executives must ensure their databases
are protected such that only properly authorized entities have access to only
the specific data they need in order to do their jobs—and to be able to prove

this.

Database auditing is the process of monitoring access to and
modification of selected database objects and resources.

One important technique is to audit access to database data. Database
auditing is the process of monitoring access to and modification of selected
database objects and resources within operational databases and retaining a
detailed record of the access that can be used to proactively trigger actions
and can be retrieved and analyzed as needed. This can be accomplished using
a database auditing facility. Table 15.1 offers an overview of the auditing
requirements of several representative regulations.

Table 15.1. Database Auditing Requirements of Several Regulations

Sensitive corporate data cannot be fully protected by simply setting up
database authorization using the controls within the database software. This is
so because it is not possible to guarantee that surreptitious access to sensitive
data is blocked with simple database authorization mechanisms. And
secondarily, it is possible for authorized users to nefariously access data.
Database auditing can help protect data in both of these situations.

All of the major DBMS products offer built-in capabilities for auditing
databases, but ISVs offer more capable software with more flexible capture
technology, prepackaged compliance reports, and multi-DBMS support.
Robust database auditing software can comprehensively track the usage of
database resources and authority. When auditing is enabled, each database
operation produces a detailed audit trail of information, tracking what data
was accessed, who accessed it, and when. Operators can analyze the audit
trail and generate reports showing access and modification patterns against
the sensitive data in the DBMS.

An audit trail can be useful in many situations. Your company’s business

practices and security policies may dictate a comprehensive ability to trace
every data change back to the initiating user. Any number of regulations may
require your organization to analyze data access and produce regular reports.
You may be required to produce detailed reports on an ongoing basis, or
perhaps you just need the ability to identify the root cause of data integrity
problems on a case-by-case basis. Auditing is beneficial for all of these
purposes.

Database auditing helps answer questions such as “Who accessed the
payment account details for Mr. Jones?” or “When was Mrs. Smith’s
appointment time changed?” as well as “Who changed that appointment
time?” It is even possible to answer more detailed questions such as “What
was the old appointment time prior to the change?” The ability to answer
such questions is very important for regulatory compliance.

A typical auditing facility permits auditing at different levels within the
DBMS—for example, at the database, database object, and user levels. One
of the biggest problems with DBMS audit facilities is performance
degradation. The audit trails that are produced must be detailed enough to
capture “before” and “after” images of database changes. However, capturing
so much information, particularly in a busy system, can cause performance to
suffer. Furthermore, this audit trail must be stored somewhere, which is
problematic when a massive number of changes occur. Therefore, most
auditing facilities allow for the selective creation of audit records to minimize
performance and storage problems.

Most auditing facilities allow for the selective creation of audit
records.

Although each DBMS offers different auditing capabilities, some common
items that can be audited by DBMS audit facilities include

• Login and logoff attempts (both successful and unsuccessful)
• Database server restarts
• Commands issued by users with system administrator privileges
• Attempted integrity violations (where changed or inserted data does not

match a referential, unique, or check constraint)
• SELECT, INSERT, UPDATE, and DELETE operations
• Stored procedure executions

• Unsuccessful attempts to access a database or a table (authorization
failures)

• Changes to system catalog tables
• Row-level operations

As an additional note, some auditing features and tools can also be used for
data recovery. We will examine this aspect of auditing in Chapter 16,
“Database Backup and Recovery.”

Auditing can also be used for data recovery.

If you have turned on database auditing at your site, consider the following
advice:

• Auditing can be a large consumer of system resources. When the audit
queue is full, tasks that generate audit records will wait until the
auditing task can resume. Consider using a larger audit queue if
performance suffers. As a last resort, discontinue auditing when
performance is unacceptable.

• Place the system catalog tables that store security-related information
on a separate, inactive disk. This will enhance auditing performance by
decreasing head contention.

• Ensure that the data set or table used to store audit data does not fill
up. When the audit data set is full, auditing will be disabled, records in
the current audit queue will be lost, and any user task attempting to
send data to the audit queue will be canceled.

Database Auditing Techniques
There are several popular techniques that can be deployed to audit database
data. By far, the best technique engages proactive monitoring of database
operations directly at the database server. This technique captures all requests
for data as they are made. When the audit details are captured at the server
level, the software can guarantee that all access is monitored.

The method by which the audit trail is produced is a significant
consideration. There are basically five options: deploying native DBMS
traces, scanning database transaction logs, adding manual “audit” columns,
sniffing network traffic, or tapping requests at the source (the database
server). Of these methods, only the last provides 100 percent visibility into

database activities without becoming a performance drain.

There are five techniques for implementing database auditing:
traces, log scanning, audit columns, network packet sniffing,
and tapping the database server.

Techniques such as trace-based auditing or parsing database logs can miss
certain types of database activities. For example, native DB2 auditing is
implemented using trace-based auditing. But if a transaction accesses a table
more than once in a single unit of recovery, the audit trace records only the
first access. This can be unacceptable for some types of regulatory
compliance.

Log-based auditing is problematic, too. Because such auditing relies on the
database log, the only activities that can be captured are updates, inserts, and
deletes. Some regulations (HIPAA, for example) require tracking reads,
which never show up on a transaction log.

Some penny-pinching organizations attempt to implement auditing simply
by adding “audit” columns to tables, such as last_modified_date. The idea
behind this approach is that each modifier must also update the
last_modified_date column whenever any other type of modification is made.
But this approach is ill advised, and auditors tend not to like it because

• Audit trails should be kept outside of the database
• If you delete the row, you lose the audit data
• You cannot guarantee that the last modified data is completely accurate

because the approach relies on code that may be buggy, or an update
program might simply be overlooked and not modify the
last_modified_date column

• Someone may set the audit column by accident (or nefariously)
This leaves two final approaches: network sniffing and tapping requests at

the database server. Both are reasonable approaches, but even network
sniffing can miss activity that should be audited. Consider DBA activity
performed directly on the database server. If the activity does not go across
the network, a network packet sniffer cannot track the actions. Another
consideration, especially for mainframe database auditing, is that many
mainframe applications run completely within the mainframe without
requiring networked requests (for example, a CICS/DB2 application).

Tapping requests directly on the server is the only foolproof method of
database activity monitoring that guarantees that all auditable actions are
trapped regardless of platform, DBMS, and activity.

Before choosing and implementing a database auditing solution for your
database systems, you should investigate the methodology being used. The
database auditing solution should offer a surveillance mechanism that is
selective, comprehensive, and noninvasive.

A database auditing solution should offer selective,
comprehensive, and noninvasive server surveillance.

Selective means that the solution should be rules based to enable the
capture of audit details only on the specific data that requires auditing. The
general rule of thumb is that only data that must be audited to be in
compliance should be audited, and nothing more.

Comprehensive means that the solution must be able to capture the
complete scenario of auditable information. It should be able to capture both
database reads and modifications. Furthermore, it should not be possible to
bypass the audit collection.

And noninvasive means that the database auditing software must be able to
audit access to data without incurring expensive performance degradation.
Database auditing adds overhead, but the last thing you want is for the lights
to dim when you turn on database auditing. Be sure to test the efficiency of
the audit collection mechanism on production workloads before adopting it.

Furthermore, a robust database access auditing solution that addresses
regulatory compliance should be able to provide answers to at least the
following questions:

• Who accessed the data?
• At what date and time was the access?
• What program or client software was used to access the data?
• From what location was the request issued?
• What SQL was issued to access the data?
• Was the request successful; and if so, how many rows of data were

retrieved?
• If the request was a modification, what data was changed? (A “before”

and “after” image of the change should be accessible.)
Ensuring compliance with tedious government and industry regulations is a

daunting task. This, along with the growing need to protect databases from
the increasing online and internal threats to sensitive data, has resulted in
financial executives being asked to be more personally responsible for the
safety of corporate data. Data access auditing solutions can help
organizations remain vigilant as they adapt to meet the growing mountain of
regulatory requirements safely and proactively.

Privileged User Auditing
One of the most common forms of database auditing is privileged user
auditing. DBAs and system administrators typically are granted high-level
authority such as DBADM or SYSADM privileges in the database. Users
with such authority have carte blanche access to the database instance and all
its data. DBAs are trusted agents and should not abuse the overarching
privileges they are granted. But the general maxim of “trust, but verify”
applies in this case. DBAs need a high degree of authorization to do their job,
but that also brings the opportunity for nefarious activity. Implementing
privileged user auditing to track every action taken by such users is a wise
course of action (see the sidebar “DBA Steals Data”).

Trust, but verify.

DBA Steals Data
In July 2007, Computerworld reported4 that the senior DBA at Certegy
Check Services, Inc., a subsidiary of Fidelity National Information
Services, Inc., stole data belonging to about 2.3 million consumers and
sold it to a data broker. The broker turned around and sold some of the data
to other companies.

The theft was uncovered when one of Certegy’s customers alerted the
company to a correlation between a small number of check transactions
and the receipt by the customer of direct telephone solicitations and
mailed marketing materials. Certegy launched an immediate
investigation and was unable to detect any breach of its security systems
and, thereafter, engaged a forensic investigator to validate its findings.

Eventually the culprit was tracked down by following the

relationships between the marketing companies that sold the data. The
employee was a senior-level DBA who was entrusted with defining and
enforcing data access rights.

By using a database auditing solution to enforce privileged user tracking,
you can ensure that trusted users are acting appropriately. And that will make
both your privileged users and your internal auditors happy. DBAs get to
keep the authority they need to do their job, and the auditor gets to monitor
the DBA’s activities to ensure that those actions are appropriate.

Data Masking and Obfuscation
Data masking is the process of protecting sensitive information in non-
production databases from inappropriate visibility. It ensures that sensitive
data is replaced with realistic but not real data. The goal is that sensitive
personally identifiable information (PII) is not available outside of the
authorized environment. Protecting sensitive data from prying eyes can
prevent fraud, identity theft, and other types of criminal activities.

PCI DSS is perhaps the largest regulatory driver of data masking in
database systems because it requires that the payment card number be
obscured on printed receipts. The next time you use a credit card to make a
purchase look at the receipt. The credit card number should not be visible.

Data masking can be done while provisioning test environments so that
copies created to support application development and testing do not expose
sensitive information and thus avoid risks of leaking. Valid production data is
replaced with usable, referentially intact, but incorrect or obfuscated data.
After masking, the test data is usable just like production data, but the
information content is secure. Another form of data masking applies directly
to production data (or production reports), such as in the earlier PCI DSS
example. In other words, the data is accurate in the database but masked upon
retrieval and display.

What Is PII?
Personally Identifiable Information (PII) is information that can be used to
uniquely identify, contact, or locate a person or can be used with other
sources to uniquely identify an individual. Many regulations stipulate the
manner in which PII must be handled and protected.

Examples of PII include full name, national identification number
(such as a Social Security number in the United States), IP address,
vehicle identification number (VIN), fingerprints, date of birth,
birthplace, credit card numbers, driver’s license number, and genetic
information.

Data Masking Techniques
It is possible to mask data using a variety of techniques. A good data masking
solution should offer the ability to mask using multiple techniques. Common
techniques include the following:

Data masking solutions should be able to mask using multiple
techniques.

• The substitution technique replaces existing data with random values
from a preprepared data set.

• The shuffling technique uses the existing data and moves the values
between rows in such a way that no values are present in their original
rows.

• The number and date variance technique varies the existing values in a
specified range in order to obfuscate them. For example, birth date
values could be changed within a range of plus or minus 90 days.

• The encryption technique scrambles the data algorithmically. This
technique will not produce realistic-looking data and can make the data
larger.

• The nulling out technique simply removes the sensitive data by deleting
it.

• The table-to-table synchronization technique masks data assuring that
the results are referentially intact. If two tables contain columns with
the same data values and those columns are masked in one table, the
second table is updated with the changed value, too.

The bottom line with data masking is that data sanitized by masking is
protected from data breaches and hacking. If the data has been masked, it
does not matter if thieves gain access to it because it is not useful to them.

Database Archiving for Long-Term Data Retention

Organizations are generating and keeping more data now than at any time in
history. Many factors contribute to this reality. One contributing factor is
general data growth. According to industry analysts, enterprise data is more
than doubling every year. Additionally, as much as 80 percent of that data is
not actively used to conduct business.

Why are we producing so much data? Advances in technology have better
enabled our ability to capture and store data. But technology alone is not
sufficient to account for the current rate of data growth.

Data is retained for both internal and external reasons. Of course, when an
organization requires the data to conduct business and make money, that data
will be retained. And today’s organizations are storing more data for longer
periods of time for many internal reasons. Typically, data is stored longer
than it used to be in order to enable analytical processes to be conducted on
it. Thus, businesses are inclined to keep data around for longer periods of
time.

Today’s organizations are storing more data for longer periods
of time.

But external reasons, typically driven by the mandate to comply with legal
and governmental regulations, also compel businesses to store additional
data. Indeed, data retention is a significant aspect of regulatory compliance
that requires focus and attention. The need to retain data is impacted not just
by the normal culprits, such as Sarbanes-Oxley and HIPAA, but also by over
150 international, federal, and local laws that govern how long data must be
retained. Organizations need to develop plans for archiving data from the
operational databases as their data retention requirements expand over longer
and longer periods of time.

The Life Cycle of Data
As data moves throughout its useful life cycle, it progresses through five
distinct phases: creation, operational, reference, archived, and discard, as
shown in Figure 15.1. Data is created at some point, usually by means of a
transaction. For a period of time after creation, the data enters an operational
state. The data is required to conduct business. The operational state is
followed by the reference state. During this phase data is still needed for
reporting and query purposes: internal reports, external statements, or simply

in case a customer asks about it. Then, after some additional time passes, the
data is no longer needed for business purposes and it is no longer being
queried. But the data must be saved for regulatory and legal purposes. This is
the archive state.

Figure 15.1. The data life cycle

After a designated period of time, the data is no longer needed at all and
must be discarded. This phase is often relegated to an afterthought as data
continues to pile up but is not used. When there is no legal requirement to
maintain data, you should demand that such data be destroyed. If data that is
not required for business or regulatory purposes is kept, it becomes a liability
instead of an asset. Any data that you keep becomes discoverable and can be
used against you in a lawsuit. So why enable anyone to use your data against
you if it is not a legal requirement to do so?

The data life cycle states nothing about where the data is stored or what
technology is used. But it makes sense to move archive data out of the
operational database for many reasons.

Database Archiving
Database archiving is the process of removing selected data records from
operational databases that are not expected to be referenced again and storing
them in an archive data store where they can be retrieved if needed.

Before moving on, let’s break down this definition to make sure it is
understood. We say removing because the data is deleted from the
operational database when it is moved to the archive. If the data is still
required for operational requirements, it is not ready to be archived. When
data moves into the archive state, query and access are no longer anticipated,
so removing it is not problematic.

Next, we say selected records. We do not want to archive database data at
the file or table level. We need only those specific pieces of data that are no
longer needed by the business, but also related data. The archive must be able
to selectively choose particular pieces of related data for archival—not the
whole database, not an entire table, and not even a specific row. Instead, all
of the data that represents a business object is archived at the same time. For
example, if we choose to archive order data, we would also want to archive
the specifics about each item on that order. This data likely spans multiple
constructs within the database.

The next interesting piece of the definition is this: and storing them [the
data records] in an archive data store. Technicians sometimes confuse data
archiving with purging data, but the two are very different (see the sidebar
“Archive versus Purge”). Archived data is stored separately from the
operational database and does not require either the DBMS or the
applications. Archived data is separate from and independent of the
production systems from which it was moved. Archiving confers several
benefits upon the database and your environment, including better
performance of production systems (because less data needs to be searched)
and better protection for archived data (because it is protected in a separate
data store).

Archived data should be stored separately from the operational
database.

The final component of the definition that warrants clarification is where
they can be retrieved if needed. The whole purpose of archiving is to
maintain the data in case it is required for some purpose. So the data must be
readily accessible without requiring a lot of manual intervention.

Archive versus Purge
Archiving data and purging data are two very different processes. Archived

data is removed from the operational data store and maintained in an
archived data store. Purged data is removed from the operational data store
and discarded.

Do not confuse archiving database data with purging database data.
Both can be useful, but they serve completely different purposes.

Determining the Scope of Data Retention

Before you can archive data from your operational databases, you must first
determine exactly what must be retained. In other words, data must be
archived at the business object level. Another way of saying this is that we
need to archive selected records. This is important because not only must
those specific pieces of data that are to be archived be retained, but any
related data that makes the archived data understandable must accompany it
into the archive. The archive needs to be able to selectively choose particular
pieces of related data for archival; all of the data that represents a business
object is archived at the same time.

For example, if you choose to archive order data, you would also want to
archive the specifics about each item on that order. Think about the order
entry and management systems you’ve encountered in the past. You cannot
model the database such that all the data is in one table, or at least not if you
want to avoid producing junk. There will be an ORDER table and a one-to-
many relationship to the ITEM table, because an order can consist of more
than one item. If you go to Amazon.com and order three books, there is one
order with three items on it, right?

Furthermore, your system will likely track products and customers, so
you’ll have a CUSTOMER table with a one-to-many relationship going from
CUSTOMER to ORDER. This means a customer can place more than one
order, but each order is for a single customer only. You’ll also have a
PRODUCT table with a one-to-many relationship going from PRODUCT to
ITEM. This means a product can be on multiple orders, but each individual
order will have only one entry for the product. If the customer orders
multiples, it will be specified in the quantity field in the item.

Just to make it interesting, let’s also include a table called LOCATION that
stores inventory information for products, such as bin number and quantity
on hand. We’d have a one-to-many relationship going from PRODUCT to
LOCATION. This means a product may be stored in more than one bin, but

http://Amazon.com

each bin contains only a single product type. Because a picture is worth a
thousand words, refer to Figure 15.2 for an image of this data model.

Figure 15.2. Archive data model

The data spans multiple constructs within the database, meaning tables for
DB2 or Oracle and segments and/or databases for IMS. What do we archive?
Let’s say we need to retain order details for ten years after the order was
shipped. Do we really need all of that order data for the full ten years
clogging up our operational databases? Probably not. For the purposes of this
business, the data is operationally relevant for perhaps a month or two. It
might be referenced for reporting or by customers for a year to 18 months
after that. So, we decide to keep it in the production databases for two years
after the product ships and archive it after that.

But what needs to be archived? If we just archive the ORDER and ITEM
tables, we’ll be missing pertinent information in the archive. We also need to
bring along customer and product information for reference. That is, we have
to make sure that the archive contains more than just the CUSTNO in
ORDER and the PRODNO in ITEM. We also need the customer name and
contact details. What good would CUSTNO 18123546 be if that customer is
no longer in the operational database? And would PRODNO 99 be of any use
without the remaining product details?

So, we need to set up our archive policy to archive the orders from the
ORDER table along with the related items in the ITEM table. This means
deleting the data from the operational database when we put it into the

archive, and bringing along related products from PRODUCT and customers
from CUSTOMER. This data is moved to the archive with the ORDER and
ITEM data, but it is not deleted from the operational database. After all, those
products may be in other order items that we are not archiving. Those
customers may also have other orders that we are not archiving. So, we
would need to create other archive plans for our customer and product data.

A policy is required to define what data should be archived.

Developing accurate and useful database archiving policies is not a trivial
matter. Defining what is to be archived and how it is to be archived requires a
mix of database skills, business acumen, and knowledge of legal and
government regulations. By archiving your data as soon as it is no longer
required for operational purposes, you can minimize the risk of data breaches.
Of course, this may not be your primary reason to archive data, which is
likely to be to preserve your data for long periods of time in a storage
construct that is designed for long-term retention and preservation.
Database Archiving Requirements

Let’s examine the many capabilities required of a database archiving
solution. Perhaps the most important consideration is that the archived data
must be hardware and software independent. Independence is crucial
because of the duration over which the archived data must exist. With a life
span of decades (or longer)5 it is likely that the production system from
which the data was archived will no longer exist—at least not in the same
form, and perhaps not at all. Think about the changes that your production
applications have undergone over the course of the past ten or 20 years. It is
completely unreasonable to expect that today’s existing operational
environment will exist to enable access to archived data. We constantly
change our databases. And the archive must be able to support multiple
variations of the data structure as it changes.

The archive solution must be able to store a large amount of data. As we
store more data, we will archive more data. And when we combine this with
long regulatory-mandated data retention periods, we have an explosive
combination.

The archive must be able to manage data for very long time periods. Many
data retention requirements are stated in decades. So the archived data will

outlive the systems and the programmers who generated them. The archive
also will outlive the media we store it on. No media lasts forever; consider
that the life span of tape is seven years (also, see the sidebar “Obsolete
Hardware”). So, the archive must be able to repurpose the archived data from
one type of media to another. And ideally it should do this automatically as
the media reaches the end of its useful life.

Data, to support regulatory compliance, must remain unchanged once it is
archived. So the archive must be able to protect against data modification.
Only read access should be available to the archived data (with the exception
of periodic administration). Archived data must be guaranteed to be
authentic. And mechanisms to prevent surreptitious modification are
necessary, too.

To support regulatory compliance, data must remain
unchanged once it is archived.

Finally, the archive requires metadata to be useful, both metadata defining
the archived data as well as metadata defining what to archive and when. The
archive must be able to store multiple versions of the first type of metadata.
As the operational schema changes, the archive must track and function
across these variations in schema. The second type of metadata controls
which data is archived, when, and from where. This is the metadata that
drives and defines the archive itself. Both types of metadata are needed for
the archive to operate.

Obsolete Hardware
When planning for the storage and management of data over long periods
of time, be sure to factor in hardware obsolescence as a challenge. It is
possible that data may be stored on media that cannot be read by modern
hardware.

One consultant tells of a SOX recovery trial run that met such a fate.
The company asked its archival vendor to deliver seven-year-old archive
tapes. When the staff went to mount the tapes, they discovered that they
no longer had that model of tape drive anywhere in the data center. In
fact, it was not commercially available anymore. They had to buy
several used but working units off of eBay.

Taking all of these considerations into account, then, a secure, durable
archive data store must be used to retain data that is no longer needed for
operational purposes, and it must enable query retrieval of the archived data
in a meaningful format until it is discarded.

Operational databases are no place to maintain historical data over long
periods of time. Database archiving will become more prevalent over time,
and wise organizations will start planning their database archiving needs
today.

Components of a Database Archiving Solution
The diagram in Figure 15.3 depicts the necessary components of a database
archiving solution. Starting at the top of the diagram there are two operations
that can be performed on databases: data extract and data recall. The extract
removes data from the operational database, and the recall restores archived
data back to the operational database.

Figure 15.3. Database archival components

The whole process requires metadata to operate. You must capture,
validate, and enhance the metadata to drive the archive process. You need to
know the structure of the operational database and the structure of the
archive. Furthermore, a robust archiving solution will be policy based. This
means that policy rules are written to dictate what data is archived, when it is
archived, and for how long it must remain in the archive before it is
discarded. This policy-based metadata must be maintained and monitored
against the archive on an ongoing basis.

A query capability allowing direct reads against the archive is important,
too. Queries against an archive data store will not necessarily be the most
efficient access because of differences in the metadata over time. However,
queries against archived data typically are not very performance sensitive, at
least not like typical transaction data.

Finally, it is also important to have an ongoing maintenance capability for
the archived data. This encompasses administrative tasks such as security,
access audit, administration of the structures (such as reorganization), backup
and recovery, and so on.

The Impact of e-Discovery on DBA
One of the looming issues facing data management professionals is
preparation for e-discovery. Although regulations mandate that we retain data
longer, there are rules and regulations that dictate when and how
organizations will need to access and produce data that is retained. The only
reason that data is being kept is because there may be a need to see it again.

The ability to produce retained data upon request is typically driven by
lawsuits. You probably can recall examples of courtroom showdowns on
television where truckloads of paper documents were required during the
discovery process of the lawsuit. But times have changed. Increasingly, the
data required during the discovery process is electronic, not written. That is,
the data is stored on a computer, and much of that data is stored in a database
management system.

Increasingly, the data required during the discovery process is
electronic.

Which brings me to the Federal Rules of Civil Procedure (FRCP), which
are the rules used by U.S. district courts to govern legal proceedings. One of

the items in this set of rules dictates policies governing discovery. Discovery
is the phase of a lawsuit before the trial occurs during which each party can
request documents and other evidence from other parties or can compel the
production of evidence.

The FRCP underwent changes in late 2006 to focus more on electronic
data. Rule 34b of the FRCP was changed to state that “A party who produces
documents for inspection shall produce them . . . as they are kept in the usual
course of business. . . .” This change clearly compels organizations to
improve their ability to produce electronic data.

And Rule 37 of the FRCP adds a new section, Rule 37(f), which provides a
safe harbor from sanctions arising from spoliation. According to this section,
“Absent exceptional circumstances, a court may not impose sanctions under
these rules on a party for failing to provide electronically stored information
as a result of the routine, good faith operation of an electronic information
system.” Basically, this section shines a spotlight on the need for
organizations to develop a clearly articulated, well-executed, and uniformly
enforced records retention program. And that program should include
database data. Instituting policies and procedures for how data is treated for
long-term retention can provide some level of protection from “adverse
inference” rulings arising from spoliation.

There are likely to be additional implications of the changes to the FRCP,
especially when coupled with the growing list of data breaches and the
growing regulations being voted into law by federal and state governments. It
means that we will be forced to treat data as the corporate asset that it is—
instead of just saying that we treat it that way.

Closer Tracking of Traditional DBA Tasks
Regulatory compliance also can help to improve the focus on traditional
DBA procedures and processes. Of course, DBAs managed corporate
database systems prior to the recent increase in governmental and industry
regulations. But the accounting and regulatory demands of the regulations
often require those DBA practices to be strengthened and formalized.
Specifically, database security and access control practices may need to be
modified. And a more comprehensive approach to the auditing of data access
may be required, especially as it relates to unusual or suspect activity. But
this also is true for tried-and-true DBA practices such as change management

and database backup and recovery.

Database Change Management
Many organizations do not adhere to strict, formalized change policies for
database objects. Furthermore, logging the series of commands needed to
implement (or undo) changes may need to be enhanced, if such logging is
implemented at all.

Many regulations require all changes to be logged, specifying who did
what and why each change occurred. Too often, DBAs simply issue ALTER
commands to change the database as needed in reaction to performance
issues or development requirements. Although a robust database auditing
solution can capture such changes, it would be a much better practice to
require database changes to be made using a change management tool that
automatically tracks changes.

A best practice is to require database changes to be made
using a change management tool that automatically tracks
changes.

DBAs have had to deal with change management as long as databases have
been used. But in many cases these tasks were attacked in a low-cost, ad hoc
manner. Maybe there was not sufficient capital to expend on DBA processes;
maybe the DBAs were capable enough to change database structures without
the aid of tools. In many cases, with the stricter rules of compliance in place,
this is no longer acceptable.

Database Backup and Recovery
When data professionals think about regulatory compliance, we tend to
consider first the data in our production databases. After all, it is this data that
runs our business and that must be protected. So we work to implement
database auditing to know who did what to which data when; or we tackle
database security and data protection initiatives to protect our data from
prying eyes; or we focus on improving data quality to ensure the accuracy of
our processes. These are all worthwhile endeavors, but focusing exclusively
on active production data is insufficient to ensure compliance. The
recoverability of the database is a compliance issue, too. Improved backup
and recovery practices and procedures must be an essential component of
your compliance plans.

Ensuring the integrity and availability of your databases is the primary
focus of backup and recovery planning. But what about database recovery in
terms of compliance and regulations? Let’s examine database recovery
through the lens of COBIT (see the sidebar titled “What Is COBIT?”).

What Is COBIT?
COBIT is a framework of IT best practices that companies can use to
improve management of their IT organizations, to improve the value of IT,
and to ensure that the goals of the IT organization are aligned with the
goals of the business. The current COBIT guidelines are available from the
IT Governance Institute at www.isaca.org/Knowledge-
Center/cobit/Pages/FAQ.aspx. The IT Governance Institute was created by
ISACA, the Information Systems Audit and Control Association.

COBIT is about recognizing and safeguarding the value of
information as a corporate asset by identifying and managing risks and
ensuring corporate governance via effective controls. The crux of
COBIT is to link IT and business goals, to identify responsibilities of
business and IT owners, and to monitor performance, evaluating it
against metrics and maturity models.

The COBIT framework consists of 34 specific control objectives,
organized into four domains: Plan and Organize (PO), Acquire and
Implement (AI), Deliver and Support (DS), and Monitor and Evaluate
(ME). The COBIT practices are business focused, process oriented,
measurement driven, and control based. Best practice frameworks like
COBIT are vital tools for ensuring compliance with regulations such as
Sarbanes-Oxley.

Do not confuse COBIT with frameworks such as ITIL. ITIL is an IT
Service Management framework for identifying, planning, delivering,
and supporting IT services to the business. Think of COBIT as
describing “what IT needs to do” and ITIL as describing “how IT can
deliver” those services.

COBIT and Recovery

Database recovery needs to be tackled from a best practice approach to
enable your organization to do the kind of up-front planning and routine

http://www.isaca.org/Knowledge-Center/cobit/Pages/FAQ.aspx

monitoring and evaluation that COBIT advocates. An organization that has
adopted COBIT as a best practice framework understands the critical value of
information to the business, and the need to assure its integrity and
availability.

Of course, compliance is not the overarching factor compelling DBAs to
develop backup policies and procedures for all database objects. This should
be driven by business availability requirements, and most DBAs have done
this, at least to some degree. But what most have not done is implement
regular systematic checks for the ongoing viability of their backup and
recovery plans to match their recovery time objectives—or even to ensure
that their existing backups are valid and could be used in a recovery situation.

Recoverability is addressed by the following 19 COBIT objectives across
three process domains:

• PO9.4: Assess risks. During planning and organization you must assess
the risk of databases being unrecoverable from backups.

• DS1.3 and DS1.4: Define and manage service levels. Metrics are
required to define service-level objectives for recovery. Do you know
how long it would take to recover a specific database object (or series
of objects)? If not, how can you assure that application service levels
will be met or exceeded?

• DS3.2, DS3.3, DS3.4, DS3.5, and DS3.8: Manage performance and
capacity. Regularly checking the health of your recovery aids capacity
management by improving the availability of information and the IT
resources that depend on it.

• DS 4.10, DS4.11, and DS4.12: Ensure continuous service. Again,
ensuring service is impossible without being able to ensure
recoverability (including data that is mirrored to backup IT sites and/or
off-site backup data stores).

• DS11.9, DS11.19, DS11.20, DS11.21, DS11.23, and DS11.24: Manage
data. Any number of issues may require recoverability as part of an
ongoing data management effort. COBIT Objective DS11.24
specifically covers verifying the usability of backups.

• M1.1 and M1.2: Monitor the processes. Ongoing monitoring of
recoverability is needed to verify every backup job and its effectiveness
in your environment (logging, memory, system resources, etc.).

Organizations need to acquire tools and implement procedures that help to
verify the integrity of their backups, the system settings that could affect their
ability to recover, and the processes associated with backup and recovery of
their databases. Analyzing your database system, data, and backups and
determining their health and usability should be a regular practice. If not
undertaken, a system failure, logical error, malicious destruction, or
catastrophic event could render your databases unusable, impact your
business, and maybe even threaten the ongoing viability of your business.

Organizations need tools and procedures that help to verify the
integrity of database backups.

Summary
Regulatory compliance places renewed emphasis on many traditional DBA
tasks while also expanding the meaning of some of them. Backup and
recovery, metadata management, and change management require additional
focus, whereas features like database auditing and database archiving may be
required for the first time. This is causing additional workload for database
administration.

Fortunately, though, now that high-level corporate executives have to
vouch for the accuracy of company data, tools that can help to assure data
accuracy and integrity are no longer a luxury but are required to avoid
prosecution.

Review
1. Ensuring compliance requires a collaborative effort among which three

groups?
2. Name two traditional DBA duties that may require additional attention

in the light of a regulatory compliance project.
3. Prosecution for compliance failure is not just an idle threat: true or

false?
4. Define database archiving. Contrast it with data purging.
5. Name the different techniques that can be used to implement database

auditing.
6. Why are metadata and data quality important aspects of regulatory

compliance with respect to database systems and applications?
7. What is the purpose of data masking?
8. What is a potential drawback of implementing a database auditing

solution?
9. What is PII?

10. Some organizations have identified the need to retain data for more
than 100 years: true or false?

Suggested Reading
Afyouni, Hassan A. Database Security and Auditing: Protecting Data

Integrity and Accessibility. Boston, MA: Thomson (2006). ISBN 0-619-
21559-3.

Anand, Sanjay. Sarbanes-Oxley Guide for Finance and Information
Technology Professionals. 2nd ed. Hoboken, NJ: John Wiley & Sons
(2006). ISBN 0-471-78533-9.

Ben Natan, Ron. Implementing Database Security and Auditing. Oxford,
UK: Elsevier Digital Press (2005). ISBN 978-1-55558-334-7.

Cougias, Dorian J., et al. Say What You Do: Building a Framework of IT
Controls, Policies, Standards, and Procedures. Lecanto, FL: Schaser-
Vartan (2007). ISBN 978-0-9729039-6-7.

Denning, Dorothy E. Cryptography and Data Security. Reading, MA:
Addison-Wesley (1983). ISBN 0-201-10150-5.

Fowler, Kevvie. SQL Server Forensic Analysis. Boston, MA: Addison-
Wesley (2009). ISBN 978-0-321-54436-0.

IT Governance Institute. CobiT 4.0: Control Objectives, Management
Guidelines, Maturity Models. Rolling Meadows, IL: IT Governance
Institute (2005). ISBN 1-933284-37-4.

Mack, Mary, and Matt Deniston. A Process of Illumination: The Practical
Guide to Electronic Discovery. Portland, OR: Discovery Center of
Excellence (2004). ISBN 0-9725542-1-1.

Olson, Jack E. Database Archiving: How to Keep Lots of Data for a Very
Long Time. Burlington, MA: Morgan Kaufmann (2009). ISBN 978-0-12-
374720-4.

———. Data Quality: The Accuracy Dimension. San Francisco, CA:
Morgan Kaufmann (2003). ISBN 1-55860-891-5.

Ottman, John B., Jr. Save the Database, Save the World! New York, NY:
Sumo Press (2010). ISBN 978-1-4583-6368-8.

Perry, William E. Control in a Data Base Environment, Wellesley, MA:
QED Information Sciences (1980). ISBN 0-89435-042-0.

Redman, Thomas C. Data Quality: Management and Technology. New
York, NY: Bantam (1992). ISBN 0-553-09149-2.

———. Data Quality: The Field Guide. Boston, MA: Digital Press (2001).
ISBN 1-55558-251-6.

Reynolds, George W. Ethics in Information Technology. 3rd ed. Boston,
MA: Course Technology (2010). ISBN 978-0-538-74622-9.

Schuler, Karen, et al. E-discovery: Creating and Managing an
Enterprisewide Program. Burlington, MA: Syngress (2009). ISBN 978-1-
59749-296-6.

Weill, Peter, and Jeanne W. Ross. IT Governance: How Top Performers
Manage IT Decision Rights for Superior Results. Boston, MA: Harvard
Business School Press (2004). ISBN 1-59139-253-5.

Wright, Craig, et al. The IT Regulatory and Standards Compliance
Handbook: How to Survive an Information Systems Audit and
Assessments. Burlington, MA: Syngress (2008). ISBN 978-1-59749-266-
9.

16. Database Backup and Recovery

Things break. When a new database is created or a new application goes
online, everything is fresh and new—and running as designed. But the
environment changes over time. New hardware and software are added, along
with more users, more data, more requirements—more, more, more. Systems
wear down as they are taxed on a daily basis to deliver service.

The DBA must be prepared for situations where a failure impacts the
availability, integrity, or usability of a database. Reacting to failures and
service disruptions is a key component of the DBA’s job. The ability of the
DBA to react accordingly depends directly on having a well-planned
approach to database backup and recovery.

Reacting to failures and service disruptions is a key
component of the DBA’s job.

The Importance of Backup and Recovery
I know that many DBAs believe that ensuring optimal database and
application performance is the most important task in their list of job
responsibilities, but it is not true. These DBAs are confusing frequency with
importance.

Most DBAs probably are conducting performance-related tasks more often
than building backup plans—and they had better be managing performance
more frequently than they are actually recovering their databases or their
company has big problems! But recoverability should be at (or near) the very
top of the DBA task list, definitely before performance. Why? Well, if you
cannot recover your databases after a problem, it won’t matter how fast you
can access them, will it? Anybody can deliver fast access to the wrong
information. It is the job of the DBA to keep the information in the
company’s databases accurate, secure, and accessible.

Anybody can deliver fast access to the wrong information.

So what do DBAs need to do to assure the availability and accuracy of
database data? This chapter will outline the basics of database backup and

recovery and provide guidance on building a robust backup and recovery plan
for your databases.

Preparing for Problems
Numerous daily hazards can cause system failures. As you plan your
database backup and recovery strategy, be sure to consider all of these
various threats to database integrity and availability. Of course, it is wise to
take precautionary measures to prevent failures. Techniques such as UPS
systems, mirrored disks, and failover technology can minimize the need to
recover, but no amount of planning and regulation can prevent unexpected
failures.

Database failures that may require recovery can be divided into three
categories:

• Instance failures are the result of an internal exception within the
DBMS, an operating system failure, or other software-related database
failure. In some cases, an instance failure can result in corruption of
data that requires a recovery, but usually such failures do not damage
data, so the DBMS simply needs to be restarted to reestablish normal
operations.

• Application (or transaction) failures occur when programs or scripts
are run at the wrong time, using the wrong input, or in the wrong order.
An application failure usually results in corrupt data that requires a
database restore or recovery. The sooner an application failure is
identified and corrected, the smaller the amount of damage to the
database will be.

• Media failure is likely to damage data, too. Media failure includes
damage to disk storage devices, file system failures, tape degradation or
damage, and deleted data files. Although less common in practice,
damaged memory chips also can cause data corruption. After a media
failure, the database will likely be in a state where valid data is
unreadable, invalid data is readable, or referential integrity is violated.
Outages due to media failures can often be avoided by implementing
modern disk technologies such as RAID, which is covered in more
detail in Chapter 18, “Data and Storage Management.”

It is common for organizations to manage a terabyte or more

of data on a single database server.

Businesses today are demanding higher throughput and around-the-clock
availability even as they increase the amount of stored and processed data.
Not too long ago, we talked about data in terms of gigabytes. Now it is
common for organizations to manage a terabyte or more of data on a single
database server. Therefore, more data needs to be constantly available and
has to be processed faster than ever before. Organizations rely on data to
conduct business, so it is imperative that you be prepared with a plan to
counteract failures. A sound backup and recovery plan can be thought of as
an insurance policy for your data.

Backup
A fundamental component of a database backup and recovery plan is creating
backup copies of data. When an error occurs that damages the integrity of the
database, a backup copy of the data can be used as the basis to recover or
restore the database. However, the full story on backing up a database is not
quite that simple.

Backing up databases involves making consistent copies of your data,
usually in the form of image copies, which are the output of a COPY utility.
The name of the copy utility will vary from DBMS to DBMS. Common
names for the backup utility include BACKUP, COPY, DUMP, and
EXPORT. Some DBMSs rely on the native operating system’s file system
commands for backing up data. However, even if the DBMS supplies an
internal backup option, the DBA may choose to use facilities that operate
outside the realm of the DBMS.

Backing up databases involves making consistent copies of
your data.

Current and accurate image copies provide the foundation for database
recovery. The DBA must assure the currency and accuracy of the image
copies and base the backup plan on the recovery needs of the applications.
The DBA will use those recovery requirements to determine how often to
take image copy backups and how many backup generations must be kept on
hand. Furthermore, the DBA must make sure that the appropriate log records
are available or backed up for recovery purposes. To decide the frequency

with which to back up a database object, consider how much time will be
needed to recover that object. Duration of recovery is determined by factors
such as

• The number of log records that must be processed to recover
• Whether the log is compacted or compressed
• Whether the image copy backup is encrypted or compressed
• The time it takes an operator to mount and dismount the required tapes
• The time it takes to read the part of the log needed for recovery
• The time needed to reprocess changed pages

Additionally, recovery duration depends on the architecture of the DBMS.
For example, mainframe DB2 keeps track of log range information and reads
only the required log files for any recovery operation. However, some
DBMSs require that all the log files be read to scan for information needed
for recovery.

Keep in mind that database backups taken while there is read-only activity,
or no activity, can be restored back to that point in time using only the
backup—no log files are required. This can simplify and minimize the cost of
a recovery.

In general, the more often you make an image copy, the less time recovery
takes. However, the amount of time required to make an image copy backup
must be balanced against the need for concurrent processing during the
backup process.

The DBA must decide how many complete generations of
backups to keep.

The DBA must decide how many complete generations of backups (for
both database object copies and log copies) to keep. By keeping extra
generations, you can sometimes recover from an error during recovery by
switching to an older backup. At a minimum, the retention period should be
at least two full cycles. When you make a scheduled full image copy of a
tablespace, the latest full image copy and at least one other previous copy will
exist, plus the log created since the earliest image copy. You may want to
consider keeping at least two weeks’ worth of copies. Of course, the number
of copies you decide to keep must be tempered by the number of associated

logs that must also be maintained for the backups to remain viable.
The following guidelines on making image copy backups will help assure a

recoverable environment:
• Make at least two local copies of each image copy backup to help avoid

an unrecoverable state in the case of a media error (for example, a
damaged tape).

• Coordinate your local backup strategy with your disaster recovery
backup strategy. Many backup utilities permit both local and off-site
backups to be created simultaneously.

• Keep at least two generations of image copy backups for each database
object. If the most recent image copy fails, you can fall back to the
older copy and still be able to recover.

• Consider creating image copy backups to disk, and then migrating them
to tape (or optical disc, such as CD or DVD), which can speed up the
image copy process. Not only is disk faster than tape, but also the
recovery will not have to wait for a manual tape mount.

• When image copy backups are migrated to tape, consider compressing
the files to reduce the number of tapes needed for large image copy
backup files. This usually can be accomplished using the facilities of
the tape drive. Also, consider encrypting the backup files for sensitive
data.

• Be sure to include the system catalog database objects in your backup
and recovery plans. System catalog data should be backed up at least
weekly—perhaps more frequently for very dynamic systems. Whenever
you issue DDL, it changes the data in the system catalog. Failing to
back up the system catalog after a DDL change may cause the changed
database objects to become inaccessible after a recovery.

• Ensure that the backup process is restartable. For example, consider a
database backup process that takes three hours to complete. If the
process fails after two and a half hours, the restart should require only a
half hour to finish. If the backup were not restartable, it would have to
start again from the beginning.

• After the backup has completed, use the DBMS’s facilities to verify the
correctness of the backup, for example, the DB2 db2ckbkp operation or
the Sybase BCP utility.

• Data that is not stored in a database but is used by database applications
should be backed up at the same time as the database objects.

As a rule of thumb, make image copy backups infrequently enough that
you do not interrupt daily business, but frequently enough that you can afford
the time required to recover the database object. Of course, this is easy to say
but hard to accomplish. You will need to keep abreast of the application
requirements of each database object in order to strike the right balance for
creating image copy backups.

Certain database activities make it a wise decision, if not a requirement, to
take a full image copy backup of a database object. For example, before
reorganizing the system catalog, you should make image copy backups of all
system catalog database objects.

It is often a wise decision to take a full image copy backup of
a database object.

In addition, after every reorganization you should take a full image copy
backup of the reorganized database object. If you need to recover the object,
you can recover to the reorganized version of the database objects instead of
a prior, disorganized version. Alternatively, if the reorganization was logged,
you will not need to apply all the log records written during the
reorganization.

Another situation requiring an image copy backup is when data is loaded
into a table with logging disabled. After you have loaded data into a table
using the load utility, immediately make a full image copy backup. Even if
you load with logging enabled, it is wise to create a full image copy backup
of the data after the load process completes. That way, if you need to recover
the object, you will not need to apply the log records written during the load.

Finally, image copy backups should be taken after point-in-time
recoveries. This will ensure that the database object can be recovered if
another failure occurs.

Full versus Incremental Backups
Two types of image copy backups can be taken: full and incremental. As a
DBA, you will need to learn the difference between the two and implement
the proper image copy backup strategy based on application needs and
database activity.

There are two types of image copy backups that can be taken:
full and incremental.

A full image copy backup is a complete copy of all the data in the database
object at the time the image copy was run. An incremental image copy
backup, sometimes referred to as a differential backup, contains only the data
that has changed since the last full or incremental image copy was made. The
advantage of taking an incremental backup rather than a full backup is that it
can sometimes be made more quickly, and it occupies less space on disk or
tape. The disadvantage is that recovery based on incremental copies can take
longer because, in some cases, the same row is updated several times before
the last changes are restored.

For example, suppose you took a full image copy of a database object early
Monday morning at 2:00 a.m. and then took an incremental image copy at the
same time the following three mornings (see Figure 16.1). The full image
copy plus all three incremental image copies need to be applied to recover the
tablespace. If the same column of the same row was updated on Tuesday to
“A,” Wednesday to “B,” and Thursday to “C,” the recovery process would
have to apply these three changes before arriving at the final, accurate data. If
a full image copy were taken each night, the recovery process would need to
apply only the latest image copy backup, which would contain the correct
value.

Figure 16.1. Image copy backups

Some DBMSs provide the capability to analyze a database object to
determine if a full or incremental backup is recommended or required. This is
typically accomplished using an option of the copy utility. If such an option
exists, the DBA can run the copy utility to examine the amount of data that
has changed since the last image copy backup was taken. Furthermore, the
DBA can set a threshold such that a full image copy is taken when more than
a specified amount of data has changed; an incremental image copy is taken
when the amount of data that has changed is less than the threshold. When
this option is not available, the DBA will need to set up the type of image
copy backups to be taken based on his knowledge of the applications and
their use of the databases.

Most database objects will be set up for full image copy backups instead of
incremental image copies. The time saved by incremental copying is useful
only when a small amount of data has been changed. However, the additional
work required for a recovery using incremental copies can be troublesome. In
general, full image copy backups are recommended for database objects
where 30 to 40 percent or more of the data blocks are modified between
backups. The DBA makes this determination based not just on data volatility
but also on factors such as criticality of the data, availability requirements,
and the functionality of the DBMS.

Favor full image copies for small database objects.

Favor full image copies for small database objects. The definition of
“small” will vary from site to site and DBMS to DBMS. For large,
mainframe-based databases, a “small” database object is probably within the
150GB to 200GB range. For smaller, though still significant UNIX-based
databases, a “small” database object is probably about 100GB to 150GB. For
small workgroup or Windows-based database sites, even a 100GB database
object is on the large side.

Consider using incremental image copies to reduce the batch processing
window for very large database objects that are minimally modified between
image copy backups. The DBA must base the full-versus-incremental
decision on the percentage of blocks of data that have been modified, not on
the number of rows that have been modified. In general, consider incremental
copying as the tablespace becomes larger and the batch window becomes
smaller.

Additionally, some scenarios are not compatible with incremental image
copy backups. Some DBMSs permit the user to disable logging during some
operations and utilities. Whenever an action is taken that adds or changes
data without logging, a full image copy is required.

Some scenarios are not compatible with incremental image
copy backups.

Merging Incremental Copies

If the DBMS supports incremental image copy backups, it may also support
incremental copy merging. A merge utility, sometimes referred to as

MERGECOPY, can be used to combine multiple incremental image copy
backups into a single incremental copy backup, or to combine a full image
copy backup with one or more incremental image copy backups, to create a
new full backup.

If your DBMS supports merging incremental copies, consider running the
merge utility to create a new full image copy directly after the creation of an
incremental copy. The merge utility can be run with no impact on concurrent
data access or the batch window. If you wait until recovery is required to run
the merge, downtime will be increased because the merge (or similar
processing) will occur during the recovery process while the database object
is unavailable.

Database Objects and Backups
Typically, an image copy backup is made at the database, tablespace, or table
level. The level(s) supported will depend on the DBMS being used. In
general, though, the idea is to back up the database object or objects that
contain the data. In general, the more granular control the DBMS provides
for backup of database objects, the easier it will be to effectively implement a
useful backup and recovery strategy.

An image copy backup is made at the database, tablespace, or
table level.

Copying Indexes

Some DBMSs support making backup copies of indexes. Indeed, some
DBMSs require indexes to be backed up, whereas index backup is optional
for others. Index backup can be optional because the DBMS can rebuild an
index from the table data. Therefore, a typical recovery scenario would
involve recovering tables or tablespaces and then using the table data to
rebuild the indexes. If the DBMS supports index backups, you can choose to
copy indexes and then recover using the image copy backups of the indexes.

You will need to examine the trade-offs of copying indexes.

As a DBA, though, you will need to examine the trade-offs of copying
indexes if your DBMS supports index backup. The question DBAs must
answer for each index is “Rebuild or recover?” The more data that must be
indexed, the longer an index rebuild will require in a recovery situation. For

larger tables, backing up the index can result in a much quicker recovery—
although at the expense of the increased time required for backup. When
multiple indexes exist on the large table, backing them up, again, leads to
faster recovery. However, keep in mind that index backups will require
additional time to execute during your regular backup process. As a DBA,
you will need to weigh the cost of recovery against the cost of backup in
making your decision.

Be sure to perform data and index backups at the same time if you choose
to back up rather than rebuild your indexes. In other words, when you back
up a table (or tablespace or database), be sure to also back up all associated
indexes. Failure to do so can result in indexes that do not match the recovered
data—which will cause applications to be unavailable or, worse, to receive
invalid results.

DBMS Control
The degree of control the DBMS asserts over the backup and recovery
process differs from DBMS to DBMS. Some DBMSs record backup and
recovery information in the system catalog. That information is then used by
the recovery process to determine the logs, log backups, and database
backups required for a successful recovery. DB2 for z/OS works this way;
refer to the sidebar “The DB2 COPY Utility.” The more information the
DBMS maintains about image copy backups, the more the DBMS can control
proper usage during recovery.

The DB2 COPY Utility
The COPY utility is used by DB2 for z/OS to create image copy backups.
This utility maintains a catalog of image copy information in the system
catalog. Every successful execution of the COPY utility causes DB2 to
record information in the system catalog that indicates the status of the
image copy, the image copy data set name and file details, the date and
time of the backup, and log information. This information is read by the
DB2 RECOVER utility to enable automated tablespace and index
recovery. Only valid image copies recorded in the system catalog can be
used by DB2 for recovery.

As time passes, image copy backups become obsolete. New backup
copies are made and database objects are recovered to various points in

time. The DB2 DBA must maintain the information in the system
catalog because outdated and unnecessary backup rows in the system
catalog can slow down the recovery process. Backup information in the
system catalog is removed by the DBA using the DB2 MODIFY utility.

On the other hand, some DBMSs do not record backup and recovery
information in the system catalog. If this is the case, the DBA must track
image copy backup files and assure their proper usage during a recovery.
Microsoft SQL Server is an example of a DBMS that works this way.
Whenever a backup is made, the DBA must trap pertinent details of the
backup such as the type, the time, and the date. During a recovery situation,
the DBA must supply the backups (for both database objects and logs) in the
proper sequence to assure a valid recovery.

Some DBMSs do not record backup and recovery information
in the system catalog.

Backup and recovery for Oracle databases can be handled this way, too;
however, most organizations will not choose to do so. Oracle provides a
comprehensive method for managing backup and recovery called RMAN.
RMAN, which stands for Recovery Manager, is a utility that establishes a
connection with a server session and manages the data movement for backup
and recovery operations. When using RMAN, Oracle backup and recovery
operates similarly to DB2 for z/OS. Refer to the sidebar “Using Oracle
RMAN for Backup and Recovery” for more details.

Concurrent Access Issues
Some backup techniques permit concurrent write access to the database
object. Using these techniques allows you to keep the data online during the
backup process, but it will slow down any subsequent recovery because the
DBMS has to examine the database log to ensure accurate recovery.

Using Oracle RMAN for Backup and Recovery
RMAN is a powerful program for managing the backup and recovery of
Oracle data. The DBA can use RMAN to specify files or archived logs to
be backed up using the RMAN BACKUP command. Doing so causes
RMAN to create a backup set as output. A backup set is one or more data

files, control files, or archived redo logs that are written by RMAN in
proprietary format. The only way to recover using the backup set is to use
the RMAN RESTORE command. Of course, the DBA can choose to use
the COPY command instead. This creates an image copy of a file that is
usable outside the scope of RMAN.

RMAN accesses backup and recovery information from either the
control file or the optional recovery catalog. The recovery catalog is
similar to the DBMS system catalog, but it contains only backup and
recovery metadata.

Keep in mind that RMAN is a vehicle for controlling the backup and
recovery of Oracle data. It does not, in and of itself, perform the backup
and recovery; instead, it controls when and how backups are taken and
can be used to coordinate recovery procedures and tasks.

RMAN generally is preferable to other Oracle backup and recovery
methods because it is easier to use and provides more functionality. For
example, RMAN provides the ability to create incremental backups.
Only full image copy backups are available when using traditional
Oracle backup and recovery methods.

Some DBMSs and recovery utilities provide the capability to perform
change accumulation. The change accumulation process creates an up-to-date
image copy backup by merging existing image copies with data from the
database logs. This is similar to the merging of incremental image copies.

Some image copy backup techniques allow only read access to the
database object. Before the image copy is taken, a QUIESCE (explained in
the next section) of the database object establishes a point of consistency.
Backups that allow only read access provide faster recovery than those that
allow concurrent read-write because the database log is not needed to ensure
a proper recovery.

Finally, some image copy backup techniques require the database object to
be stopped, or completely offline. Under such conditions, no one can read or
write to the tablespace. This type of copy provides fast backup because there
is no contention for the tablespace.

The DBA must understand the backup capabilities of each
DBMS in the organization.

The DBA must understand the backup capabilities of each DBMS in the
organization and plan a proper backup strategy that takes into consideration

• The need for concurrent access and modification during the backup
process

• The amount of time available for the backup process and the impact of
concurrent access on the speed of backing up data

• The speed of the recovery utilities
• The need for access to the database logs

Some DBMSs use the terms hot backup and cold backup to describe the
concurrent access that can occur while the data is being backed up. A cold
backup is accomplished by shutting down the database instance and backing
up the relevant database files. A hot backup is performed while the database
instance remains online, meaning that concurrent access is possible.
Depending on the capabilities of the DBMS you are using, hot backups can
be problematic because

• They can be more complex to implement
• They can cause additional overhead in the form of higher CPU,

additional I/O, and additional database log archivals
• They can require the DBA to create site-specific scripts to perform the

hot backup
• They require extensive testing to ensure that the backups are viable for

recovery

Backup Consistency
Be sure your backup plan creates a consistent recovery point for the database
object. In order to ensure backup consistency, you need to be aware of all
relationships between the database objects being backed up and other
database objects. These include application-enforced relationships, referential
constraints, and triggers. If you use an image copy backup to recover a
database object to a previous point in time, you will need to recover any
related database objects to the same point in time. Failure to do so will most
likely result in inconsistent data.

If your DBMS provides a QUIESCE utility, use it to establish a point of
consistency for all related database objects prior to backing them up. The
QUIESCE utility will halt modification requests to the database objects to

ensure consistency and record the point of consistency on the database log.
Use the QUIESCE utility even when some database objects do not need to be
copied, so that you can provide a consistent point of recovery for all
referentially tied tablespaces.

If the DBMS does not provide a QUIESCE option, you will need to take
other steps to ensure a consistent point for recovery. For example, you can
place the database objects into a read-only mode, take the database objects
offline, or halt application processes—at least those application processes that
update the related database objects.1

When to Create a Point of Consistency

If possible, the DBA should create a point of consistency during daily
processing. A point of consistency can come in handy if a point-in-time
recovery is required. You should consider creating a point of consistency in
the following situations:

The DBA should create a point of consistency during daily
processing.

• Before archiving the active log. If you ever lose your active logs, and
you need to use your archive logs for recovery, you can safely apply
log records only up to the last recovery point. If you apply logs after
that point, you can end up with inconsistent data. If the active logs are
not automatically archived, you can quiesce your objects just before
you off-load the active log, which will allow you to use the data all the
way to the end of the log without being left in an inconsistent state.

• Before copying related database objects. Consider creating a point of
consistency before copying sets of related tables. This assures that the
image copy backups for all of the related database objects are consistent
with each other.

• Just after creating an image copy backup. When making image copy
backups concurrently with online database changes, you can create a
point of consistency after the backup is taken to establish a good
recovery point.

• Just before heavy database modification. When batch jobs are run out
of order, or online programs work incorrectly, partial recoveries are
used to restore the data to its state preceding the update activity. By

establishing a point of consistency before the update activity, you can
consistently recover to that point without having to make image copy
backups prior to the heavy update activity.

• During quiet times. Establishing a point of consistency can be
disruptive during periods of heavy activity. The DBMS must establish a
point in time when none of the database objects in question are being
updated. By scheduling a QUIESCE during quiet periods, you can
avoid such disruptions.

Log Archiving and Backup
All database changes are logged by the DBMS to a log file commonly called
the transaction log or database log. Log records are written for every SQL
INSERT, UPDATE, and DELETE statement that is successfully executed
and committed. It is possible to review and either recreate or undo the effects
of every change made to the database by using the database log.

As time progresses and the number of database changes grows, the
database log will increase in size. The database log to which records are
currently being written is referred to as the active log. When the active
database log is filled, the DBMS invokes a process known as log archival or
log off-loading. When a database log is archived, the current active log
information is moved offline to an archived log file, and the active log is
reset. If information cannot be written to the active database log, the DBMS
will halt database modifications until the log has been archived and the active
log is reset.

The DBA typically controls the frequency of the log archival process by
using a DBMS configuration parameter. Most DBMSs also provide a
command to allow the DBA to manually request a log archival process. And
remember, each DBMS performs log archival and backup differently. Refer
to the sidebar “Backing Up SQL Server Transaction Logs” for a short
discussion of transaction log backup considerations.

The DBA typically controls the frequency of the log archival
process.

Backing Up SQL Server Transaction Logs
To ensure an efficient and effective backup and recovery strategy for your

Microsoft SQL Server databases, you will need to implement periodic
transaction log backups. A transaction log backup is created using the
BACKUP LOG command. A database can be restored to any point in time
contained within the sequence of transaction logs you have backed up, up
to the point of failure. If you do not back up your transaction logs before
truncating them, you will be able to restore your database to only the last
database backup you have created.

When Microsoft SQL Server finishes backing up the transaction log,
it truncates the log’s inactive portion. This frees up space on the
transaction log. SQL Server can reuse this truncated space instead of
causing the transaction log to continuously grow and consume more
space. The active portion of the transaction log contains transactions that
were still running and had not yet completed at the time of the backup.

Microsoft SQL Server will try to take a checkpoint whenever the
transaction log becomes 70 percent full, or when a “log full” error
occurs. Additionally, when SQL Server is shut down (unless the
NOWAIT option is specified), it will take a checkpoint for each
database.

The transaction log should not be backed up if the TRUNC LOG ON
CHKPT database option is set to TRUE. If you specify TRUNC LOG
ON CHKPT as true, Microsoft SQL Server will clear out inactive
transaction log entries at every checkpoint.2 This option tells SQL
Server that you will not be using the transaction log for restore
operations. The transaction log must still be created, though, because it
is required to roll back transactions and for SQL Server to determine
how to recover databases when it is restarted. Enable checkpoint log
truncation only for systems where it is OK for you to lose transactions
during the course of a day, because you will be able to restore your
database back to only the last database backup that was taken.
Applications of this nature are uncommon in most production
environments.

If a transaction log has been truncated (except by a BACKUP LOG
command), you should not back up that log until you take a database
backup or differential database backup. A differential database backup
will back up only the data that has changed since the last full database
backup.

You should also avoid backing up transaction logs in which any
nonlogged operations have occurred since the last database backup was
created. If this is the situation, create a database backup or a differential
database backup instead.

Finally, if any files are added to or deleted from the database, a
transaction log backup should not be taken. Instead, you should create a
full database backup, after which transaction log backups can be created
again.

Determining Your Backup Schedule
Establishing a reasonable backup schedule requires you to balance two
competing demands: the need to take image copy backups frequently enough
to assure reasonable recovery time, and the need to not interrupt daily
business. The DBA must be capable of balancing these two objectives based
on usage criteria and the capabilities of the DBMS.

Not all data is created equal. Some of your databases and tables contain
data that is necessary for the core of your business. Other database objects
contain data that is less critical or easily derived from other sources. Before
you can set up a viable backup strategy and schedule, you will need to
analyze your databases and data to determine their nature and value to the
business. To do so, answer the following questions for each database object:

Not all data is created equal.

• How much daily activity occurs against the data?
• How often does the data change?
• How critical is the data to the business?
• Can the data be recreated easily?
• What kind of access do the users need? Is 24/7 access required?
• What is the cost of not having the data available during a recovery?

What is the dollar value associated with each minute of downtime?

Grade each database object in terms of its criticality and
volatility.

It can be helpful to grade each database object in terms of its criticality and

volatility. This can be accomplished using the grid shown in Figure 16.2. The
vertical axis represents a criticality continuum that ranges from easily
replaceable data to data that cannot be easily replaced. The horizontal axis
represents a volatility continuum that ranges from static data that changes
infrequently to volatile data that changes frequently. Use this grid to diagram
each database object by estimating its relative volatility and importance to the
organization. Remember, these terms are somewhat vague; you will need to
analyze your data and define it along the axes based on your knowledge of
the data and your organization.

Figure 16.2. Nature and types of data

Once you have charted your database objects, you can use the diagram as a
general indicator of how frequently each database object should be backed
up. The DBA in charge of each application must develop the backup
thresholds for each different type of data, as suggested by the grid. In general,
critical data should be backed up more frequently than noncritical data, and
volatile data should be backed up more frequently than static data. The key,
however, is how you define the term frequently. For example, 1,000 updates
per day might be frequent at some shops, whereas 50,000 updates per day
might be infrequent at other shops. The DBA uses the grid to determine an
appropriate backup schedule for each database object. The method of backup
is also affected by user access needs.

Quadrant 1 on the grid identifies the critical/dynamic data in the

organization. This data is crucial to your business and it changes rapidly. As
such, you must be able to recover it quickly, so you should copy it frequently.
As a rule of thumb, the data should be backed up at least on a daily basis. If
more than 20 percent of the data changes daily, be sure to make full rather
than incremental backups.

Quadrant 2 represents critical but static data. Even though the data changes
little from day to day, you will need to recover the data promptly in the event
of an error because it is critical to the business. Be sure to back up this data at
least weekly. Consider using incremental backups that are merged
immediately upon completion to minimize the work required during a
recovery.

Quadrant 3 represents volatile data that is not as vital to your business.
You may be able to recreate the data if it becomes corrupted. Depending on
the amount of data and the volume of change, you might not even back it up
at all. For small amounts of data, a printed report may suffice as a backup. If
the data fails, you could simply reenter it from the printed report.
Alternatively, if data is recreated nightly in a batch job, you could simply run
the batch job to refresh the data. As a DBA, you will need to ensure that the
data can be recreated or copied on a regular basis. In general, more than a
weekly backup for quadrant-3 data is likely to be overkill.

Quadrant 4 represents static, noncritical data. Such data does not change
much and can be replaced easily. It is the least important data and should be
addressed only when data in the other three quadrants has been adequately
backed up. In fact, quadrant-4 data may never need to be backed up—the
DBA could take a similar approach to that described for quadrant 3.

DBMS Instance Backup
In addition to being prepared for failure of individual database objects, the
DBA must be prepared to recover from failure of the entire DBMS instance
or subsystem. Be sure to back up all of the crucial components of the
database instance, including DBMS files, system catalog and directory
objects, database (archive) logs, configuration and setup files, system
libraries, tape management libraries, program source libraries, and executable
libraries. Of course, each DBMS and platform will have different key
components that must be dealt with when planning a recovery strategy for the
DBMS instance.

Be prepared to recover from failure of the entire DBMS
instance or subsystem.

Recovering an entire DBMS instance is relatively rare, but it is not
something that can be ignored. The DBMS instance can fail for reasons as
diverse as a device failure (when critical DBMS components reside on that
device), a botched version upgrade, or human error (deleting a critical file).

In certain dire situations, you may need to resort to the original installation
media in order to recover a DBMS component. Of course, when restoring
from the original media, you may lose any subsequent bug fixes that were
applied. Therefore, the recovery process would include reapplying the
maintenance as supplied by the DBMS vendor.

Recovering from a DBMS instance failure can be a very complex process.
Always refer to the documentation provided with the DBMS when planning
your backup and recovery strategy to make sure you are backing up
everything that is necessary. Furthermore, always reread the manuals before
attempting DBMS instance recovery, and never attempt to recover the DBMS
instance without thoroughly understanding the reason for recovering.

Designing the DBMS Environment for Recovery
You should always take advantage of DBMS features to make recovery an
easier process. For instance, most DBMSs provide the option of allocating
redundant database logs. Take advantage of this option. Always allocate (at
least) two copies of the active database log files to separate disk controllers,
channels, and volumes. By separating the dual copies in this fashion, you are
building in protection against volume failures. If one copy of the active
database log is lost or damaged, operations can continue using the other copy.

Allocate redundant database logs.

Alternate Approaches to Database Backup
The backup methods discussed so far have involved copying the physical
data files for a database object verbatim (or almost verbatim) to a backup
device. Such image copy backups provide a fast method of backing up data
and are relatively easy to use during a recovery.

The preferred method of backing up data stored in a database is to use the
utilities and methods provided by the DBMS. However, other approaches can

be used, too. These approaches should be considered as special procedures to
be used only under certain circumstances.
Using Database Exports to Create Logical Backups

An alternate approach to database recovery is to create an export, or unload,
of the data stored in the database object. Sometimes the process of backing
up just the data, and not the entire physical file, is referred to as a logical
backup. In instances such as the following, it is quite useful to deploy logical
backups:

• Object or row recovery. If someone inadvertently drops a table or
deletes a few rows from a table, restoring them from a physical backup
may be difficult. With a logical backup, the missing data is simply
reloaded to the table.

• DBMS release upgrade. Sometimes the DBMS vendor changes the
underlying database structures for a release migration. When this
occurs, it can be useful to have logical backups that can be imported
into the new version, instead of trying to convert existing structures—
data and all—to the new format.

• Heterogeneous database migration. Physical data structures differ
among different platforms, even when the same DBMS is being used.
For example, an Oracle database on OS/390 will use different physical
file structures from the same Oracle database implemented on Windows
NT. Logical backups can be used to facilitate the movement of data
between different databases on different platforms.

• Data movement. Data, once created in the database, will be shifted and
moved all over the organization—perhaps to different DBMSs, perhaps
to flat files, perhaps to spreadsheets. A logical backup, because it is just
the data, can make it easier to move that data wherever it needs to be,
whenever it must be there.

A logical backup is performed with the database up and running, so the
only impact on performance will be the possible concurrent access to data by
transactions and other production programs. However, as a DBA you must
keep the data integrity of the logical backup in mind. Although the DBMS
will use its locking mechanism to assure consistent data, referential integrity
will not be guaranteed unless efforts are made to quiesce concurrent activity
during the data export process.

Use logical backups to complement your physical backup
strategy.

The regular creation of logical backups can complement your physical
backup strategy.

Using Storage Management Software to Make Backup Copies
Storage management software can be used to back up files on managed
storage devices. Some DBMSs interact with certain storage management
software—for example, IBM DFSMS backups can be integrated with DB2
image copy backups. Also, EMC and other SAN vendors enable SAN
duplication, which has been used by some shops to supplement database
backups.

When using storage management software to back up database objects
outside the scope of DBMS control, be sure to disable database write
operations for all database objects that are being backed up. To accomplish
this, use the DBMS commands to stop the database objects, or start them in
read-only mode. Once database modification operations have been
suspended, the storage management software can be used to back up the
database objects. When the backup is complete, use the DBMS commands to
restart the database objects in read/write mode.

Disable database write operations for all database objects that
are being backed up.

Be sure you fully understand both the functionality of the storage
management software and the DBMS. For example, some storage
management software will not copy open files. However, files containing
database data will be open if the DBMS is using them. Failing to understand
such details can result in missing backups and unrecoverable data.

Additionally, when recovery is required, the storage management software
should be used instead of DBMS utilities or commands. The backups were
made by the storage management software and will likely be in a format that
is usable only by the same software.

Document Your Backup Strategy
Once your backup strategy has been established and implemented, the backup
system can run for a long time without any DBA intervention required. Such

automation is a mixed blessing, though. Over time, things can be forgotten
and the DBA staff can change, both of which can cause confusion during a
hectic database recovery. For this reason it is imperative that the backup and
recovery strategy, implementation, and procedures be thoroughly tested and
documented by the DBA.

The most important aspect of any backup plan is to thoroughly test each
different type of recovery in a test environment. Be sure that you can recover
from a media failure, an instance failure, and several types of application
failures. Document the type of backup taken for each database object, along
with a schedule of when each is backed up. Be sure that all of your databases
can be recovered and that all DBAs on-site have firsthand experience at
database recovery. The DBA group should schedule periodic evaluations of
the backup and recovery plans for every production database.

Schedule periodic evaluations of the backup and recovery
plans for every production database.

Database Object Definition Backups
In addition to regularly backing up data, the DBA should consider regularly
backing up the database object definitions. Database object definitions can
change over time as parameters are altered and modified. What happens if an
object is inadvertently dropped and no record of the DDL used to create and
change the object over time is maintained? The answer is, it can be very
difficult to recreate the object exactly as it was before it was dropped.

DB2 for Linux, UNIX, and Windows provides the DB2LOOK utility to do
this; Oracle offers the Export utility. If the DBMS you use does not offer
such a utility, database object information can be obtained from the DBMS’s
system catalog. Consider generating regular reports from the system catalog
that detail the specific parameters and options in effect for each database
object in the production environment.

Database object definitions can change over time.

You may be able to create SQL queries against the system catalog that
generate actual DDL statements that can be rerun as needed. For example,
consider the following pseudo-SQL query:
Click here to view code image

SELECT "CREATE DATABASE ", dbname, " BUFFERPOOL ",
bpname,
 " STOGROUP ", sgname, " ;"
FROM sysdatabases;

This SQL query creates SQL CREATE statements from the metadata in
the system catalog. Why is this information important? Consider this tale of
woe: A DBA using mainframe DB2 had to drop a partitioned tablespace and
recreate it with fewer partitions. There was no way to alter the tablespace to
remove partitions. After the change, there was an increased rate of locking
problems. Fortunately, the DBA had saved the definition of the tablespace
prior to the change. In this case, the original lock size was row, but the
current lock size was page. Setting the tablespace back to row locking solved
the problem—however, without that original definition, the problem would
have been much more difficult to trace and resolve.

Recovery
When problems impact the database, the DBA can use the image copy
backups and the database log to recover the database. Whatever the cause of
the problem, the DBA must be able to recover data quickly so that the
business can continue to operate. When data is unavailable, your company
may be losing thousands or even millions of dollars. Recognizing the need
for a database recovery is quite different from actually performing a recovery
in a speedy and proper fashion. Database recovery can be a very complex
task that is prone to errors and difficult to manage.

Database recovery can be a very complex task.

Recovery involves much more than simply restoring an image of the data
as it appeared at some earlier point in time. A database recovery will involve
bringing the data back to its state at (or before) the time of the problem. Often
a recovery involves restoring databases and then reapplying the correct
changes that occurred to that database, in the correct sequence.

Simply stated, a successful recovery is one where you get the application
data to the state you want it—whether that state is how it was last week,
yesterday, or just a moment ago. If you planned your backup strategy
appropriately, you should be able to recover from just about any type of
failure you encounter.

Determining Recovery Options
When a failure occurs, as a DBA you will need to ascertain whether recovery
is required. If recovery is required, you will need to determine what resources
(backup copies) are available and how best to perform that recovery. You
need to answer several questions to determine the type and extent of failure.
Your answers dictate the steps you take to recover the system.

• What type of failure has occurred: media, transaction, or database
instance?

• What is the cause of the failure?
• How did the database go down: abort, crash, normal shutdown?
• Did any operating system errors occur?
• Was the server rebooted?
• Are there any errors in the operating system log?
• Are there any errors in the alert log?
• Was a dump produced?
• Were any trace files generated?
• How critical is the lost data?
• Have you attempted any kind of recovery so far? If so, what steps have

already been performed?
• What types of backups exist: full, incremental, both?
• What needs to be recovered: the full database, a tablespace, a single

table, an index, or combinations thereof?
• Does your backup strategy support the type of recovery required

(recover to current versus point in time)?
• If you have cold backups, how was the database shut down when the

cold backups were taken?
• Are all of the archived database logs available for recovery?
• Do you have a recent logical backup (EXPORT or UNLOAD)?
• What concurrent activities were running when the system crashed?
• Can you bring the DBMS instance up?
• Can you access the database objects?
• What are your system availability requirements?

• How much data must be recovered?
• Are you using raw files?

Additionally, DBMS version migration can impact recoverability. For
example, consider the following sequence of events:

• A backup copy of TableA is taken while the DBMS is running on
Version 10.

• The DBMS is migrated to a new version, say, Version 11.
• A problem is encountered, and TableA needs to be recovered.

Depending on the DBMS and the particulars of the new version, TableA
may not be recoverable. Sometimes DBMS vendors change the format of
image copy backup files, rendering any backups using the old format
unusable. The same could be true for the log file—the format may have
changed for a new version, rendering the old log files unreadable and the data
therefore unrecoverable. Perhaps the new version changed the functionality
of the RECOVER utility, such that it could not read older backup files. In
either case, the DBA is stuck because there is no valid backup that can be
used for recovery. For these reasons, be sure to investigate the particulars of
backup and recovery for each new DBMS version before migration, and take
new image copy backups after migration if the old backups are unusable.

Investigate the particulars of backup and recovery for each
new DBMS version before migration.

Of course, these are just some of the questions that the DBA must be
prepared to answer in order to effectively recover database objects.
Additionally, the DBA will need to understand all of the details specific to
the DBMS in use—for example, information on the Oracle rollback segments
or how to identify a specific log RBA (relative byte address) for DB2
recovery.

When using Microsoft SQL Server, the DBA can select from several
recovery models to use for database implementations. Refer to the sidebar
“SQL Server Recovery Models” for more details.

SQL Server Recovery Models
SQL Server DBAs can select recovery models when creating the backup
and recovery plan for their databases. A recovery model selects options for

recovery based on requirements for performance, transaction log storage,
and fault tolerance. There are three recovery models: simple recovery, full
recovery, and bulk-logged recovery.

Simple recovery requires less log space but has the greatest potential
for data loss. With simple recovery, only full and differential backups
are available for recovery.

Full recovery logs everything and trades the extra log space required
for a more comprehensive approach to recovery. With full recovery, the
DBA can perform point-in-time recovery using the transaction log.

Finally, bulk-logged recovery is optimized for bulk operations and
offers the best performance of the three options. Bulk operations include
BCP executions, SELECT INTO, index creation, and text updating and
writing. Bulk-logged recovery does not support point-in-time recovery.

SQL Server DBAs can choose from among these models to fine-tune
the backup and recovery operations of their production databases.

General Steps for Database Object Recovery
At a high level, the following steps are common to most database recoveries:

1. Identify the failure. The detection of an outage is usually simple: Either
the database is not responding to the application, or the DBMS has
displayed some type of error message. Some problems are more
insidious, though, such as a corrupt control file. This type of problem
takes more skill to identify.

2. Analyze the situation. The DBA must analyze the error to determine the
cause, type, and scope of the failure. Based on the results of this
analysis, the DBA will choose a recovery method. This is usually the
most time-consuming recovery task.

3. Determine what needs to be recovered. The DBA must determine
which database objects (and perhaps other components such as logs)
are failing and prepare a recovery script that is appropriate for each
component. This task can also consume a significant amount of time,
especially for larger systems.

4. Identify dependencies among the database objects to be recovered. The
failure of one database object can impact other database objects (e.g.,

indexes and referentially related tables). Loss of data or recovery to a
prior point in time will most likely affect related database objects.

5. Locate the required image copy backup(s). The closer the image copy
backup is to the recovery point in time, the shorter the amount of time it
will take to recover. Keep in mind other factors such as the time it takes
to find tapes in the library and the possibility of the tape being at an off-
site location.

6. Restore the image copy backup(s). Restoration is accomplished using
the database recovery utility or file system recovery command of
choice.

7. Roll forward through the database log(s). To recover to current or to a
point in time after the image copy backup was taken, the database logs
will need to be processed.

At a very basic level, every database recovery will involve most of these
seven steps. However, depending on the situation and the type of recovery
requested, certain steps might be eliminated or changed significantly.

Types of Recovery
Of the different types of recovery performed, the first one that usually comes
to mind is a recover to current, to handle some sort of disaster. This disaster
could be anything from a media failure to a natural disaster destroying a data
center. Applications are completely unavailable until the recovery is
complete. This process is depicted in Figure 16.3.

Figure 16.3. Recover to current

The first type of recovery is recover to current.

To successfully recover to current, the recovery process must be able to
reset the contents of the database to the way it looked just at (or right before)
the point of failure. To recover to current, the recovery process must find a
valid, full image copy backup and restore that image copy. Then the recovery
will roll forward through the database log, applying all of the database
changes.

If the last full image copy is lost or destroyed, it may still be possible to
recover if a previous image copy exists. The recovery process could start with
the older backup copy, apply any incremental copies, and then roll forward
through the archived and active logs. Of course, more database logs will be
required in such a case, so the recovery process will take longer.

If no image copy is available as a starting point, it may be possible to
recover the database object using just the database log. If the data was loaded
and the load process was logged, recovery may be able to proceed simply by
applying log records.

Another traditional type of recovery is point-in-time (PIT) recovery, which
is usually done to deal with an application-level problem. PIT recovery is

sometimes referred to as partial recovery because only part of the existing
data will remain after recovery. Recovery to a point in time removes the
effects of all transactions that have occurred since that specified point in time.

Recovery to a point in time removes the effects of all
transactions that have occurred since that specified point in
time.

To perform a PIT recovery, an image copy backup is restored and then
changes are applied by rolling forward through the database log (or log
backups). However, only the log records up to the specified time are
processed. Sometimes the recovery point is specified as an actual date and
time; sometimes it is specified using a relative byte address on the database
log. The point-in-time recovery process is depicted in Figure 16.4.

Figure 16.4. Point-in-time recovery process

To successfully recover to a point in time, the recovery must be able to
reset the contents of the database to the way it looked at a prior consistent
point. The key is to retain all of the good changes to the data while removing
all of the “bad.” The PIT recovery depicted could be done in one of two
ways, depending on the features of the DBMS and the amount of data to be
recovered. It could

• Restore the image copy by rolling forward through the logs and
applying the database changes up to the recovery point, or

• Not restore the image copy, instead rolling backward through the logs
and removing the database changes that occurred after the recovery
point

If the DBMS supports both types of recovery, the DBA should choose to
deploy the one that creates less downtime. If a significant number of changes
need to be removed, restoring and rolling forward usually results in less
downtime. If the number of changes that must be removed are minimal,
rolling backward through the logs should result in less downtime. Few
DBMSs support backward log rolling, but third-party products are available
that can make it a viable technique.

Regardless of the method used to perform PIT recovery, the DBA must
select a recovery point that represents a point where the data is consistent. A
consistent recovery point will assure data integrity, referential integrity, and
transaction integrity. Some DBMSs provide a QUIESCE utility to achieve a
point of consistency, whereas others require the database objects to be
stopped (or in read-only mode) during the image copy.

An additional issue is determining what exactly has run since the bad
transaction or failure from which you are recovering. The DBA can examine
the job schedule, format a report from the database logs (if the DBMS
provides a utility to produce such a report), and review the computer console
for messages to help determine what processes ran after the failure occurred.

Transaction recovery is a third type of recovery; it addresses the
shortcomings of the traditional types of recovery: downtime and loss of good
data. Thus, transaction recovery is an application recovery whereby the
effects of specific transactions during a specified time frame are removed
from the database. Third-party software is required to perform a transaction
recovery.

Third-party software is required to perform a transaction
recovery.

Traditional types of recovery, both recovery to current and PIT, recover at
the database object level. In direct contrast to this level of granularity,
transaction recovery allows a user to recover a specific portion of the
database based on user-defined criteria. This can be at a transaction or
application program level. In this context, a transaction is defined by the
user’s view of the process. This might be the set of panels that constitute a

new-hire operation, or the set of jobs that post to the general ledger. The
important point is that there may or may not be a correlation between the
transactions you are trying to fix and transactions (or units of recovery) in the
DBMS.

Examples of user-level transaction definitions might be
• All database updates performed by user ID DSGRNTLD since last

Wednesday at 11:50 a.m.
• All database deletes performed by the application program named

PAYROLL since 8:00 p.m. yesterday
Any number of problems such as the following can occur at the application

level:
• Edit checks in the programs or database are not defined properly or

contain bugs.
• Somebody changed the job scheduling software or didn’t check for

valid completion codes, so certain processes were run out of sequence,
causing data problems.

• Inadequately tested code hits production.
• There are bugs in the system software.

Or maybe there is no problem, but you need to run a program multiple
times against the same data. There are times, in particular in test and system
test environments, when you may want to run a test and then just roll the
results back and try it again (and again and again . . .).

Once you have identified the transaction to recover, you have three
recovery options:

• PIT recovery. You can try to identify all of the database objects
impacted by the application and perform traditional point-in-time
recovery to remove the effects of the transactions. You would then
manually rerun or reenter work that was valid.

• UNDO recovery. Remove only the effects of the bad transactions.
• REDO recovery. Remove all the transactions after a given point in

time, and then redo the good transactions only.
PIT recovery was discussed earlier, so we will not cover it again here. The

other two forms of transaction recovery are SQL-based application recovery
techniques. The basic idea is to read the log and generate the proper SQL

statements that can be run to achieve the desired recovery results.

UNDO recovery is the simplest version of SQL-based
transaction recovery

Let’s first examine an UNDO recovery. UNDO recovery is the simplest
version of SQL-based transaction recovery because it involves only SQL. To
accomplish an UNDO recovery, the database logs must be scanned for the
identified transaction and anti-SQL is produced. Anti-SQL reverses the affect
of SQL by

• Converting inserts into deletes
• Converting deletes into inserts
• Reversing the values of updates (e.g., UPDATE “A” to “X” becomes

UPDATE “X” to “A”)
Once the anti-SQL is generated, it is run using an interactive SQL script to

perform an UNDO recovery, which is shown in Figure 16.5. The portion of
the database that does not need to be recovered remains undisturbed. When
undoing erroneous transactions, recovery can be performed online without
suffering an outage of the application or the database. Indeed, the DBMS
must be up and running in order to execute the anti-SQL. However, certain
applications may need to be brought down for the duration of the UNDO
recovery to eliminate the potential for data anomalies causing additional
failures.

Figure 16.5. UNDO recovery process

A REDO recovery is a combination of PIT recovery and
UNDO recovery, with a twist.

A REDO recovery is a combination of PIT recovery and UNDO recovery,

with a twist. Instead of generating SQL for the bad transaction that we want
to eliminate, we generate the SQL for the transactions we want to save. Then
we do a standard point-in-time recovery to eliminate all the transactions since
the recovery point. Finally, we reapply the good transactions captured in the
first step. This process is shown in Figure 16.6.

Figure 16.6. REDO recovery process

Unlike the UNDO process, which creates SQL statements designed to back
out all of the problem transactions, the REDO process creates SQL
statements that are designed to reapply only the valid transactions from a
consistent point in time. Since the REDO process does not generate SQL for
the problem transactions, performing a recovery and then executing the
REDO SQL can restore the database object to a current state that does not
include the problem transactions.

When redoing transactions in an environment where availability is crucial:
1. Perform a recovery to a point in time.
2. Bring the application and database online.
3. Redo the subsequent valid transactions to complete the recovery. This

step must be done while the database is online for concurrent read/write
operations.

If your approach to backup and recovery is to use storage management
software, individual image copy backups for database objects will not exist.
In this case, you will need to deploy storage management software to perform
the recovery. The actual recovery process will depend on the type of storage
management software in use, as well as how (or if) it interacts with the
DBMS recovery mechanisms.

Off-site disaster recovery is the rarest, but most comprehensive, type of

database recovery. An off-site disaster recovery is required when a natural
disaster (fire, flood, etc.) or other severe accident makes it impossible to use
your primary data-processing center. In this case, you need to reestablish
your entire system environment, as well as recover your DBMS, database
objects, and data. Disaster recovery is discussed in more detail in Chapter 17,
“Disaster Planning.”

Off-site disaster recovery is the most comprehensive type of
database recovery.

Choosing the Optimum Recovery Strategy

So, what is the best recovery strategy? It depends.
Historically, recovery was performed mostly for disasters and hardware

failures, but this is simply not the case anymore. In fact, the majority of
recoveries these days result from application problems. Recent industry
analyst studies have shown that most system downtime is caused by software
problems—not hardware problems.

In reality, very few DBAs ever need to perform a true disaster recovery
except during tests. Though media continues to fail, it fails relatively
infrequently these days. User errors and application failures are the most
common reasons for database recovery and therefore the primary causes of
system unavailability.

User errors and application failures are the most common
reasons for database recovery.

Software problems and bugs might cause only certain transactions to be in
error and in need of repair. Unfortunately, as databases grow in size and
complexity, so do the chances that bad transactions will corrupt the data on
which your business depends. Transaction recovery may seem like the
answer to availability problems, but there are a number of cases where
transaction recovery is neither possible nor advisable. In determining the type
of recovery to perform, the DBA must consider several questions:

• Transaction identification. Can all the problem transactions be
identified? You must be able to actually identify the transactions that
will be removed from the database for transaction recovery to work.
Can all the work that was originally done be located and redone?

• Data integrity. Has anyone else updated the rows since the problem
occurred? If so, can you still proceed? Is all the data that is required still
available? Intervening reorganizations, loads, or mass deletes can
require the use of an image copy backup, thereby eliminating UNDO
recovery. Will the recovery cause any other data to be lost? If so, can
the lost data be identified in some fashion and reapplied?

• Speed. If multiple techniques are viable, which one is likely to perform
the fastest? How many database logs are required to perform the
recovery? Can anything be done to reduce the number of logs, such as
merging incremental copies?

• Availability. How soon can the application become available again?
Can you afford to go offline?

• Invasiveness. How invasive was the failure to your database? Were
decisions made based on bad data? Can any subsequent work be
trusted?

What is the cost of rework?

All of these questions actually boil down to a question of cost. What is the
cost of rework, and is it actually possible to determine what would need to be
redone? This cost needs to be balanced against the cost of long scans of log
data sets to isolate data to redo or undo and the cost of applying that data via
SQL. Of course, an additional question looms large: Which of these recovery
techniques are actually available at your site and will they work for the
DBMS in question?

Many factors influence the duration of the recovery process. The DBA can
implement measures to reduce downtime by developing a smart backup and
recovery plan. The following factors can shorten the duration of a recovery:

• The smaller the size of the components that need to be recovered, the
shorter the recovery process will be. In general, the less you have to do,
the less time it will take.

• Consider partitioning database objects and backing up and recovering
at the partition level. Sometimes a failure that would otherwise impact
an entire database object can be limited to impacting only a single
partition.

• Consider keeping image copy backups and log archive files on disk.

Because disk file access is quicker and processes do not need to wait
for tape mounts, using disk instead of tape can speed up the recovery
process.

• Test your image copy backups to make sure they are valid.
Encountering an invalid image copy during the recovery process will
lengthen the duration of recovery. When invalid image copy backups
are found, steps can be taken to create a new, valid image copy backup
before causing a negative impact on recovery.

• Automate your backup and recovery procedures to the greatest extent
possible. Automated procedures remove manual error from the
equation, thereby minimizing downtime.

• Whenever possible, design databases with as few dependencies as
possible. Autonomous database objects can minimize the duration of a
recovery because fewer related database objects need to be recovered at
the same time.

• Finally, be sure that all DBAs understand the recovery procedures for
each database object under their control.

Matching Type of Failure to Type of Recovery

Matching the type of failure to the appropriate type of recovery is good
practice. Of course, there are exceptions to every rule, so the following
generalizations should be treated as a starting point only.

Match the type of failure to the appropriate type of recovery.

Recovering from a media failure usually involves a recover to current.
When the media fails, the database objects residing on that media most likely
will not be able to be accessed or changed. The general desire in such a
situation is to recover all database objects on the failing media to the point
just before the failure—in other words, the DBA will try to recover all
activity and data for these database objects.

Recovering from a transaction failure usually involves a point-in-time
recovery or a transaction recovery. By definition, a transaction recovery is
caused by an erroneous or incorrect execution of a program. The database
changes resulting from the improperly run program must be removed from all
database objects affected.

Recovering from a database instance or subsystem failure will most likely
involve a recover to current. The goal of such a recovery is to bring the data
in all database objects within that instance or subsystem back to the way it
was before the point of failure, and in a consistent state.

Index Recovery
Recall from the previous discussion on image copy backups that there are
two options for index recovery:

• Rebuilding the index from the table data
• Recovering the index from a backup copy of the index itself

Most DBMSs provide the capability to rebuild an index from the table
data. Some DBMSs support both methods of index recovery. When both
methods are available, the DBMS may require you to choose one or the other
method for each index that you create. As a DBA, you will need to examine
the index recovery methods available to your DBMS and choose the
appropriate method for each index.

In general, the larger the amount of data to be indexed, the bigger the
actual index will be and the longer it will take to rebuild that index from the
data. Therefore, consider using image copy backup and recovery for indexes
when the database object is very large. Of course, the definition of “very
large” is vague and will differ from organization to organization depending
on your database usage and the amount of downtime your company can
tolerate.

When you choose to use backup and recovery for indexes, be sure to
synchronize the backup and recovery with the indexed database objects. In
other words, when you make a backup of a tablespace, be sure to also copy
any associated indexes. Failure to do so can result in data integrity problems.

When you make a backup of a tablespace, be sure to also copy
any associated indexes.

Testing Your Recovery Plan
Every DBA should prepare a recovery plan for each database object and test
it frequently. A recovery plan describes the procedures you will use to
recover in the event of hardware failure or a local site disaster, such as fire.
You should develop a recovery plan and test it often (ideally no less than

twice per year).

Develop a recovery plan and test it often.

To develop your recovery plan:
• Write out all aspects of the recovery plan in detail, documenting each

step.
• Include all the scripts required to back up and recover each database

object.
• Review the plan with everyone who may be called on to implement it.
• Include a contact list with names and phone numbers of everyone who

may be involved in the recovery.
• Keep the recovery plan up-to-date by modifying it to include every new

database object that is created.
Testing your recovery procedures on a regular basis includes running

regular recovery tests for individual database objects, databases, and the
entire database system. By testing recovery procedures, the DBA assures that
the backup and recovery scripts work and that every database object is indeed
recoverable. Furthermore, regular recovery testing is on-the-job training for
the inevitable, stress-filled production database recovery. DBAs who test
their recovery plan will be more familiar with the tools and scripts needed to
perform recovery.

Recovering a Dropped Database Object
Until now, we have focused on backing up and recovering data. However, it
is also possible to drop a database object unintentionally. When such an error
is recognized, the DBA will need to recover the database object as quickly as
possible to avoid availability and integrity problems.

Recovering a dropped object requires extra steps beyond a normal
recovery. Depending on the DBMS and the tools available, it can sometimes
be very complicated.

Recovering a dropped object requires extra steps beyond a
normal recovery.

Typically, each DBMS identifies the database objects under its control by
an internal identifier. When an object is dropped and recreated, the internal

identifier for that object usually will change. Therefore, recreating the object
using the same DDL and running a recovery using a prior image copy backup
usually will not work.

To recover a dropped database object, the DBA may need to translate the
internal identifier of the old database object to the internal identifier of the
new database object. Refer to the sidebar “DB2 and DSN1COPY” for an
example. To accomplish this, you must recreate the dropped database object
using the exact same definition that was in effect when the image copy
backup was taken. If a column definition differs between the dropped object
and the newly recovered object, the recovery will probably fail.

Of course, the preceding scenario does not apply if you have a logical
backup file. If that is the case, you should be able to recreate the database
object and set up a load script to repopulate the data.

At any rate, regardless of the method used to recover the dropped database
object, keep in mind the ramifications of dropping objects.

DB2 and DSN1COPY
DB2 for z/OS supplies a utility called DSN1COPY to enable database files
to be copied outside the control of the DBMS. DB2 does not need to be
operational for DSN1COPY to be able to run.

Furthermore, the DSN1COPY utility can be used to modify the
internal object identifier used by DB2 to identify tablespace and index
space data sets. Using the OBIDXLAT option, the DBA can direct
DSN1COPY to translate one object identifier to another so that data can
be recovered to similar (or restored) database objects, even if the internal
identifier does not match the identifier in the image copy backup.

When a database object is dropped, all subordinate database objects are also
dropped, as are security authorizations, referential constraints, and check
constraints. Once you have recovered a dropped object, you need to address
these other issues.

Recovering Broken Blocks and Pages
A broken block or page is a section of a tablespace or index that contains bad
or inconsistent data. Data may be inconsistent due to a broken or orphaned
chain, referential constraint violations, a damaged recovery log, a missing or

extra index entry, or some other arcane problem. To recover an index with a
broken page you can simply rebuild the index from the data in the tablespace.

Rebuild the index from the data in the tablespace.

Tablespaces are a different proposition. Sometimes simply stopping and
starting the tablespace or recycling the DBMS instance can fix a broken page.
Additionally, some DBMSs come with a repair utility that can be used to
pinpoint locations within a file based on offsets and replace data at the bit or
byte level. Before using any such repair tool, be sure to completely read the
DBMS instruction manuals. Furthermore, be sure that the corrective action
will actually fix the broken page. Repair utilities can be invasive and
damaging to the contents of the database. Sometimes the DBMS vendor
recommends that such activities be performed only under the direction of the
DBMS vendor’s technical support staff. Heed these recommendations to
avoid causing further damage to your data.

Once you have repaired the information, you may need to recover the
tablespace to current. The recovery will apply the log records that recorded
the activity that caused the damage.

Populating Test Databases
One of the best ways to populate a test environment is with a production
database backup. Such a database backup contains a valid set of data from the
production environment at a given point in time. To create the test
environment, the DBA can use the RECOVER utility or perhaps an
UNLOAD utility that can read backup files.

Populate the test environment with a production database
backup.

Creating a test system from a production database can impose specific
requirements on the structure and timing of the production backup, as well as
the structure of the test environment. If the production database backup is not
taken during a period of no activity, the restore to the test environment will
require the production log files as well.

Populating the test environment with production data can be a feasible
approach to resolving some types of production problems. For example,
consider a 24/7 application with month-end reports and month-end database

backups. On the tenth day of the month, a business user finds a problem in
the month-end report. To resolve the issue, the programmer needs to know
the contents of the database as of the first of the month. However, the
database has changed significantly over the past ten days. Restoring the
production database with month-end data is not an option—business
transactions must continue. In such a scenario, the DBA could use the month-
end production database backup to populate the test environment with month-
end data. The programmer can now fix the month-end report by using the test
database with the month-end production data.

Alternatives to Backup and Recovery
The creation of image copy backups for recovery is the most common and
reliable method of insuring against failures and lost data. However, several
alternatives exist that either augment or perhaps replace standard backup and
recovery methods. The next few sections briefly examine some of these
alternatives.

Standby Databases
Oracle introduced the concept of a standby database back in Version 7. A
standby database is an identical copy of an online production database that is
close to being up-to-date in terms of its data content. The standby database
may not be 100 percent up-to-date because of system latency between
applying updates from the online production database to the standby
database. When a failure occurs, control is transferred to the standby
database, which is then opened as the online production database to allow
normal activity to continue.

Usually, a standby database is created initially by restoring a cold backup.
Then, all the archive logs from the production database must be copied to the
standby database and applied. For all intents and purposes, the standby
database is continuously running in recovery mode because it is applying the
archive logs from the production database as operations are performed on the
production database.

But, beware. A standby database does not eliminate the need for normal
backups to be performed on the production database. Operations performed
in error on the production database will be duplicated on the standby
database. For example, a row deleted accidentally will also be deleted on the

standby machine.
A standby database is fairly easy to implement and provides quick

recovery from certain types of failures. However, standby databases are
almost never completely up-to-date: If a production archive is lost, the
standby database becomes unsynchronized, and only an entire database can
be duplicated (instead of just certain database objects).

A standby database is fairly easy to implement.

Standby databases can be ideal for disaster recovery.

Replication
Data replication involves storing and maintaining redundant data in a
separate copy of the database. Replicated data can be a subset of the rows
and/or columns of the original database. A simple form of replication can be
implemented by copying entire tables to multiple locations at various times
throughout the day. Of course, this is easier said than done. Some DBMSs
provide automated replication features, and for those DBMSs without such
features, third-party tools are available.

Some DBMSs provide automated replication features.

There are two basic technologies for replicating data among databases:
• Snapshot replication
• Symmetric replication

Snapshot replication produces a copy of database tables on a target system
based on a query of the source database. At the time a snapshot is initially
taken, the specified query (maybe an entire table) is run, and the resulting
data is loaded into the target snapshot table. Furthermore, each replica
database should contain accurate, up-to-date information. When multiple
replicas exist, the DBA must facilitate the update of all replicated copies at
the same time. If replicas are updated on different schedules, it becomes
burdensome to keep track of the state of each replica.

The advantage of snapshot replication is its ease of implementation.
However, snapshot replicas can become out-of-date very rapidly, and
refreshing the replica can cause administrative and performance problems.

Symmetric replication is a more robust implementation of replication

because it keeps the replicas up-to-date. Symmetric replication can be set up
to ensure that no transaction is fully committed until all the modifications
have been committed locally for all replicas. Alternatively, it can replicate
asynchronously, allowing each database node to run at full speed without
holding up local updates because of remote database speed issues. The
updates are applied later, after the COMMIT is taken for the master database.

The biggest advantage of symmetric replication over snapshot replication
is the automatic synchronization of modifications from the master database to
the replicas. However, symmetric replication is more difficult to set up and
administer, high transaction volumes can cause performance degradation, and
a network failure can cause the database to fail because modifications cannot
be synchronized.

Replication is not a substitute for backup and recovery, but it can be
helpful in some situations. With snapshot replication, it may be possible to
use the snapshot replicas as a point in time before a failure. However,
symmetric replication has the same problem as a standby database—the
problems would be propagated to the replica. Both types of replication may
be useful for a disaster recovery.

Replication is not a substitute for backup and recovery.

Disk Mirroring
Mirroring disk devices can add an extra level of protection to databases. Disk
mirroring occurs by allocating a secondary device that will contain a
duplicate copy of the primary device. All data modifications made to the
primary device are also made to the mirrored device. If the primary device
fails, the mirrored device can be used without causing a system outage. Of
course, disk mirroring consumes double the amount of disk storage for the
same amount of data.

Disk mirroring differs from replication in that the data duplication occurs
at the device level instead of the database level.

Disk mirroring can remove the need to recover from a media
failure.

Once again, disk mirroring does not replace the need for backup and
recovery, because the mirrored data will be the same as the data that is

experiencing the problem. Disk mirroring, though, can remove the need to
recover from a media failure. Instead of recovering database objects on the
failing disk, the DBA can switch to the mirrored data.

Summary
An in-depth backup and recovery plan for every database object is an integral
part of a database implementation plan. It is the duty of the DBA to ensure
that every piece of critical data in the database is protected and can be
recovered if a problem arises. Furthermore, the DBA must be able to
minimize the amount of downtime associated with recovering from database
integrity problems and failures. The longer the database is down, the larger
the financial impact will be to the business.

Review
1. What is the difference between a logical backup and an image copy

backup?
2. Why is a quiesce point important for a point-in-time recovery?
3. Why can’t standby databases, replication, or disk mirroring be used to

replace traditional backup and recovery?
4. What factors determine whether a full or incremental image copy

backup should be taken for a database object?
5. Name and describe the three types of database failures that may require

recovery.
6. Describe two ways to recover an index.
7. What is meant by the term log archival, and why is it important to

assure recoverability?
8. Name four factors that impact the duration of a recovery.
9. The DBA should grade each database object in terms of its

_______________ and ____________ to determine how frequently it
should be backed up.

10. Name the different types of recovery and discuss the factors that
influence when each type of recovery should be performed.

Suggested Reading

de Guise, Preston. Enterprise Systems Backup and Recovery: A Corporate
Insurance Policy. Boca Raton, FL: Auerbach/CRC Press (2009). ISBN
978-1-4200-7639-4.

Freeman, Robert, and Matthew Hart. Oracle RMAN 11g Backup and
Recovery. Berkeley, CA: Oracle Press/McGraw-Hill (2010). ISBN 978-0-
07-162860-0.

Gu, Lijun, et al. DB2 UDB Backup and Recovery with ESS Copy Services.
San Jose, CA: IBM (2002). ISBN 0-7384-2514-1.

McBath, Frank. SQL Server Backup and Recovery: Tools and Techniques.
Upper Saddle River, NJ: Prentice Hall (2001). ISBN 978-0-13-062298-3.

Preston, W. Curtis. Backup & Recovery. Sebastopol, CA: O’Reilly (2007).
ISBN 978-0-596-10246-3.

Velpuri, Rama. Oracle Backup and Recovery Handbook. Berkeley, CA:
Osborne/McGraw-Hill (1995). ISBN 0-07-882323-4.

17. Disaster Planning

A disaster recovery plan is like insurance—you’re glad you have it, but you
hope you never need it. With automobile insurance, you pay a regular fee so
that you are covered if you have an accident; in other words, it’s an
investment. A disaster recovery plan is similar in that you invest in it by
designating a disaster recovery site, shipping backup copies of the data off-
site, preparing recovery jobs, and practicing the recovery procedures.

Invest in a disaster recovery plan.

The Need for Planning
Disaster recovery planning, also called contingency planning, is the process
of preparing your organization’s assets and operations in case of a disaster.
But what is a disaster? SunGard Recovery Services (1995) provides a good
definition of disaster: any unplanned, extended loss of critical business
applications due to lack of computer processing capabilities for more than a
48-hour period. Your own definition may be more or less stringent with
regard to the time frame, but the basic definition is a sound one.

The DB2 Developer’s Guide (Mullins 2012) defines a disaster as “any
event that has a small chance of transpiring, a high level of uncertainty, and a
potentially devastating outcome.” This, too, is a workable definition for a
disaster.

Most of us have witnessed a disaster, at least on television. Floods,
earthquakes, hurricanes, and fires are some examples of natural disasters.
Disasters can be man-made, such as electrical failure, bursting pipes, and
war. Many of us have had our basements flooded or been in an automobile
accident. A disaster does not have to have global consequences in order for it
to be a disaster for you.

You must recognize potential disasters and understand their consequences.
How these disasters might impact your business is the sole purpose of
disaster recovery planning. If your business is on a coast, the likelihood of
hurricanes and floods increases. If your business is located in the Midwest,
you have a better chance of experiencing tornadoes. If your business is
located in the North, blizzards and severe cold weather will pose more of a

risk. California businesses are more apt to worry about earthquakes.
Even though disasters are unpredictable and unlikely, every organization

should have a comprehensive and tested plan to cope with a disaster situation.
For example, consider some recent disaster situations. In 2005, Hurricane
Katrina impacted the southern Gulf region of the United States. It is the
costliest natural disaster, and one of the five deadliest hurricanes, in the
history of the United States. Hurricane Katrina damaged or destroyed many
businesses, including oil platforms, refineries, and a large portion of the
forestry industry in Mississippi. Furthermore, hundreds of thousands of local
residents were left unemployed. And, of course, we cannot forget the 9/11
terrorist attacks on the World Trade Center in 2001 which had severe
consequences for any business with a data center in one of the buildings.
Furthermore, many disasters are not location specific. Sabotage, computer
viruses, vandalism, air conditioning or heating failures, and health or
environmental hazards can happen anywhere on the planet.

Just because your organization has not yet experienced a disaster, or is not
in a high-risk area, does not absolve you from the need for contingency
planning—especially for your databases. In the wake of a disaster, companies
with a disaster plan will be able to service their customers again much more
quickly than those companies without one. Indeed, a company facing a
disaster without a disaster recovery plan may never resume business.

Database disaster recovery must be an integral component of your overall
business recovery plan. A disaster recovery plan must be global in scope. It
must handle business issues such as alternate locations for conducting
business, communication methods to inform employees of new locations and
procedures, and publicity measures to inform customers how to transact
business with the company post disaster. It must restore the IT infrastructure.
Finally, and most important to our discussion, a component of that plan must
be for the recovery of database and DBMS operations.

Database disaster recovery must be an integral component of
your overall business recovery plan.

However, to what extent should a company take disaster planning? Before
your company can ascertain the appropriate level of recoverability, you must
analyze the risks and determine the objectives.

Risk and Recovery
The goal of a disaster recovery plan is to minimize the costs resulting from
losses of, or damages to, the resources or capabilities of your IT facilities.
The success of any database disaster recovery plan depends a great deal on
being able to determine the risks associated with data loss. What is the impact
to your business if the data is lost?

Evaluate each database object for disaster recovery.

As with local database recovery, the DBA must perform an evaluation of
each database object for disaster recovery. Recall from Chapter 16 (Figure
16.2) the grid we used to evaluate database objects for criticality and
volatility. Although the emphasis in disaster recovery is more on criticality
than volatility, the dynamism of the data still plays a role. Although it is quite
likely that each database object will be graded similarly for disaster recovery
purposes, it is still a good practice to reevaluate each database object in terms
of the consequences of its complete loss in a disaster.

When analyzing the risk associated with losing data, keep in mind the
different types of risk. With regard to data, there are three categories of risk
—financial loss, business service interruption, and legal responsibilities—and
varying degrees of risk within each category. The unavailability of each
application has a different impact on the company’s bottom line. Consider a
brokerage firm, for example. Having the stock-trading system unavailable
would cause a greater loss than having the employee payroll application
unavailable, not only because current business operations could not be
conducted in a timely manner, but because customers would stop trusting the
brokerage with future business. And if a major stock exchange such as NYSE
or NASDAQ were to incur an outage, the impact would be even greater—
affecting the global economy.

Business needs must dictate your priorities.

As you create your database disaster recovery plan, remember that
business needs must dictate your priorities, and not technical needs and
issues. Consider separating your systems into critical and noncritical
applications based on business needs. The task of defining criticality can
become a political nightmare if it is left to each business unit. The decision to
rank one system as more critical than another must be made at a high level—

with the overall business in mind—and not individually by each business
unit.

Rank your applications into groups to determine which
applications have the biggest impact if they are down.

It is a good idea to rank your applications into the following groups to
determine which applications have the biggest impact if they are not
available:

• Very critical applications. The most critical applications in your
organization will require current data upon recovery. These applications
are the most difficult to develop a disaster plan for because more steps
are required for off-site backup and recovery. Additionally, the most
critical applications in your shop will be the first ones that must be
made operational at the recovery site. Try to limit the number of
applications designated as very critical; any more than a half-dozen or
so will be unmanageable in a disaster situation.

• Business-critical applications. Business-critical applications are
important to your organization and should be the next group to recover
after the very critical applications. A business-critical application
frequently requires current data, but it may not be available at the
remote site within the first couple of days. For example, consider the
applications for a telephone service provider. The system that delivers
phone service would be a very critical application; customer billing
would be a business-critical application.

• Critical applications. A critical application differentiates itself from a
business-critical application by its immediacy or data currency needs.
This group of applications, though important, need not be available
immediately. However, if the disaster persists for a week or longer, the
business requires the application. Critical applications should not be
recovered until the very critical and business-critical applications are
up. The requirements of these applications vary from up-to-date to
possibly day-old or week-old data.

• Required applications. Required applications are not critical but must
be backed up such that they can be recovered at the remote site if
needed. Data from the last available backup is usually sufficient to
support such applications.

• Noncritical applications. Noncritical applications need not be
supported in the event of a disaster. Very few applications fall into this
category—if the application is not critical, why was it developed in the
first place?

The criticality of an application must be based on the overall importance of
the application to the organization. Factors that impact criticality include the
financial cost of the application being unavailable, the legal responsibilities
your organization has for each application and its data, and the cost of losing
customers and future business due to a delay in bringing the application back
online.

As a DBA, you must create the disaster recovery plans with application
criticality in mind. In this way, the most critical data can be recovered and
made available immediately in the event your company experiences a
disaster. Based on these application rankings, an appropriate backup strategy
can be deployed for each database object supporting your database
applications.

General Disaster Recovery Guidelines
During a disaster recovery, your goals are to minimize downtime and loss of
data. Whether you achieve these goals is primarily determined by the
preparations you have made.

Minimize downtime and loss of data.

Planning for disaster recovery is an enterprise-wide task. Remember that
DBMS and database recovery is just one component of an overall disaster
recovery plan. When your organization creates a disaster recovery plan, it
needs to look at all of its business functions and operational activities—
customer interfaces, phone centers, networks, applications, and every
company function that can be impacted by a disaster. However, this chapter
addresses only DBMS- and database-related recovery issues. For a
comprehensive discussion of disaster recovery, consult the books listed at the
end of the chapter.

The Remote Site
When a disaster strikes, you will need an off-site location where you can set
up your company’s operations. The site must be located far enough away

from your primary site so that a natural disaster will not disrupt both sites.
Sometimes the difference between success and failure is simple common
sense. For example, your remote location should not be on the same power
grid, in the same floodplain, or along the same earthquake fault line as your
primary site. Your company may even select several sites for different
corporate functions.

If your company is large enough to have more than one data center, you
may be able to use each site as a backup for one of the others. For example, if
your Houston data center is destroyed, you can move operations to your
Pittsburgh data center.

Other companies set up a specific remote location where they send their
data on a regular basis. In the event of a disaster, they simply connect to the
backup system. This is an expensive alternative, but necessary for some
businesses.

Yet another approach is to sign up with a disaster recovery service
provider. The service provider maintains the equipment necessary for you to
recover your operations on its computers in the event of a disaster. In this
case, you are responsible for ensuring that the proper applications and data
are available to be installed at the service provider’s location if a disaster
strikes your site.

Storage of backup materials is another issue. Ideally, they would be stored
for safekeeping at the recovery site, but if this is not possible, another off-site
storage location should be designated. If a disaster occurs, you will need to
provide a mechanism to move the recovery materials from the storage
location to the recovery location.

Backup materials must be stored for safekeeping.

The Written Plan
A written plan is the foundation of any good disaster recovery plan. The plan
should be distributed to all key personnel in the disaster recovery scenario.
Each participant should keep a copy of the plan at home as well as at the
office. A copy of the disaster plan should be kept at the recovery site as well.

Perhaps the biggest challenge to implementing a successful disaster
recovery plan is keeping the plan current and relevant. Maintain the plan as a
part of your everyday activities. Be sure that your DBA procedures

automatically include disaster recovery plan updates. For example, whenever
you create a new database object, be sure to incorporate that object into the
disaster recovery plan. Likewise, whenever a database object is dropped,
remove it from the disaster recovery plan. Furthermore, whenever you add a
new application to the system, be sure to evaluate the criticality of the
application and include it in the disaster recovery plan.

Simply stated, the disaster recovery plan is a living document that will
change as your systems, requirements, and usage change. Whenever the plan
changes, be sure to destroy all of the outdated copies of the plan and replace
them with the new plan.

The disaster recovery plan is a living document.

Writing out the specific procedures and policies to follow for an off-site
disaster recovery has several benefits:

• It causes you to formulate the explicit actions to be taken in the event
of a disaster.

• It makes you order these actions into specific sequential steps.
• It forces you to be specific about the tools to be used and the exact

backup information required.
• It documents the location where all the required information is stored

and how it is to be made available at the recovery site.
• It provides a blueprint for others to follow, in case those who are most

familiar with the plan are not available.
Another benefit of creating a detailed disaster recovery plan is that it will

highlight areas that need to be improved within your backup procedures and
organization.

Be sure to include all of the interested parties in the disaster recovery
planning process. These include not just DBAs and systems programmers,
but also end users, system operators, business managers, and perhaps even
your customers. Your disaster recovery plan should include the following
sections:

• Off-site location. List the address of the remote location(s), along with
the phone number, fax number, and address of the contact at each
remote site. Additional useful details could include a list of nearby

hotels, options for travel to the recovery site, details of how expenses
will be handled, and other pertinent information.

• Personnel. List the name and contact information for each member of
the recovery team. Be sure to include the work, home, and mobile
phone numbers for each team member.

• Authorizations. List the security authorizations necessary for the
recovery operations and the personnel to whom they’ve been granted.

• Recovery procedures and scripts for all system software, applications,
and data. Be sure to provide the complete step-by-step procedures for
the recovery of each piece of system software, every application, and
every database object, and the order in which they should be restored.
Part of this section should be a listing of all the installation tapes for
system software as well as the tapes for all maintenance that has been
applied. Options for database recovery procedures will be covered later
in this chapter.

• Reports. List the reports you will need at the recovery site to ensure a
complete recovery. The reports should list each backup tape, its
contents, when it was produced, when it was sent from the primary
location, and when it arrived at the remote site. As an additional
component, include a description of the naming conventions for the
remote site backup files.

The disaster recovery plan should include instructions for a complete off-
site disaster recovery. However, before you commit your disaster recovery
procedures to paper, you need to make a number of decisions. The first
decision to be made is to prioritize your disaster recovery goals. Do you want
to get the system up as quickly as possible? Or is it more important to lose as
little data as possible? Or perhaps your most important goal is to avoid
reprocessing data as much as possible. The disaster recovery plan should be
written in accordance with your specific recovery goals.

The disaster recovery plan should include instructions for a
complete off-site disaster recovery.

Testing Your Disaster Plans

Once the disaster recovery plan is written, be sure to schedule regular tests. It
is a good practice to test your disaster recovery plan at the remote recovery

site at least once a year. You should also consider testing the plan after the
following events:

Test your disaster recovery plan at the remote recovery site at
least once a year.

• Significant change in daily operations
• Change in system hardware configuration
• Upgrade of the DBMS (or related system software)
• Loss (or hire) of personnel responsible for the recovery
• Move of the primary data center to a new location
• Change in daily backup procedures
• Addition of major new applications or significant upgrades of existing

critical applications
• Major increase in the amount of data or the number of daily

transactions
Use a disaster recovery test to discover weaknesses and errors in the plan.

After the test, be sure to update the disaster recovery plan to address the
problems. A valid disaster recovery test need not end in a successful recovery
—although that is the desired result. A disaster recovery test that reveals
weaknesses in the plan serves a useful purpose.

Another consideration for scheduling regular disaster recovery tests is to
assure the readiness of your personnel. The best way to prepare for a disaster
is to practice disaster recovery. The process of actually implementing the plan
forces you to confront the many messy details that need to be addressed
during the recovery process. Testing can help to identify issues such as those
described in the sidebar “A Lengthy Outage.” Testing also helps you to
become familiar with the tools and procedures you will use during an actual
disaster recovery.

Regular disaster recovery tests assure the readiness of your
personnel.

Actually, a scheduled test of the disaster recovery plan is probably a poor
idea. A disaster recovery test should work more like a pop quiz that doesn’t
give you the opportunity to prepare. One day your boss should come to work

and announce that the building was just destroyed. Who should be called? Is
everyone available? How can you get the right people to the remote site for
recovery? Can you get your hands on the disaster recovery plan?

A Lengthy Outage
In 2010 Nashville experienced a 150-year record flood that inundated most
of the downtown area and caused approximately $1.5 billion worth of
damage.1 Such an occurrence is rare by definition, and experiencing it
firsthand caused some “issues.”

An IT department located in the area had performed disaster planning
and testing in the past, but never full disaster planning. So when this
actual disaster occurred, they were well prepared for a disaster lasting a
few hours.

No data was lost. Systems stayed online. But as the hours grew
longer, they realized that they’d have to refuel their generators. Uh-oh.
They had never done that before. And without power in much of the
building, the IT workers had to lug five-gallon cans of diesel fuel up
four floors every four hours . . . for a couple of weeks.

Perhaps gym memberships for IT personnel should be a component of
your disaster recovery planning and testing

The goals of recovery practice are to discover problems with the recovery
plan, to provide on-the-job training for key personnel to become familiar with
the procedures and tools to be used for disaster recovery, and to raise
awareness of the organization’s level of readiness to confront an actual
disaster.

Of course, you might decide that it is impractical to conduct disaster
recovery testing without advance warning. This is especially true if out-of-
town travel is involved. However, to keep the test as close to the real thing as
possible, do not use the advance warning as an opportunity to cheat (perhaps
by sending additional materials to the off-site location that would not have
been there otherwise).

The disaster recovery test should include all of the components of the
written plan. This will include setting up the operating systems, installing the
DBMS, recovering applications and data, and testing the recovered

environment for success or failure.
As mentioned earlier, you should periodically review the contents of your

off-site tapes to ensure that they contain the correct backup data, and not just
during a test. At the same time, you should review all additional materials
sent off-site to assure that everything that is supposed to be there actually is
there.

Personnel
Choosing the right team to design and carry out your disaster recovery plan is
essential to the success of that plan. From the perspective of the DBMS, the
disaster recovery team must be capable of installing and configuring the
DBMS system software, assuring the integration of the DBMS with other
system software components, recovering individual databases, testing the
integrity of the databases, recovering related data that may not be stored in a
database, installing and configuring application software, testing the
applications, and taking care of the numerous details along the way. In other
words, the team must be multiskilled and very adaptable. Moreover, the team
members must possess a combination of IT skills and business skills.

Choosing the right team is essential.

Once the team is assembled, it is imperative that each member be trained to
understand the ramifications of disaster recovery. This also means that the
DBAs, programmers, and SAs on the team need to understand the business
aspect of disaster recovery, and the business users need to understand the IT
dimension of disaster recovery—at least at a very high level.

The entire team should meet regularly for cross training and perform a
disaster recovery test at least annually. Remember that team members must
be granted the proper authorizations at the remote site to perform their part of
the disaster recovery. Nothing can stop a disaster recovery faster than lack of
authority to perform a crucial task—especially if no one is around with the
authority to grant authorizations, which could be the case during a disaster.

Backing Up the Database for Disaster Recovery
Your disaster recovery procedures will be determined in large part by the
method you use to back up your data. If you rely on disk volume backups,
your recovery will be one volume at a time. If you create image copies, you

will probably use the DBMS’s RECOVER utility or a third-party recovery
tool. Of course, you might combine several different techniques for off-site
backups, depending on the sensitivity and criticality of the data. Let’s look at
several different backup strategies for disaster recovery.

Tape Backups
A valid strategy for disaster recovery backups is to use the same techniques
deployed to create local backup files. Create multiple output files from the
image copy backup process, and send tapes (or optical discs) of at least one
of the copies to the remote disaster recovery site. Be sure to send the backup
files to the disaster site as soon as possible after their creation. The sooner the
backup media are shipped off-site, the less likely it is that they can be
destroyed in a disaster.

You can use the same techniques deployed to create local
backup files.

For disaster recovery purposes, you usually don’t need to back up indexes.
They can always be recreated from the data after it is recovered at the disaster
recovery site.

Be sure to produce a daily report of all the backup files that were sent to
the remote site. Keep a copy of the report at the local site and ship one to the
remote site as well. The report should detail all of the information required to
perform a recovery, including filename, type of backup (full or incremental),
how the image copy was created (database utility or file system command),
date and time of the backup, date and time it was shipped off-site, and the
date and time it was received off-site (if possible).

Additionally, you will need to back up the database logs and ship them to
the remote site. Failure to ship the log files to the remote site means that you
will be able to recover each database object only to the point when the last
backup was taken. Refer to Figure 17.1. In this case, we have backed up the
database object and sent a copy to the remote site. The copy may be sent to
the remote site by packaging it up and physically shipping it to that location,
or it may be shipped over a broadband connection to the remote location.
Subsequent modifications occur to the database object and then a disaster
strikes. Without a backup of the database log for the period between the
image copy backup and the disaster, all of those changes will be lost. The

amount of data lost in an off-site recovery depends on the time-liness of the
backup of database log files.

Figure 17.1. The database log and disasters

Back up the database logs and ship them to the remote site.

Recovery at the remote site is performed for each database object one by
one. Indexes are rebuilt or recreated after the data is recovered. After
recovery, the DBA should use whatever tools and utilities are available to
identify and resolve any data integrity problems and constraint violations.

Additional preparation may be required, depending on the DBMS and
operating system(s) in use. For example, if the DBMS keeps a record of the
image copy backups, the system catalog will need to be recovered to a point
where all of the off-site backups are listed in the system catalog—or some of
the off-site image copy backups may not be able to be applied.

Of course, the system catalog will need to be recovered at the remote site
regardless of the DBMS in order to recover any database objects at all. Other
DBMS-related files may need to be recovered after the DBMS is installed as
well.

Keep at least three backup tapes at your remote site for each database
object. This provides a cushion in case one or more of the image copy tapes
is damaged. The extra tapes will allow you to fall back to an older backup in
the event of a tape failure. Furthermore, if you have the database logs, you
may be able to recover the database object completely, even if the recovery
does take longer.

Finally, when using this approach, be sure to consult the documentation
provided by the DBMS vendor for the particulars of remote site recovery for
that DBMS.

Consult the DBMS documentation for the particulars of
remote site recovery.

Storage Management Backups
Another approach to disaster recovery backups is to use storage management
software to make point-in-time copies of entire disk packs. Such an approach
greatly simplifies disaster recovery preparation and execution, but this
strategy can require a significant system outage to accomplish properly. To
perform a backup using storage management software, follow these steps:

Use storage management software to make point-in-time
copies of entire disk packs.

1. Stop the DBMS to create a system-wide point of stability for recovery.
2. Copy all of the database objects, using storage management software to

dump complete disk volumes to tape.
3. When all of the disk volumes containing database objects have been

successfully copied, restart the DBMS.
4. Copy the backup tapes and send them to the remote site.

Recovery at the remote site is then performed one complete disk volume at
a time using the storage management software. The biggest problem with this
approach is the requirement to stop the DBMS. Most organizations cannot
tolerate such an outage due to e-business or global 24/7 requirements.

As an alternative to stopping the entire DBMS, data could be copied
application by application. Using such an approach would require a regularly
scheduled job to

1. Stop the application
2. Stop or quiesce the associated database objects
3. Back up the database objects with the storage management software
4. Restart the application and database objects after the backup is

complete
Of course, such a compromise complicates the disaster planning and

remote site recovery. The files containing the data for the application are not
likely to exist on a single disk drive. Thus, identifying the correct disks and
files to back up can be more difficult.

In general, stopping the DBMS and using storage management software
for disaster recovery backups is effective for organizations that are willing to
trade off around-the-clock availability for ease of disaster recovery
preparation.

Other Approaches
Although the first two approaches are the most commonly implemented
disaster recovery strategies, many other approaches and options exist.
Deploying a wide-area network (WAN) to assist in the delivery of backups to
the remote site is a good tactic to consider. If your primary site can be
connected to the remote site using a WAN connection, you can direct your
off-site backups to an electronic tape vault at the remote location. Of course,
any direct connection between the primary site and the remote site increases
the chances of a disaster at one location impacting the other location—
although a network connection is probably a very small risk if implemented
properly.

A WAN can be used to deliver backups to the remote site.

Another approach to disaster recovery preparation is the remote mirroring
of data to the alternate site over the network. This approach minimizes the
amount of preparation required for recovery at the remote site because the
data is mirrored there. For this strategy to be effective, all changes at the
primary site must be mirrored at the remote site, including regular database
changes (INSERTs, UPDATEs, and DELETEs), database utility operations
(LOAD and REORG), and local database recovery operations.

The standby database option for Oracle databases can be used as a disaster

recovery approach. As long as the standby database is located at a different
physical site from the primary database, the standby database can be a good
choice for implementing a disaster recovery plan for an Oracle instance.

Some Guidelines
In order for your recovery plan to be effective, you need to adhere to the
written plan. Follow all of the routine precautionary measures documented in
the plan to assure the recoverability of your critical data in the event of a
disaster. Image copy backups or disk backups need to be made as directed
and sent to the remote site as quickly as possible. Reports need to be printed
and sent off-site. Missing any little detail can render a disaster recovery plan
ineffective.

Adhere to the written plan.

When testing the disaster recovery plan, make sure that each team member
follows the written instructions precisely. Of course, it is quite likely that
things will come up during the tests that were missed or undocumented in the
plan. Be sure to capture all of these events and update the written plan. Keep
in mind that during an actual disaster you may need to rely on less
experienced people, or perhaps consultants and others who are not regular
employees. The more foolproof the written plan, the better the chance for a
successful disaster recovery.

The following are some quick tips and hints to keep in mind as you
develop your database disaster recovery plans.
Order of Recovery

Make sure the operating system and DBMS are installed at the correct
version and maintenance level before proceeding with any database object
recovery at the disaster site. Be sure to follow rigorously the recovery steps
as documented in the written plan.
Data Latency

How old is the data? If you take nightly backup tapes to another location,
your data could be up to 24 hours old. Sometimes having data that old is
unacceptable, and sending backup media to off-site storage more than once a
day is too expensive. One solution is to get the data to another location—via
log shipping or replication, for example.

Some data may not be fully recoverable.

Database logs at the time of the disaster may not be available to apply at
the off-site recovery location. Some data may not be fully recoverable, and
there is really no way around this. The more quickly that backup copies of
database objects and database logs are sent off-site, the better the disaster
recovery will be in terms of data currency.
Remember Other Vital Data

Creating off-site backups for database objects may not be sufficient to ensure
a complete disaster recovery plan for each application. Be sure to back up
related data and send it off-site as well. Additional data and files to consider
backing up for the remote site include

• DDL libraries for database objects, recovery and test scripts
• Application program source and executable files
• Stored procedure program source and executable files
• User-defined function source and executable files
• Libraries and passwords for critical third-party DBA tools
• Related data files used by the application

Beware of Compression and Encryption

If your site uses tape-compression software, be sure that the remote recovery
site uses the same tape-compression software. If it does not, the image copy
backups will not be readable at the remote site. Turn off compression at the
primary site for the disaster recovery backups if the remote site cannot read
compressed tape files.

Be sure that the remote recovery site uses the same tape-
compression software.

Similarly, if the backup copies are encrypted, be sure that the decryption
key is available at the remote site, otherwise the backup copies will not be
able to be read, rendering them useless.
Post-Recovery Image Copies

An essential part of the disaster recovery process is to create an image copy
backup for each database object after it has been recovered at the remote site.

Doing this enables easier recoverability of the data should an error occur after
processing begins at the remote site. Without the new image copy backups,
the disaster recovery procedure would have to be performed again if an error
occurs after remote site processing begins.

Disaster Prevention
DBAs and IT professionals, in general, create procedures and enforce
policies. Many of these procedures and policies, such as a disaster recovery
plan, are geared toward dealing with situations once they occur. Having such
procedures and policies is wise. However, isn’t it just as wise to establish
procedures and policies to prevent problems in the first place? Although you
cannot prevent an earthquake or flood, you can implement policies to help
prevent man-made disasters. For example, use surge protectors to prevent
power surges from destroying computing equipment, and have backup
generators on standby in case of electrical outages.

Establish procedures and policies to prevent problems in the
first place.

Another good idea is to document and disseminate procedures to end users,
teaching them how to deal with error messages. You cannot expect every user
to understand the impact of responding to every error message. Depending on
the application, the wrong user response to an error message can result in
data loss. Guidelines can help avoid errors—and man-made disasters.

Disaster and Contingency Planning Web Sites
There are a number of useful sites on the Web that cover disaster and
contingency planning in detail. The following sites can afford you a broader
view of disaster recovery planning than the database-focused approach we
have discussed in this chapter:

• www.thebci.org
• www.globalcontinuity.com
• www.sungard.com
• www.disasterrecovery.com/

Summary

http://www.thebci.org
http://www.globalcontinuity.com
http://www.sungard.com
http://www.disasterrecovery.com/

A key part of a DBA’s job is developing a plan to mitigate damage in the
event of a disaster. The primary goal is to bring the applications back online
with as little data loss and interruption as possible. Many components are
required to create a viable disaster recovery plan, but it is imperative that a
comprehensive written plan be created and maintained. Although the DBA’s
scope of responsibility is primarily assuring database availability and data
integrity, the DBA must be part of a multidiscipline team for disaster
recovery. Regular planning, testing, and revising are crucial to the creation of
a usable disaster recovery plan.

The DBA must be part of a multidiscipline team for disaster
recovery.

Review
1. What is a disaster?
2. Describe two different approaches to database disaster backup and

recovery.
3. What factors should be considered when determining the criticality of a

database object for disaster recovery planning?
4. What role does the database log play in disaster recovery?
5. What are the considerations for choosing a viable disaster recovery

site?
6. Discuss the capabilities disaster recovery team members must possess

to assure a viable recovery.
7. Once the disaster recovery plan is written it should not be changed: true

or false?
8. Why is it a good idea to rank your applications and database objects for

disaster recovery planning purposes?
9. With regard to data, what are the three categories of risk?

10. It is a good idea to perform a regularly planned disaster recovery test.
However, what other events might cause you to test your disaster
recovery plan more frequently?

Suggested Reading

Bell, Judy Kay. Disaster Survival Planning: A Practical Guide for
Businesses. Port Hueneme, CA: Disaster Survival Planning, Inc. (1991).
ISBN 0-9630580-2-9.

Bruni, Paulo, et al. Disaster Recovery with DB2 UDB for z/OS. Armonk,
NY: IBM Redbook (2004). ISBN 0-7384-9092-X.

Chantico Publishing Company. Disaster Recovery Handbook. Blue Ridge
Summit, PA: Tab Professional & Reference Books (1991). ISBN 0-8306-
7663-5.

Chen, Whei-Jen, et al. High Availability and Disaster Recovery Options for
DB2 on Linux, UNIX, and Windows. Armonk, NY: IBM Redbook (2009).
ISBN 0-7384-3138-9.

Mullins, Craig S. DB2 Developer’s Guide. 6th ed. Boston, MA: IBM Press
(2012). ISBN 978-0-13-283642-5.

Photopoulos, Constantine. Managing Catastrophic Loss of Sensitive Data.
Burlington, MA: Syngress (2008). ISBN 978-1-59749-239-3.

SunGard Recovery Services, Inc. Action Plan for Disaster (1995).
Toigo, Jon William. Disaster Recovery Planning. 2nd ed. Upper Saddle

River, NJ: Prentice Hall (2000). ISBN 0-13-084506-X.

18. Data and Storage Management

All DBMSs rely on data files to store data, and these files, or data sets, reside
on storage media, or devices. Storage management is thus a key part of the
database operations required of a DBA. Typically, storage means fixed disk
drives or disk subsystems, but storage can also mean nonvolatile storage,
solid-state devices, removable storage, optical storage, or tape devices.

Since the DBA deals with database management systems that store data, a
good part of the DBA’s job will involve planning for the actual storage of
database data. In order to perform this part of the job, the DBA must be
conversant in the actual physical mechanisms available for data storage.
Furthermore, the DBA must understand the ways in which the abstract
concept of data as embodied by the database interacts with the physical
storage of data on persistent storage media.

Storage Management Basics
As a rule, DBMS vendors do not certify or explicitly support any specific
third-party storage products. Instead, the assumption is made that some
underlying storage technology is available and will be reliable. To determine
what will work best with each DBMS, the DBA must evaluate the many
products, technologies, and vendors that provide storage solutions.1 Although
most storage technologies work with most DBMS products, some storage
technologies are better suited than others in terms of performance, reliability,
usability, and cost.

Some storage technologies are better suited than others.

The predominant storage technology used for data management is the disk
drive. Modern disk drives are more reliable than in years past, with an ever-
increasing mean time between failures (MTBF). It is not unheard of for disk
drives to achieve in excess of 100,000 hours of availability before failing.
However, the mechanical nature of disk drives renders them more vulnerable
to failure than other computer components. As the number of disk drives in a
system increases, the vulnerability of the system increases. It is not
uncommon for a single organization to rely on hundreds or thousands of disk

drives to support its database applications. Furthermore, the ways in which
databases use disk drives can make storage management unpredictable, as the
sidebar “Modern DBMS Disk Usage” points out. Certain modern storage
solutions, such as RAID, can be used to address some of the MTBF
problems.

However, for mission-critical applications data integrity can be more
important than data availability. If the storage media is unreliable and a
failure causes data corruption, the lost data can be more of a problem than the
downtime. It is imperative, therefore, that database storage solutions protect
the data at all costs.

Modern DBMS Disk Usage
DBAs must be prepared for spikes in disk usage. The inherent
functionality of modern DBMSs makes them much more likely than their
forebears to cause disk usage spikes. Some DBMSs allow the temporary
file sizes to expand and contract automatically. Depending on the type and
nature of database operations in process, this fluctuation can cause disk
usage spikes. Additionally, many online utility operations use shadow
objects. Therefore, if a tablespace normally occupies 10GB of disk space,
an online reorg would require 20GB—10GB for the normal object and
another 10GB for the shadow object.

Database performance is I/O dependent—the faster the DBMS can
complete an I/O operation, the faster the database application will run.
Remember that data retrieval from storage media takes much longer to
complete than data retrieval from cache or memory. For this reason, some
modern storage systems provide their own caching mechanism to prestage
data in memory—thereby reducing the wait time associated with traditional
disk I/O operations.

Database performance is I/O dependent.

Indeed, storage is becoming more central to business operations.
Heterogeneous, multiterabyte database sites are not uncommon these days.
The amount of data being stored is greater than ever before, and the data is
being stored for longer durations. Lou Gerstner,2 former CEO of IBM
Corporation, summed up the phenomenal rate of data growth: “Inside IBM

we talk about ten times more connected people, a hundred times more
network speed, a thousand times more devices, and a million times more
data.” Mr. Gerstner is not the only one to note this phenomenal growth:

• According to analysts at IDC Corporation, the amount of digital
information created in the world in 2010 exceeded a zettabyte (1 trillion
gigabytes) for the first time.3 IDC went on to predict that the amount of
digital information created in 2011 would surpass 1.8 zettabytes.

• A 2011 study4 offers additional insight into the rapid growth rate of
data storage. According to the study, almost all shops reported data
growth over the previous year, and one-third reported the amount of
data within their enterprises grew by 25 percent or more during the
prior year. Additionally, about 10 percent had data stores in the
petabyte range. Furthermore, 27 percent of those surveyed reported
environments exceeding 100TB, whereas only 20 percent had reported
that size in the previous survey. The net result is that organizations are
storing more and more data.

• Winter Corporation publishes a regular survey of the largest and most
heavily used databases in operation, called the TopTen Program.5 The
most recent report highlights a 23TB transaction processing database
hosted on the mainframe and a 100TB data warehouse hosted on
UNIX.

• A now somewhat dated research note6 from the Giga Research Group
tackled the question “How much data is on the planet?” That research
estimated the amount of data to be approximately 201,000TB, or about
197PB. Of course, this is just an estimate that Giga believes to be
accurate within an order of magnitude, that is, a factor of ten.

Indeed, talking about terabyte- and petabyte-size databases and data
warehouses is becoming common these days. Table 18.1 outlines the
measurements used when discussing data storage size. Keep in mind, though,
that the figures in this chart are rough guides. Some people speak about disk
storage in terms of “powers of ten” instead of “powers of two”—in other
words, they refer to a kilobyte as 1,000 bytes instead of 1,024 bytes. However
you choose to measure it, though, disk drive capacity is increasing very
rapidly.

Table 18.1. Data Storage and Size Terminology

The growth in storage capacity further increases the complexity of
managing data and databases. Many organizations are implementing new
storage technologies, such as network-attached storage (NAS) and storage
area networks (SANs), to help manage the ever-increasing amount of storage
required for modern applications. Managing storage in today’s dynamic
environment is a challenging DBA task.

Managing storage in today’s dynamic environment is a
challenging task.

Goals to consider while building a storage system include
• Preventing loss of data—the number-one priority
• Assuring that adequate capacity is available and that the storage

solution can easily scale as storage needs grow
• Selecting a solution that provides fast access to data with minimal or no

interruptions to service
• Choosing storage solutions that are fault tolerant and that can be

repaired quickly when a failure occurs
• Selecting a storage solution that allows you to add or replace disks

without an outage
• Combining all of the above into a cost-effective storage solution your

company can afford

Files and Data Sets

There are many storage issues that must be resolved before a DBA can create
a database. One of the most important issues is how much space to allow for
the database. A data file corresponds to the tablespace database object as
shown in Figure 18.1. Keep in mind that the space calculation must take into
account not just tablespaces, but also indexes and, depending on the DBMS,
the transaction log. Each of these entities will likely require a separate file, or
data set, for persistent storage.

Figure 18.1. Database storage and data files

After determining the amount of storage required, the DBA must choose
an appropriate storage device with sufficient space to store the database and
all of its files. The DBA may choose to use multiple storage devices for the
different files to

• Align the performance requirements of the file with the appropriate
disk device

• Separate indexes from data for performance reasons
• Isolate the transaction log on a separate and very fast device
• Isolate temporary and work files on a single volume; if a disk error

occurs, temporary files can be deleted and redefined with no backup
and recovery implications

• Spread the data across multiple devices to facilitate parallel access

The DBA may choose to use multiple storage devices.

File Placement on Disk
The DBA must determine the optimal placement of files on disk devices. At
times the DBA can achieve performance gains simply by moving files from
one physical disk device to another. One common technique is to place index
files and data files on separate disk devices. When indexes are separated from
the data that is indexed, I/O operations can be made more efficient because
the physical read-write arm of a single disk device does not need to move
multiple times. For the same reason, placing data that is accessed by the same
operations on separate physical disk devices is another common file
placement technique and provides the same type of performance advantage as
separating indexes from data.

Short-stroking disks is another technique than can be used to maximize the
performance of disk subsystems. The general idea is to only use the very
outside edge of the disks so that the arm does not need to move very far on
the platter to find the needed data. Short-stroke disk techniques also keep the
platter from having to rotate very many times to find all that data. The outer
ring of the platter holds more data per rotation than the inner rings of the
platter just due to the simple fact that there is more surface area.

Short-stroke disk techniques keep the platter from having to
rotate very many times to find all that data.

Of course, exact file placement is becoming less beneficial with the advent
of modern storage devices. If the DBMS is using a modern storage device
that creates a virtual disk by spreading the data across multiple physical disks
(RAID), explicit file placement is a waste of time. Even if the DBA specifies
two different disk devices, the disk array will physically place the files across
multiple disks. So, as a DBA, do not waste time on precise file placement
when using a modern storage array technology such as RAID.

Regardless of the type of storage being used, be sure to place the
transaction log on a separate device from the database so that the transaction
log can be backed up independently from the database. This is a good idea
because it increases overall recoverability.

Place the transaction log on a separate device from the
database.

Every DBMS provides different storage options. Microsoft SQL Server
offers filegroups, DB2 for z/OS provides STOGROUPS, and Sybase offers
segments (see the sidebar). Be sure to understand the mechanisms your
DBMS uses to interact with the storage subsystems and disks to create
database files. Improperly created database files can be a significant cause of
poor performance.

Some organizations choose to implement system-managed storage, or
SMS. With SMS, the actual location of files and data sets is determined by
the system, instead of a DBA or storage administrator. With the new efficient
disk technology that is available, SMS is a more viable option than it was in
the past.

SMS is a more viable option than it was in the past.

Sybase Segments
Some databases provide options for controlling the size of tables. For
example, Sybase segments can be used to limit table size because a table
can never grow larger than its segment allocation. To control growth of a
table, the DBA can create it on a specific segment of a specific size. The
table will never be able to grow larger (without taking explicit action to
extend the segment to another device).

Indexes and tables can be allocated to specific segments to enhance
performance. Placing nonclustered indexes on separate segments from
the table reduces disk head contention if the segments reside on separate
physical disks.

An ideal use of segments is to isolate large, frequently accessed
tables. In addition, segments can be used to split a single table across
two disks.

One possible scenario is to let SMS handle the placement of the majority
of your database files. However, for certain performance-sensitive files (such
as the transaction log or mission-critical database objects), use non-SMS file
placement techniques. With this approach, SMS can minimize the effort

involved in most database file placement tasks, and the DBA can get
involved only for “high-need” database file placement.

Raw Partitions versus File Systems
A raw partition is the preferred type of physical device to choose when
deploying databases on UNIX-based database servers. A raw partition is
simply a raw disk device with no operating system or file system installed.

Raw partitions are favored because of the way UNIX buffers writes when a
file system is used. When writes are buffered by the operating system, the
DBMS cannot know whether the data has been physically copied to disk or
not. When the DBMS writes data from cache to disk, UNIX in all probability
will not. If a failure occurs, data in a database using a disk system file may
not be 100 percent recoverable. This should be avoided.

If a raw partition is used, the data will be physically written to disk with no
operating system intervention. Additionally, when using a raw partition, the
DBMS is better able to ensure that enough space is available and write the
allocation pages as needed. When using a disk file, UNIX will not preallocate
the space required; it will instead create a sparse file. Only the allocation
pages are written. If other applications are contending for the same physical
space, you may not have as much space for storing database data as you
believe you do.

The drawback to raw devices is the difficulty of tracking the database files.
Since the files were not allocated using the operating system or file system, it
is not possible to track them using operating system and file system
commands. However, third-party storage management software can be used
to get around these problems.

The drawback to raw devices is the difficulty of tracking the
database files.

On UNIX, be sure to favor using a raw partition for transaction logs, even
if you use a file system for database files. It is usually wise to use raw
partitions for production databases, as well. However, if integrity is not an
issue (for example, in a development environment), databases can be created
on a disk file system for the sake of simplicity.

Temporary Database Files

Modern DBMSs provide capabilities to create temporary database objects
that exist only during the scope of a specific transaction. These objects
contain temporary data that is transient and does not require long-term
persistent storage. However, these database objects still require some form of
short-term persistent storage to use for the duration of their existence.

Temporary database objects require some form of short-term
persistent storage.

Depending on the DBMS, the DBA will need to assign disk devices and an
amount of storage for use by temporary database objects.

Space Management
As modifications are applied to database tables, databases will grow in size.
Remember, too, that a database is not just the data portion (tables and
indexes), but also the log portion. It is wise to periodically and consistently
monitor database space usage. This can be done using the tools and utilities
provided with the DBMS, storage management software, or third-party
database tools. As a DBA, you should be able to track the following:

• Number of secondary extents
• Device fragmentation
• Fragment usage information
• Free space available
• Segment or partition size
• Tables and indexes allocated per segment
• Amount of reserved space that is currently unused
• Objects approaching an “out of space” condition

Consistently monitor database space usage.

Dealing with a database that has run out of space is a common nuisance for
DBAs. But it will occur, so it is best to be prepared with a plan of attack for
handling database growth. The first step is to reclaim space by regularly
dropping unused database objects. Objects are sometimes created, forgotten,
and never required again. When unused database objects are dropped, the
space they previously occupied can be made available.

If no unused database objects exist, the DBA must expand the storage
available for the database. Typically, this is accomplished using the ALTER
statement to specify additional space for the database object. The DBA also
may have to allocate an additional storage device to be used by the database
object, which may involve moving the files for the database object from one
device to another. Be careful when specifying additional space for database
objects using the ALTER statement. Some DBMSs require the DBA to
specify the amount of increase, whereas others require the specification of a
new overall size.

Data Page Layouts
Each DBMS uses a different format for laying out the pages of database
objects. Typically, though, the page layout for a database object will consist
of three basic components, as shown in Figure 18.2.

Figure 18.2. Sample data page layout

The page for a database object usually consists of three
components.

• Page header. The very beginning section of a database page will
contain several bytes of physical “housekeeping” information. The page
header may include a page identifier, forward and backward links to
other data pages, an identifier indicating to which table the page

belongs, free space pointers, and the minimum row length for the table.
• Data rows. A page also will contain the actual rows of the table (or

index) containing the user data. Rows will not cross a page boundary
except for certain large data types such as text, images, and other binary
large objects.

• Offset table. An offset table may exist with pointers to each data row on
the data page. Some DBMSs always use some form of offset table,
whereas others use the offset table only when variable-length rows exist
on the data page.

Keep in mind that the actual layout and length of the components of a page
will differ from DBMS to DBMS. In addition, the number of rows that can be
stored on a database page will depend on the page size. Some DBMSs require
a fixed page size for database objects, whereas others permit the DBA to
specify the page size.
Allocation Pages

In addition to data pages, the DBMS will use another type of page to control
space usage. Sometimes called a space map page, an allocation page is used
by the DBMS to manage the other pages in the database object. Multiple
allocation pages can exist within a database, each one controlling a block of
other data pages. These blocks are typically referred to as allocation units.

The DBMS uses an allocation page to manage the other pages
in the database object.

Allocation pages control physical pages. Each physical page is mapped to
a single database. Physical pages need not be contiguous on disk and, in fact,
frequently will not be. The primary vehicle used by an allocation unit to
manage page allocation is the bitmap. A bitmap contains a series of bits that
are either turned on (“1”) or off (“0”). Each bit refers to pages within the
allocation unit and to whether space is available within the page. The DBMS
uses this information to facilitate quicker data modification processes. The
DBMS may use multiple bitmaps to manage allocation, deallocation, and
space usage. The allocation page will have a distinctly different format from
a typical data page.

The DBA must factor the existence of allocation pages into any space
calculations performed to manage the storage used by the database. The DBA

will need to know the number of pages in each allocation unit that is
controlled by each allocation page. The DBA then adds this additional
overhead into the database space usage calculations.
Data Record Layouts

A table is composed of rows and columns. Each single row must be entirely
stored on a single data page (with the exception of some large data objects in
some DBMSs). Each row is contained within a record that consists of
additional housekeeping data along with the actual data contents of the row.
Each table record comprises the following elements:

• Row header. Each record typically begins with several bytes of
physical “housekeeping” information detailing the structure and
composition of the data contents of the row. This might include row
length, information on variable-length data, and other control
structures.

• Row data. This consists of the actual data contents of the data columns
for the row, in the order of their definition. Depending on the DBMS,
the variable- and fixed-length columns may be separated.

• Offset tables. Optionally, the record may contain an offset table with
pointers to manage and control where variable-length fields are stored
within the row.

A record contains a row’s data contents as well as
housekeeping data.

When calculating the storage required for a table, the DBA must calculate
record length, not row length. Record length includes the header and offset
table overhead, whereas row length is simply a count of the length of each
column in the table. Of course, the DBA must be able to accurately calculate
row length, too, because the row length is a component of the overall record
length.

To calculate the length of the data portion of the row, the DBA will need to
secure documentation that outlines the way to determine the actual, physical
length for each data type supported by the DBMS. The actual data types and
lengths required to store columns of these data types differ from DBMS to
DBMS. The following formulas can be used as general guidelines for
calculating the physical size of a row:

The length of a column will depend on the data type of that column; each
DBMS documents the length of the data types it supports. To calculate the
length of the entire record you will need to find the amount of overhead
required for the type of rows (variable or fixed length) and add that to either
calculation.

The length of a column will depend on the data type of that
column.

Calculating Table Size

Once the page layouts are known and the DBA can accurately calculate
record lengths, calculating the size of a table is easy. After calculating the
record length, the next step is to determine how many rows will fit on a
physical page. The size of a page will differ from DBMS to DBMS, and most
DBMSs allow the DBA to specify different page sizes.

The size of a page differs from DBMS to DBMS.

For example, assume that a single page consists of 4K of storage, but 32
bytes of that page are required for overhead (header information). This leaves
4,064 remaining bytes in which data rows can be stored. Use the following
formula to arrive at the number of rows that can fit on a single data page:

Use the following formula to arrive at the total amount of space required
for the table:

Of course, the DBA will need to factor in the free space that is specified
for the table as well. Furthermore, remember to factor in data that is stored
externally from the rest of the data, such as text columns in SQL Server or
(most) LOB columns in DB2.

Index Page Layouts
When a table has no indexes defined for it, rows are simply added at the end
of the table. When there is no additional room to insert new rows on the last
page, a new page is obtained (either from the current allocation or by creating
a new extent). The data pages of a nonindexed table are linked together with
forward and backward pointers. Traversing the linked list causes the data
pages to be accessed in order.

Similar restrictions apply to records stored in an index as apply to a data
record. A single index row must be entirely stored on a single index page.
The typical index record includes the following items:

• Header information. As with data pages, each index record typically
begins with several bytes of physical “housekeeping” information
detailing the structure and composition of the index record.

• Row length. For variable-length keys, the index may need to store the
actual length of the indexed data.

• Index key values. The actual data values for the index key are listed in
order of definition.

• Page pointer. This points to the physical location of the data page in
the table that actually holds the indexed data.

• Offset and adjust tables. These may be required to manage and control
the position of variable-length fields stored within the index row.

A single index row must be entirely stored on a single index
page.

The composition of the pointer component of the index record depends on
whether the index is clustered or nonclustered. Clustered indexes require only

a pointer to the data page. Nonclustered indexes require both the pointer to
the data page and a pointer to the location of the data row within the data
page.
Calculating Index Size

The first step in calculating the space required to store an index is to calculate
the row size for the index using one of the following formulas:

Remember, you need to calculate the size of an index record, not just the
size of the row. Records are simply the row plus the overhead required to
store the row. To calculate the record size you will need to obtain the size of
the row overhead required for indexes in the DBMS you are using.

You need to calculate the size of an index record, not just the
size of the row.

Once you have calculated the record size, you can move on to the next
step, which is to calculate the amount of storage space required for the index.
Begin by using the following formula to arrive at the number of records that
can fit on a single index page:

Then you can use the following formulas to arrive at the total amount of
space required for the index:

And so on. Continue the iteration until the number of pages is one or
fewer. At that point you have reached the root level of the index. Adding
together the sizes for each level will result in the total amount of space
required to store the index.

Transaction Logs
One of the most important files for database processing is the transaction log.
Remember, every insert, update, and delete to any database table is recorded
(or logged) in the transaction log. Arriving at an exact size for the transaction
log can be more of an art than a science, because transaction activity is by
nature random.

Arriving at an exact size for the transaction log can be more of
an art than a science.

Database activity is the most important factor in determining an
appropriate size for the transaction log. A good rule of thumb is to provide
sufficient space for the log file to capture all database modifications that will
occur between log archivals during your busiest processing period. The tricky

part is determining the most active processing period and the database
modification’s impact on the log. At any rate, if you do not automatically
archive or back up your database logs, you should pay close attention to the
size of the database log file(s). Failure to do so can cause data to be
unrecoverable or cause processing to slow down or halt completely.

The DBA must specify other database logging parameters that impact disk
usage. Most DBMSs support multiple, redundant logs. The DBA must decide
how many transaction logs there should be and on which disk devices they
should be allocated. At a minimum, you should run with dual active logging
—that way, a problem on one log will not shut down DBMS operations,
because the other active log can be used.

Another consideration is how long archive logs should remain on disk. For
some implementations, logs can be archived directly to disk. However, from
an efficiency standpoint, it makes more sense to archive logs to disk, and then
have them roll off to tape later. As a rule of thumb, consider keeping your
archive logs on disk for at least 24 hours. Furthermore, plan ahead to make
sure you have sufficient disk space to accommodate archive logs for the
system throughput on your busiest day.

Fragmentation and Storage
Fragmentation can be the enemy of performance and storage requirements.
But let’s not get ahead of ourselves: What is fragmentation? The common
definition is the scattering of parts of a file throughout a disk, such as when
the operating system breaks up a file and fits it into the spaces left vacant by
previously deleted files. There are several aspects of fragmentation that the
DBA must monitor for and correct.

Fragmentation is the enemy of performance and storage
requirements.

Disk fragmentation can impact performance on some systems. Disk
fragmentation occurs at the operating system level, and the DBA must be
able to use OS tools to analyze drives on which databases reside. On small-
scale environments with conventional I/O subsystems, it is a good idea to
correct disk fragmentation before running defragmentation tools provided by
the DBMS. On large-scale environments that benefit from more intelligent
disk subsystems, correcting disk fragmentation may not be needed.

Index fragmentation is a more serious concern for DBAs. As discussed in
more depth in Chapter 11, indexes can become disorganized and fragmented
as data is added, modified, and removed from the tables upon which the
index is built. Fragmented indexes consist of many scattered areas of storage
that are too small to be used productively. This causes wasted space, which
can hinder performance and increase storage costs. Other conditions that can
impact storage usage include declustered data, page splits, and row chaining.

Fragmentation impacts performance because not only is the data
suboptimally located, but when a database read engine scans indexes for
read-ahead processing, fragmentation can cause additional data pages to be
scanned into the data cache, thereby degrading performance.

DBAs should use tools7 to scan database indexes for fragmentation and
take actions to defragment or rebuild indexes on a regular basis. Doing so
will not only improve performance but also reduce the amount of storage
required for indexes.

Storage Options
Once you have calculated the amount of storage required for your database
files, you will need to choose the type of storage to be used. There are several
storage options available from which the DBA can choose, based on fault
tolerance, performance requirements, and budget.

The primary storage medium used by database files will, of course, be
direct-access disk drives. But other types of media are available, such as
solid-state devices (SSDs), also referred to as solid-state drives, solid-state
disks, or electronic disks. An SSD uses solid-state memory to store persistent
data in a manner similar to a hard disk drive. But because SSDs use memory
as opposed to magnetic disks, which are mechanical devices with moving
parts, I/O performance is greatly improved.

Although SSDs outperform traditional disks and are less susceptible to
physical damage, they are considerably more expensive and tend to have
lower capacities.

SSDs outperform traditional disks and are less susceptible to
physical damage, but they are more expensive and have lower
capacities.

Some DBMS products, called main-memory database management
systems (MMDBMSs), are specifically engineered for the persistent storage
of data in memory. The most popular of these, TimesTen and SolidDB, were
acquired by Oracle (2005) and IBM (2008) respectively. Although the
popularity of MMDBMS products was rising in the middle 2000s, it looks
increasingly as if MMDBMS will remain a niche offering, as traditional
DBMSs can be coupled with SSDs to produce similar results.

Tape is also a storage option, as is optical disc, but these are WORM (write
once, read many) technologies. Tape is used primarily for backup purposes,
while optical disc is a niche technology used primarily for backup and offline
data storage.

Which brings us back to good old disks. Disk devices are the predominant
storage vehicles used by DBAs for persistent data storage. Disk drives are
designed for direct read-write access, are cost-efficient, and are capable of
storing very large volumes of data. Some disk devices are slower than others;
some are smaller. However, an astounding variety of disk drives are available
in various speeds, capacities, and price ranges to satisfy just about any type of
storage requirement.

Disk devices are the predominant storage vehicles used for
persistent data storage.

RAID
Outages due to simple media failures often can be avoided by implementing
modern disk technologies such as RAID. RAID, an acronym for redundant
arrays of independent disks, combines multiple disk devices into an array that
is perceived by the system as a single disk drive. There are many levels of
RAID technology, which deliver different degrees of fault tolerance and
performance.

RAID combines multiple disk devices into an array.

Another desirable aspect of RAID arrays is their ability to use hot-
swappable drives; the array does not have to be powered down to replace a
failed drive. That a drive can be replaced while the array is up and running is
a plus for DBAs needing to manage databases while delivering nonstop data
availability.

RAID Levels

Several different levels of RAID are available. Vendors provide varying
levels of support for the RAID levels that have been defined. These various
levels of RAID support continuous availability through combinations of
functions called mirroring, striping, and parity. Mirroring occurs when
complete copies of the data are made on at least two disk drives, and all
changes made to the data are made simultaneously to both copies. If one fails,
access is automatically shifted to the remaining copy. Striping occurs when
subsets of data are spread across multiple disk drives. If any one drive fails,
the impact of the failure is limited to the data within the stripe on that disk.
Finally, parity bits are encoded data that can be used to facilitate the
reconstruction of the original data, in the event that all or part of the data
cannot be accessed if the drive fails. The lost data can be reconstructed “on
the fly” until it can be rewritten to undamaged disks.

Vendors provide varying levels of support for RAID levels.

Raid-0 (see Figure 18.3) is also commonly referred to as disk striping.
With RAID-0, data is split across multiple drives, which delivers higher data
throughput. However, there is no redundancy (which really doesn’t fit the
definition of the RAID acronym). Because no redundant data is being stored,
performance is usually very good, but a failure of any disk in the array will
result in data loss. Thus, RAID-0 should be avoided in mission-critical
implementations.

Figure courtesy AC&NC, www.raid.com.

http://www.raid.com

Figure 18.3. RAID-0

RAID-1 (see Figure 18.4), sometimes referred to as data mirroring,
provides redundancy because all data is written to two or more drives. A
RAID-1 array will generally perform better than a single drive when reading
data and worse when writing data. However, RAID-1 provides data
redundancy, so if any drive fails, no data will be lost.

Figure courtesy AC&NC, www.raid.com.

Figure 18.4. RAID-1

RAID-2 (see Figure 18.5) provides error correction coding. RAID-2 is
useful only for drives without any built-in error detection. No commercial
RAID-2 implementations exist because it is not a commercially viable
technique.

Figure courtesy AC&NC, www.raid.com.

http://www.raid.com
http://www.raid.com

Figure 18.5. RAID-2

RAID-3 (see Figure 18.6) stripes data at a byte level across several drives,
with parity stored on one drive. RAID-3 provides very good data transfer
rates for both reads and writes, but it requires a fairly complex controller to
implement.

Figure courtesy AC&NC, www.raid.com.

Figure 18.6. RAID-3

RAID-4 (see Figure 18.7) stripes data at a block level across several
drives, with parity stored on a single drive. For RAID-3 and RAID-4, the
parity information allows recovery from the failure of any single drive. The
write performance can be slow with RAID-4, and it can be quite difficult to
rebuild data in the event of RAID-4 disk failure. RAID-4 also requires a
complex controller design.

http://www.raid.com

Figure courtesy AC&NC, www.raid.com.

Figure 18.7. RAID-4

RAID-5 (see Figure 18.8) is similar to RAID-4, but it distributes the parity
information among the drives. RAID-5 can outperform RAID-4 for small
writes in multiprocessing systems because the parity disk does not become a
bottleneck. However, read performance can suffer because the parity
information is on several disks.

Figure courtesy AC&NC, www.raid.com.

Figure 18.8. RAID-5

RAID-6 (see Figure 18.9) is basically an extension of RAID-5, but it
provides additional fault tolerance through the use of a second independent
distributed parity scheme. Write performance of RAID-6 can be poor.

Figure courtesy AC&NC, www.raid.com.

http://www.raid.com
http://www.raid.com
http://www.raid.com

Figure 18.9. RAID-6

RAID-10 (see Figure 18.10) is a striped array where each segment is a
RAID-1 array. Therefore, it provides the same fault tolerance as RAID-1. A
high degree of performance and reliability can be delivered by RAID-10, so it
is very suitable for high-performance database processing. However, RAID-
10 can be very expensive. RAID-10 can be an ideal solution for database
implementations requiring high performance and fault tolerance.

Figure courtesy AC&NC, www.raid.com.

Figure 18.10. RAID-10

RAID-50 (see Figure 18.11) is a striped array where each segment is a
RAID-3 array. RAID-50 is more fault tolerant than RAID-5 but has twice the
parity overhead. RAID-50 can achieve high data transfer rates and high I/O
rates for small requests, but it is quite expensive to implement.

http://www.raid.com

Figure courtesy AC&NC, www.raid.com.

Figure 18.11. RAID-50

RAID-0+1 (see Figure 18.12) combines the mirroring of RAID-1 with the
striping of RAID-0. This couples the high performance of RAID-0 with the
reliability of RAID-1.

Figure courtesy AC&NC, www.raid.com.

Figure 18.12. RAID-0+1

A number of proprietary variants and levels of RAID have been defined by
storage vendors. If you are in the market for RAID storage, be sure you
understand exactly what the storage vendor is delivering. For more details,
check out the detailed information at http://en.wikipedia.org/wiki/RAID.

Proprietary variants and levels of RAID have been defined by
storage vendors.

Choosing the appropriate type of RAID storage for database files is an
important aspect of the DBA’s job. The level of RAID chosen will directly
impact the performance and reliability of your database solution. When
evaluating RAID storage solutions for your database files, it is essential that
you factor the cost of the solution into the selection criteria. Table 18.2
compares the fault tolerance, performance, and cost of each level of RAID.

Table 18-2. RAID Levels and Performance

http://www.raid.com
http://www.raid.com
http://en.wikipedia.org/wiki/RAID

Keep in mind that every DBMS uses files for data, indexes, and transaction
logs, each of which serves a different purpose and sustains a different level of
read and write activity. Different types of storage can be budgeted and
procured for the different types of files and the different types of access
required for each type. For example, the write activity against a log file tends
to be sequential, so it makes sense to isolate log files on a disk system that
maximizes write performance. Because log file activity is primarily write
activity, you should favor fast-write RAID levels such as RAID-0+1 or
RAID-0. RAID-0+1 is optimal, but quite costly, so many organizations
decide to live with the reduced write performance and fault tolerance of
RAID-1.

When evaluating RAID—or any type of disk system—you must balance
your available budget against the reliability and performance requirements of
your database systems and applications. The optimal disk configuration for
your database files might require multiple RAID arrays at different levels.
For evaluation purposes, though, consider the following advice:

• Favor fault-tolerant RAID levels for database files. Database files not
on fault-tolerant disks are subject to downtime and lost data.

• Choose the appropriate disk system for the type of activity each
database object will experience. For example, you might want to
implement two separate RAID systems—one at RAID-5 for data that is
heavily read focused, such as analysis and reporting, and another at

RAID-1 (or RAID-0+1) for transaction data that is frequently written
and updated.

• For high-performance, mission-critical implementations with sufficient
budget consider RAID-10 for its performance and fault tolerance.

• If you have the budget at your disposal, consider RAID-0+1 because it
has fast read, fast write, and fault tolerance.

JBOD
JBOD, which stands for just a bunch of disks, is a term used to differentiate
traditional disk technologies from newer storage technology. Typically, disks
are directly connected to a server. Once the DBMS is installed on those disk
drives, database files can be created on those disk drives using the facilities
of the DBMS.

JBOD stands for just a bunch of disks.

As the database environment becomes more complex, though, the storage
needs become more complex. As the database environment grows, DBAs
may need to consider other storage techniques such as SANs and NAS.

Storage Area Networks
A storage area network, or SAN, generally refers to an interconnected
network of storage devices. However, no industry-wide standard definition of
SAN exists, and it means different things to different folks. To some, a SAN
is anything that includes a fiber channel switch. Others define a SAN to be
anything with two or more host systems using fiber channel technology.
However you define them, SANs offer high speed, coupled with high
availability.

No industry-wide standard definition of SAN exists.

Fiber channel is a serial interface that can deliver a transfer rate of up to
105MB/second. Fiber channel is a competitive technology to SCSI, which
stands for small computer system interface and is pronounced “scuzzy.” SCSI
is a parallel interface that can deliver transfer rates from 40MB/second to a
maximum of 160MB/second for Ultra-SCSI. With SCSI, though, repairing or
adding storage devices causes significant downtime. Fiber channel offers
more fault tolerance by enabling devices to be removed and added without

disabling connections.
SAN affords the following benefits:

• Shared storage among multiple hosts
• High I/O performance
• Server and storage consolidation

Network-Attached Storage
Network-attached storage, or NAS, refers to storage that can be accessed
directly from the network. With NAS, hosts or client systems can read and
write data over a network interface (such as Ethernet, FDDI, or others) using
protocols including NFS and CIFS. NAS can be implemented using file
servers, host systems running NAS software, or thin servers called
appliances.

NAS provides the following benefits:
• Shared storage among multiple hosts
• Simpler management due to reducing duplicate storage
• Application-based storage access at file level

Traditional systems use either internal or external storage attached directly
to a system, or perhaps use shared storage, such as a large enterprise array.
Performance and distance limitations exist with older interfaces (like SCSI
and ESCON). The most commonly used NAS software is NFS (Network File
System) and CIFS on Windows and Linux systems.
SAN versus NAS

A SAN is best used as a storage backbone providing basic storage services to
host systems and NAS servers. SANs are well suited for sharing storage and
building the infrastructure for server and storage consolidation. Applications
requiring high performance or large capacities are good candidates for SAN
technology. Because it offers high performance and low latency, SAN is ideal
for database applications.

NAS is better suited for solving multimedia storage problems, data-sharing
issues, and sharing of storage for smaller systems. NAS does not efficiently
handle the block-based storage used by database systems.

Do not make the mistake of forcing all storage to be of one type, either
SAN or NAS. Match the storage requirements to the access and modification

needs of each database and application. You can use a combination of SAN
and NAS to solve your data storage and business requirements.

Don’t make the mistake of forcing all storage to be of one
type.

Tiered Storage
The final option available for storing database files is tiered storage. With
tiered storage, different categories of data are assigned to different types of
storage media in order to reduce total storage cost. This approach is important
in organizations that manage significant amounts of data that continues to
grow in volume. The more data that must be managed by the active system,
the more expensive it becomes to manage. Tiered storage can offer some
financial relief.

To take advantage of tiered storage, data first must be categorized based on
criteria related to the data and its use. Example of categories include

• Usage patterns
• Importance to the organization
• Level of protection required
• Recovery needs (local and disaster)
• Performance requirements

Once categorized, the data can be deployed on the most cost-effective
storage medium for its type. Such an approach is sometimes referred to as
information life cycle management, or ILM. But there are many issues that
need to be resolved to make such an approach effective:

• A useful categorization technique needs to be defined.
• A method of measuring data such that it can be categorized is required.
• All of the available storage options need to be aligned with the data

categories.
• A technique needs to be created for moving the data to the appropriate

storage devices.
Since assigning data to particular media may be an ongoing and complex

activity, some storage vendors provide software for automatically managing
the process based on user-defined policies.

One approach to categorization, popularized by Teradata, is known as
multi-temperature data.8 This technique deploys four categories: hot, warm,
cool, and dormant. The temperature of data is defined as a function of the
access rate for queries, updates, and data maintenance. In other words, hotter
data is accessed more frequently than warm data, which is accessed more
frequently than cool data. Finally, dormant data is rarely updated or queried
and is part of a static data model.

The next step is to categorize your storage devices for use with each data
temperature. Hot data that is I/O intensive and requires high availability can
be placed on storage devices offering high performance, reliability, advanced
features, and large capacity. This typically means high-performance disk
drives such as double-parity RAID or perhaps solid-state storage. If the data
is not stored on SSD, it should be cached so that it is available in memory. In
general, hot data should be stored on the fastest storage technology available
and optimized for frequent access.

Warm data is less frequently accessed than hot data and often is read more
than it is modified. Such data can be placed on less expensive disk devices
that offer good performance and reliability but are not top-of-the-line.
Storage devices for warm data should be lower cost than for hot data but with
better performance and accessibility than for cool or dormant data. SATA-
and SCSI-configured storage can work well for warm data.

Cool data is not dormant but is not accessed often. Such data usually still
needs to reside on direct-access storage devices. For such data consider using
the lowest-cost disk devices available, perhaps NAS or object-based storage.

Finally, dormant data, which has not been accessed for a long time
(perhaps years) and whose data model is stable, can be moved to offline
storage systems such as intelligent tape or optical disc.

Planning for the Future
Most database implementations are anything but static. Once deployed,
databases are queried, updated, loaded, unloaded, and reorganized, and data
is deleted and inserted from them on an ongoing basis. As the data
composition of a database changes, its storage requirements will change as
well.

The DBA must be ever vigilant in planning for future growth.

The DBA must be ever vigilant in planning for future growth. The DBA
must keep an eye on the amount of data and the number of users accessing
the data. When either expands, database storage may have to be modified.

Capacity Planning
Capacity planning is a process whereby the capacity of the entire system is
measured and compared against requirements. The goal of this comparison is
to adjust the resources available to the system as appropriate. To successfully
embark on a capacity-planning exercise requires an understanding of new
corporate initiatives and how they are likely to impact the existing
infrastructure—that is, your hardware (CPU, storage, network, and memory)
and your software (application and system).

Capacity planning measures and compares system capacity
against requirements.

By measuring current capacity, gauging the growth of capacity over time,
and factoring in the anticipated capacity requirements of new corporate and
IT initiatives, you can determine whether your existing infrastructure can
sustain the anticipated workload. If the projected growth outpaces the ability
of your computing environment to support it, you will need to evaluate the
cost of modifying and possibly scaling up your computing infrastructure.

From a storage perspective, this may involve simply adding more disk
devices and assigning them to the DBMS. However, it may involve
additional tasks to support additional data and users, such as the following:

• Redesigning applications
• Redesigning databases
• Modifying DBMS parameters
• Reconfiguring hardware components
• Adjusting software interfaces

There are multiple perspectives from which to view storage consumption.
Each is valid and provides a different view of storage utilization and growth.
A system-wide perspective views the rate at which disk space is being
consumed on an aggregate level. At a lower level, viewing storage capacity
by server determines which computers are consuming disk space at the fastest
rate. You can also monitor storage consumption at the file system level to

determine which file systems are consuming disk space at the fastest rate.
Finally, as a DBA, you will want to view just those files that are associated
with the DBMS. The bottom line is that you will need to be able to answer all
of the following questions:

• When will more storage be required?
• How much additional storage is needed?
• Where is the additional storage needed?
• What needs to be done to align the additional storage with the DBMS?

Summary
Databases are composed of data and files that must be stored on reusable
media to be useful. The DBA must understand the different storage options
available for database objects and files and use the appropriate device for
each file that meets capacity, performance, and budgetary objectives.

Storage is a growing field.

Storage is a growing field, with new technologies and products becoming
available on a regular basis. DBAs must keep abreast of this technology so
that they can meet the storage needs of their databases—and thereby meet the
information technology and data-processing needs of their organization.

Review
1. Why are most database files stored on disk devices instead of other

storage media?
2. What is the difference between SAN and NAS?
3. Name five goals to consider when building a storage system.
4. Your organization has decided to purchase RAID arrays to support

your DBMS. Which levels of RAID would you advise them to use and
why?

5. What storage management actions should be taken to assure the
viability and speed of the transaction log file(s)?

6. Describe the pros and cons of using RAID-4 for database files.
7. When calculating record size for a table, how should you treat the size

calculation for variable-length columns?

8. Why is it beneficial to place data files and index files on separate disk
devices?

9. What advantages does a SAN have over SCSI devices?
10. Calculating the amount of storage required for a table is as simple as

adding up the number of bytes for the columns in a row and multiplying
by the total number of rows: true or false?

Suggested Reading
Allspaw, John. The Art of Capacity Planning. Sebastopol, CA: O’Reilly

(2008). ISBN 978-0-596-51857-8.
EMC Education Services. Information Storage and Management: Storing,

Managing, and Protecting Digital Information. Indianapolis, IN: Wiley
Publishing (2009). ISBN 978-0-470-29421-5.

Lightstone, Sam, et al. Physical Database Design. San Francisco, CA:
Morgan Kaufmann (2007). ISBN 978-0-12-369389-1.

Poelker, Christopher, and Alex Nikitin. Storage Area Networks for
Dummies. Indianapolis, IN: Wiley Publishing (2003). ISBN 0-7645-2480-
1.

Schur, Stephen G. The Database Factory. New York, NY: John Wiley &
Sons (1994). ISBN 0-471-55844-3.

Strauss, Melvin J. Computer Capacity: A Production Control Approach.
New York, NY: Van Nostrand Reinhold (1981). ISBN 0-442-26243-4.

Thornburgh, Ralph H., and Barry J. Shoenborn. Storage Area Networks.
Upper Saddle River, NJ: Prentice Hall (2000). ISBN 0-13-027959-5.

Toigo, Jon William. The Holy Grail of Data Storage Management. Upper
Saddle River, NJ: Prentice Hall (2000). ISBN 0-13-013055-9.

———. The Holy Grail of Network Storage Management. Upper Saddle
River, NJ: Prentice Hall (2004). ISBN 0-13-148968-2.

19. Data Movement and Distribution

Data is not sedentary. Once data has been created, organizations tend to move
it around to support many different purposes—different applications,
different geographies, different users, different computing environments, and
different DBMSs.

Data is not sedentary.

Rarely is a single copy of any piece of data good enough. Data is copied
and transformed and cleansed and duplicated and stored many times
throughout the organization. Different copies of the same data are used to
support transaction processing and analysis; test, quality assurance, and
operational systems; day-to-day operations and reporting; data warehouses,
data marts, and data mining; and distributed databases. Controlling this vast
sea of data falls on the DBA.

The DBA uses many techniques and technologies to facilitate data
movement and distribution. This chapter discusses some of the primary tools
that are used to move data from place to place and to support data at multiple
locations.

Loading and Unloading Data
One of the simplest ways for the DBA to move data from one place to
another is to use the LOAD and UNLOAD utilities that come with the
DBMS. The LOAD utility is used to populate tables with new data, and the
UNLOAD utility is used to read data from a table and put it into a data file.

Again, it is important to note that each DBMS may call the actual utilities
by different names, but the functionality is the same or similar from product
to product. For example, Microsoft SQL Server and Sybase provide the BCP
utility, and Oracle offers SQL*Loader.

The LOAD Utility
A LOAD utility is used to perform bulk inserts of data into database tables. It
typically can support

• Adding rows to a table, retaining the current data, or

• Replacing all existing rows with the new data

A LOAD utility is used to perform bulk inserts of data into
database tables.

When loading data, the DBA must take into account many factors to
ensure success. Is the LOAD utility restartable in the event it fails? Although
it takes more time to implement a restartable load process, it is easier to
support. For the load process to be restartable, the DBA must ensure that any
work files used are allocated and that the LOAD utility can restart from
where it left off. If the LOAD utility is not restartable and an error occurs that
stops the load process, the DBA must choose one of two options:

1. To delete the data that has already been loaded and start again from the
beginning, or

2. To determine what was already loaded and remove those records from
the input data file that is being loaded

Of course, this task is more difficult when adding rows to existing data
using LOAD, because the first option requires a selective delete.

Another consideration for the DBA is whether to presort data before it is
loaded into the database. If the table being loaded is clustered, it may make
sense to sort the input data by the clustered columns to allow the LOAD
utility to process the input data file in clustered order. Failing to sort data into
clustering sequence may cause the load process to uncluster the data,
depending on the DBMS and the LOAD utility.

Most database LOAD utilities do not cause triggers to fire, which can
cause data integrity problems. If the database and application rely on the
trigger to calculate data or enforce constraints, loading data without firing
triggers can be devastating to the state of the database. The DBA and
application developers will need to develop programs or scripts that mimic
the triggered action if data is to be loaded regularly and triggers exist.

Other database constraints can pose problems for the LOAD utility, too. If
data is being loaded that does not conform to a unique constraint or a check
constraint, what will the LOAD utility do? Once again, this depends on the
DBMS and the LOAD utility. Some LOAD utilities are flexible enough to
provide options to enforce constraints, or not. In such a scenario, the DBA
must decide whether invalid data is to be discarded by the LOAD utility, or

whether data that does not conform to constraints can be loaded—possibly
causing data integrity problems. Some LOAD utilities do not even give the
DBA an option—they either load everything or discard nonconforming data
automatically. All in all, it is better to have the flexibility, even if it does
cause more work for the DBA.

The DBA should favor enforcing constraints when the LOAD utility
allows it. Otherwise, you will have to correct the data after it has been loaded
or live with data integrity violations. It is more efficient to process the data
once, as it is loaded, than to process the data twice—once to load it and once
to correct it.

Enforce constraints using the LOAD utility.

Before LOAD can be used, the DBA must ensure that all processes and
users needing to execute the LOAD utility have the appropriate authority to
do so. Some DBMSs provide a specific LOAD authority that can be granted.
Most DBMSs permit the owner of the table and those granted administrator-
level authority to load data as well.
Describing the Input File

Using the LOAD utility to populate a table requires an input file containing
the data. The DBA must define the layout of the input file to the LOAD
utility to enable it to translate raw data into the format required for storage in
the database. This is typically accomplished by specifying the data type of
each column along with the beginning and ending positions within the file
where the data exists. Some LOAD utilities also provide specific formats that
can be loaded with limited specification such as comma-delimited files or
files created using an UNLOAD or EXPORT utility.

The LOAD utility must be capable of handling nulls. Nulls are usually
handled with an indicator byte and a specific clause for checking that byte.
For example, the LOAD utility could specify a clause such as
Click here to view code image

LOAD . . . STATUS POSITION (20:25) CHAR(6)
NULLIF(26)='N' . . .

The LOAD utility must be capable of handling nulls.

This statement indicates that the column named STATUS is to be loaded

with data from the input file, starting with the twentieth character and
finishing with the twenty-fifth character. However, if the twenty-sixth
character is equal to the value N, the STATUS column is to be set to NULL.

Loading tables with nullable columns can degrade the performance of the
LOAD utility because extra processing is required to check whether the data
should be null or not. If data is to be loaded into a table on a regular basis, try
to avoid nullable columns for those tables.

Some LOAD utilities provide additional controls to allow the DBA to
modify the functionality of the load process. For example, clauses to control
the loading of default values or to bypass certain records in the input file are
common. Be sure to understand all of the parameters of the LOAD utility
being used so that you can control the way in which data is loaded into your
tables. Sometimes the LOAD utility can be used instead of an application
program to insert data—which reduces the programmer’s effort because there
is no need to write, test, and debug program logic. Instead, the logic exists in
the LOAD utility, and the processing can be controlled by the DBA with the
parameters and clauses of the utility.

Try to avoid converting data from one data type to another during the load
process. Although most LOAD utilities can automatically convert similar
data types, additional CPU effort is required to perform such conversions. For
example, the LOAD utility may be able to convert an integer value in the
input file to a decimal value in the database, but it would be better if the
LOAD data were decimal to begin with.

Special care must be taken when floating-point data must be loaded into
tables. Usually the LOAD utility will require specific information about the
format of the data.

Take special care when loading floating-point data into tables.

Efficient Loading

It is usually a good idea to create all required indexes before loading data into
a table. The LOAD utility is usually more efficient at populating the indexes
during the load process than creating new indexes for a fully populated table.
Of course, the DBA should verify this to be the case for the DBMS and
version in use.1

Create all required indexes before loading data into a table.

If the LOAD utility is capable of performing tasks in parallel, the DBA
should take advantage of this when large amounts of data are being loaded.
The LOAD utility might be capable of accepting multiple input files for
concurrent loading into different segments or table partitions, or it might be
able to build multiple indexes in parallel rather than building each
sequentially. Parallel operations like this may increase the amount of CPU
required to load data while reducing the overall elapsed time for the LOAD to
run.2

Another performance-related aspect of loading data is the need to plan for
concurrent processing if you are loading multiple tables. Judicious scheduling
of concurrent workloads can enable some LOAD utilities to operate
concurrently. For example, you might be able to perform concurrent loads on
tables from different databases or filegroups. The DBA should make every
effort to understand the capabilities and limitations of the LOAD utility and
to plan concurrent load jobs accordingly.

If the LOAD utility provides an option to turn off logging, consider using
it to speed up the load process and minimize overhead. However, the DBA
will have to back up the data after the LOAD completes to ensure
recoverability. If logging is turned off, the DBMS cannot recover the table
without an image copy backup.

It is usually more efficient for the LOAD utility to insert the initial data
into a table than it is for a program or multiple SQL INSERT statements to
perform the same task. A LOAD utility is optimized for very efficient bulk
insertion of data. In addition to the efficiency of LOAD, using a utility is
likely to be less error prone than a corresponding application program.

For some DBMSs, it is more efficient to use LOAD instead of a mass
delete. A mass delete is performed when a SQL DELETE statement is issued
with no WHERE clause. Using the LOAD utility with an empty input file
will have the same result—all rows will be deleted from the referenced table.
LOAD is likely to be more efficient, especially if it is possible to turn off
logging during the load process.
Running Other Utilities during a LOAD

Some database LOAD utilities take advantage of the fact that they have
access to all of the data as it is being loaded. A full-function LOAD utility
may enable the DBA to create image copy backups or to create database

statistics during the load process. Taking advantage of such capabilities
creates efficiencies because the data is read once but processed multiple times
(load, image copy, statistics, etc.).

Additionally, you may want to schedule a REORG after loading data. This
is an especially good idea if the loaded data was not presorted into clustering
sequence and the LOAD utility does not sort for clustering.

You may want to schedule a REORG after loading data.

The UNLOAD Utility
Information in database tables frequently needs to be moved or copied to
other locations. For example, you may want to move data to a different
database, from a table to a sequential file for external processing, or possibly
to another relational database system or platform. Certain database schema
changes require database objects to be dropped and recreated—and when the
objects are dropped, so is the data. Therefore, you need to unload the data
before making database object changes. Perhaps you just want to extract a
subset of rows from a table for use as test data. Even to reorganize a database
object typically requires the data to be unloaded, optimized, and then
reloaded.

The purpose of the UNLOAD utility is to read data from a database and
write it to an output data file. Without an UNLOAD utility, database users are
forced to use SQL SELECT statements issued by an interactive SQL facility,
report writer, or application program in order to unload data. However, these
methods are error prone and slow for large quantities of data. Furthermore,
requiring a developer to code an application program to create a file is too
inflexible and time-consuming for most production database needs. Thus,
many DBMSs provide an UNLOAD utility to supply high-speed capabilities
and the flexibility to perform most of the bulk data movement tasks
performed by DBAs.

The purpose of the UNLOAD utility is to read data from a
database and write it to an output data file.

Before UNLOAD can be used, the DBA must ensure that all processes and
users needing to execute the UNLOAD utility have the appropriate authority
to do so. Typically, this involves granting a level of authorization that

contains the ability to read (SELECT) data from the table. Depending on the
DBMS and utility, additional security may be required.
Concurrency

The level of concurrent activity that can be performed against a table that is
being unloaded depends on the parameters and options of the UNLOAD
utility. Concurrent read activity is permitted because UNLOAD does not
change any data. Most UNLOAD programs enable the user to control
whether concurrent data modifications can occur while data is being
unloaded. Frequently it is desirable to disable concurrent modifications
during an UNLOAD to ensure the creation of a file with consistent data.

Additionally, it may be useful or necessary to prohibit concurrent utilities
from running while data is being unloaded. For example, loading,
reorganizing, or recovering data during an UNLOAD will cause
unpredictable results because these utilities change data.
Unloading from Image Copy Backups

Modern UNLOAD utilities are capable of unloading data from an image copy
backup. Such a capability is useful because it enhances concurrent data
access. Unloading from an image copy backup can be beneficial because the
live data is unaffected—meaning no locks are taken on the live data nor is
any data read from the actual table on disk. Because the UNLOAD utility
reads the data from an image copy backup, the performance and availability
of applications running against the live data will be unaffected by the
concurrent unload operation.

A modern UNLOAD utility provides the ability to unload
from image copy backups.

Of course, the freshness of the data being unloaded may be an issue. If
subsequent updates, inserts, and deletes were processed against the table after
the image copy backup was taken, those modifications will not be captured in
the unloaded data because they were not made to the image copy data set—
only to the live data itself.

If you are in the market for an UNLOAD utility, be sure it provides the
ability to unload from image copy backups.
Generation of LOAD Parameters

It is common for an UNLOAD utility to provide an option for generating the
control statement necessary to use the LOAD utility to reload the data that is
being unloaded. Such an option can save time because the DBA will not have
to create the LOAD statement by hand. Even if the data is going to be loaded
into a different table, it can be useful to generate the LOAD statement during
the unload operation. Changing a generated LOAD statement usually is easier
than coding a LOAD statement from scratch.
Data Encoding Scheme

An UNLOAD utility should allow the DBA to specify the encoding scheme
to use for the unloaded data. Several common formatting options include
EBCDIC, ASCII, and Unicode. Many DBMSs support multiple code sets for
other encoding schemes. Depending on the DBMS and the UNLOAD utility,
you may be able to specify another data encoding scheme to be used for the
unloaded data.
Floating-Point Data

As with the LOAD utility, special care must be taken when unloading
floating-point data. When floating-point data is being unloaded, special
parameters may need to be specified to identify the format in which unloaded
floating-point numbers should be stored.
Limiting UNLOAD Data

Sometimes DBAs will need to unload only a portion of the data. That is, the
UNLOAD output file will contain only a subset of the rows in the table.
Numerous reasons and situations exist where it might make sense to unload
only a subset of the total rows, for example, to create test data or to inspect
only certain rows.

It might make sense to unload only a subset of the total rows.

Most UNLOAD utilities provide options to specify a limited number of
rows to unload. These options typically take three forms: LIMIT, SAMPLE,
and WHEN.

A LIMIT parameter is used to limit the number of rows to be unloaded by
the UNLOAD utility. Specifying a parameter such as “LIMIT 200” will cause
the UNLOAD utility to stop after unloading 200 rows.

A SAMPLE parameter is used to unload a sampling of the data instead of

the entire table. The SAMPLE parameter typically requires a decimal
condition that specifies the percentage of rows to be sampled. For example,
the following parameter indicates that 25.75 percent of the rows in the table
should be unloaded: SAMPLE 25.75.

Finally, a WHEN clause is used to supply SQL predicates to the UNLOAD
utility such that only certain data is unloaded. For example, the following
condition will cause only rows where the SALARY is greater than $50,000 to
be unloaded: WHEN (SALARY > 50000). The UNLOAD utility may also
provide the ability to use the ORDER BY clause to sort the data as it is
written to the unloaded file.

Of course, the exact syntax of these three options will differ from DBMS
to DBMS and utility to utility, but the general concept remains the same.
Each of these options provides the DBA with great flexibility when creating
external data files using the UNLOAD utility.

The exact syntax of the LOAD utility differs from DBMS to
DBMS.

Unloading from Views

Most UNLOAD utilities permit data to be unloaded from views, not just
tables. Being able to unload data from a view comes in handy when it is
necessary to access data from multiple tables and place it into a single file.
By creating the view as a join of those tables and unloading from the view,
you can unload data from multiple tables to a single file.

Maintaining Application Test Beds
LOAD and UNLOAD can be used to maintain a consistent test bed of data
for the purposes of testing application programs, as shown in Figure 19.1.
When an UNLOAD data file is created that can be loaded prior to each
program test, developers can be sure that each program execution runs
against the same data—which is critical for tracking down bugs and assuring
that the program code is correct. The DBA can set up the proper LOAD and
UNLOAD jobs and then turn them over to the application development teams
for their use.

Figure 19.1. Using LOAD and UNLOAD for program testing

LOAD and UNLOAD can be used to maintain a consistent
test bed of data.

The UNLOAD utility is quite handy and will be used frequently by most
DBAs. There are numerous situations and issues that can be resolved with the
UNLOAD utility.

EXPORT and IMPORT
Similar to an UNLOAD utility, an EXPORT utility reads data from a table
and places it into an external file. An IMPORT utility reads an external file
created by the EXPORT utility and inserts the data into a table.

IMPORT and EXPORT facilities typically work with more than just the
data, though. Sometimes an EXPORT data file contains the schema for the
table along with the data. In such cases, the IMPORT utility can create the
table and import the data using just the EXPORT data file. Sometimes the

EXPORT file contains more than just a single table. Some EXPORT facilities
enable the DBA to specify a single table, and then follow the relationships for
that table to extract all of the related files and data.

Some IMPORT/EXPORT facilities provide UNLOAD-like features to
sample, subset, and limit the data that is exported (and imported). The
difference, though, is the ability to perform such functions across multiple
tables and maintain referentially intact data.

Not every DBMS offers IMPORT and EXPORT utilities. Some third-party
vendors provide import and export products.

Not every DBMS offers IMPORT and EXPORT utilities.

Bulk Data Movement
The combination of UNLOAD and LOAD is the most common method used
by DBAs to move large amounts of data from place to place. However, there
are other methods for moving large quantities of data. Let’s review a few.

ETL Software
ETL is a type of software that performs data movement. ETL stands for
extract, transform, and load. ETL software is primarily used to populate data
warehouses and data marts from other databases and data sources.

ETL stands for extract, transform, and load.

Although most DBMS vendors offer ETL software, it usually is not
included with the base DBMS license. Microsoft SQL Server, on the other
hand, includes SQL Server Integration Services for ETL with the standard
SQL Server license.

By using ETL software, the DBA can automate the extraction of data from
disparate, heterogeneous sources. For example, data may need to be extracted
from legacy IMS databases and VSAM files from the mainframe; relational
databases such as Oracle, SQL Server, and DB2 on various platforms;
spreadsheets stored on the LAN; as well as external data feeds. The ETL
software can be set up to recognize and retrieve the data from these many
different sources.

Once retrieved, the data may need to be transformed in some fashion

before it is stored in the target database. ETL software makes it easy to
automate these changes. For example, you may wish to transform coded data
to recognizable values, perhaps changing 1, 2, and 3 to “Married,” “Single,”
and “Divorced.” In addition, ETL software is capable of changing data types,
and aggregating and summarizing numerical data.

After the data is transformed to your specifications, it is loaded into the
target database. ETL software is much more flexible and useful for complex
data movement needs than simple LOAD and UNLOAD utilities.

Replication and Propagation
Another method of moving data is through replication and propagation.
When data is replicated, one data store is copied to one or more data stores,
either locally or at other locations. Replication can be implemented simply by
copying entire tables to multiple locations. Alternatively, replicated data can
be a subset of the rows and/or columns. Replication can be set up to
automatically refresh the copied data on a regular basis.

Propagation, on the other hand, is the migration of only changed data.
Propagation can be implemented by scanning the transaction log and
applying the results of data modification statements to another data store.
Initial population of a data warehouse can be achieved by replication, and
subsequent population of changes by either replication (if the data is very
dynamic) or propagation.

The difference between replication and propagation is highlighted in
Figure 19.2. DBAs can use both of these techniques to move data between
different databases and data warehouses. More information on managing and
administering databases in a data warehouse environment is provided in
Chapter 20, “Data Warehouse Administration.”

Figure 19.2. Replication and propagation

Messaging Software
Messaging software, also known as message queuing software or application
integration, is another popular form of data movement. When using a
message queue, data is placed onto the queue by one application or process;
the data is read from the queue by another application or process.

Messaging software works by providing APIs to read and write formatted
messages to and from a queue. An application can read or write messages to
and from the queue from any platform supported by the software.

Messaging software provides many benefits for moving data, but primarily
the benefit is simple, heterogeneous, any-to-any connectivity among
disparate platforms from the desktop to mainframes. Messaging allows
businesses to easily integrate disparate islands of data in a time-independent
manner. As they both use the message queue, two applications can
communicate with each another even if they are not running at the same time.

Messaging allows businesses to easily integrate disparate
islands of data.

Popular messaging software includes IBM’s MQSeries, Microsoft’s

Service Broker, and Oracle’s Advanced Queuing feature.

Other Methods
Of course, many other methods exist for moving data—from the simple, such
as using a table editing tool to highlight and copy data, to the complex, such
as writing programs to read the database and write to external files or directly
to other databases.

Some DBMSs provide additional built-in methods for copying and moving
data. For one example, see the sidebar “Oracle Transportable Tablespaces.”

Oracle Transportable Tablespaces
Oracle provides the capability to transport an entire tablespace, including
its definition and contents, from one database to another. In some cases,
transporting a tablespace can be much easier and more efficient than
unloading data from one database and loading it into another.

This option requires the same exact database object definitions to
exist in each database. Furthermore, the data contents will be the same
after you transport the tablespace (after which, of course, you can edit
the data).

Transportable tablespaces are quite useful when data must be moved
from database to database in an Oracle system. It is usually easier to
copy files and run an IMP command on the destination database than it
is to use SQL*Loader or a series of export files to accomplish the same
thing. Furthermore, neither the source nor the target database instance
needs to be shut down in order to transport tablespaces.

Distributed Databases
Sometimes simply moving data from one location to another is not sufficient.
Instead, the data needs to be stored at, and accessible from, various locations
throughout an organization. In this situation, a distributed database is
required.

A distributed database permits data to reside at different physical locations
in different databases, perhaps using different DBMS software on different
operating systems. Consider, for example, an organization with retail outlets
that implements a distributed database system. Each retail outlet would have

a database, and the headquarters would house a central database. With
networking technology and the distributed capabilities of the DBMS, data
could be accessed and modified at any location from any location.
Furthermore, you could specify which locations have update, or even read,
access to certain databases.

A distributed database permits data to reside at different
physical locations in different databases.

In summary, the location of data in a networked environment does require
an analysis of many design considerations for fast access time, high integrity,
and easy maintainability. The basic premise of distributed database
technology is to provide uniform access to data that is logically related but
physically distributed in multiple locations. There are multiple types and
variations in the way that a distributed database can be implemented.

The degree of database distribution that can be achieved is defined by the
technology and capabilities of the DBMS in use. The following
characteristics of a distributed environment differ by DBMS:

• Autonomy represents the degree to which sites within the distributed
database implementation can operate independently. An intermediate
level of autonomy exists when each site can voluntarily share its data.
In contrast, tight coupling represents a high degree of autonomy
because each site in the distributed environment has complete
knowledge of the state of the system and can control the processing of
user requests that span data at multiple sites.

• Isolation defines whether each site is aware of the other sites in the
distributed environment or whether each site is a stand-alone server,
unaware of the other sites.

• Transparency refers to the shielding of the data location from users and
applications.

The characteristics of a distributed environment differ by
DBMS.

Each DBMS delivers functionality to implement distributed databases with
differing degrees of autonomy, isolation, and transparency. To set up an
efficient and effective distributed database environment, the DBA must

thoroughly understand the capabilities of the DBMS. Furthermore, the DBA
must offer guidance to the application developers. In a system with
distribution transparency, the developers need not know the location of data;
more typically, distributed programming requires the programmer to
explicitly code a connection to a database server location before accessing
data from that location.

A distributed database can be set up as a single database or as multiple
databases. With the single database setup, a single DBMS process controls all
data access. A multidatabase setup, on the other hand, provides multiple
independent DBMS processes, each controlling access to its own local
database.

A multidatabase setup can be federated or unfederated. A federated
multidatabase setup spreads control among the distributed databases. The
DBA can control each local database component of the federation to
determine what data is stored there and who can access it. An unfederated
multidatabase scheme centralizes the control of these issues. Typically,
unfederated multidatabase setups are homogeneous, whereas federated
multidatabase setups are heterogeneous.

Setting Up a Distributed Environment
A distributed DBMS allows data to be physically located on more than one
DBMS and at more than one location. Truly distributed data can reside on
database servers as well as on client nodes. The more distributed the data, and
the closer the data is to the requester, the better the performance is likely to
be. However, as data is distributed to more locations, it becomes much more
difficult to manage and administer. From a maintenance perspective, the
administration required for a large number of desktop DBMSs is quite
difficult. A real-life distributed database implementation will often consist of
data residing at multiple server locations, and sometimes on client nodes, too.

Distributed data can reside on database servers as well as on
client nodes.

From the perspective of the DBA, some of the most difficult aspects of
implementing a distributed database are designing it and setting it up. The
DBA’s first task is to understand the distribution capabilities of the DBMS.
Can it participate in federated or unfederated systems? What additional

software is required to support distributed databases? Does the DBMS
support two-phase COMMIT? What types of networking protocols are
required?

The DBA must understand the distribution capabilities of the
DBMS.

The DBA will need to work with network administrators to assure that the
company’s networks are properly configured for supporting distributed
databases. The DBMS will require configuration parameters to be set that
enable distribution and that outline the network locations for the remote
databases.

Up to this point, we have discussed the physical implementation details.
But what about the database design aspects of distributed databases? What
data goes where—and why? Suppose you are setting up a distributed
database such as that depicted in Figure 19.3.

Figure 19.3. A sample distributed database implementation

In our sample distributed database, the data resides in Seattle, Washington,
and in Sydney, Australia. How does the DBA decide which data should be
stored in Seattle and which data should be stored in Sydney? How does the
DBA provide the proper authorization and configuration such that users can
access the required data regardless of its location?

Frankly, there are no hard-and-fast rules that answer these questions. There

are, though, many guidelines that can be followed. First, data should reside at
the server where it is most likely to be accessed. The DBA should analyze the
intended usage of data to optimize application performance by reducing
transmission costs. For example, data used most frequently in Seattle should
reside on the Seattle database server, and data used more often in Sydney
should reside at the Sydney site.

Data should reside at the server where it is most likely to be
accessed.

However, data placement decisions are usually not that simple. In many
distributed systems, data may reside in two or three locations but be
accessible from many other locations. What if a certain subset of data is used
most frequently in Singapore? Once again, store that data on the closest
database server—in our example, Sydney is closer to Singapore than to
Seattle.

An additional concern arises when data usage is spread almost evenly
between the two sites. What if data is required 50 percent of the time by
Sydney processes and 50 percent of the time by Seattle processes? In such
cases the DBA must choose one location over the other or choose to keep
replicas at each site. If replication is not an option, place the data at the
location that is most easily managed and monitor the performance of all
distributed accesses very closely.

As a DBA, you will need to provide usage guidelines for distributed
databases to the application development teams. Such guidelines should
cover where data is located, the performance impact of accessing distributed
data, and how to optimize distributed relational access. Some of these
guidelines depend on the DBMS implementation, whereas others, such as the
following, are DBMS independent:

• Minimize network traffic by retrieving only the data that is needed; that
is, request no columns or rows in addition to what are absolutely
required by the application process.

• Use methods that encourage sending data over the network in blocks
instead of one row at a time.

• Access local data instead of remote data whenever it is possible to do
so.

Data Distribution Standards
There are two common standards supported by the major DBMSs for
distributing data: DRDA and RDA. Both DRDA and RDA are similar in their
goals.

Distributed Relational Database Architecture, or DRDA, is IBM’s
protocol for accessing distributed data regardless of its physical location.
DRDA provides methods of coordinating communication among distributed
locations. This allows applications to access multiple remote tables at various
locations and have them appear to the end user as if they were a logical
whole. When a DBMS is DRDA compliant, it means that the DBMS follows
the DRDA specifications for distributed databases.

DRDA is IBM’s protocol for accessing distributed data
regardless of its physical location.

A distinction should be made, however, between the architecture and the
implementation. DRDA describes the architecture for distributed data and
nothing more. It defines the rules for accessing the distributed data, but it
does not provide the actual APIs to perform the access. DRDA is not an
actual program but a set of standards.

Remote Database Access, or RDA, is a competing set of protocols
developed by the ISO and ANSI standards committees. RDA was built to
work with a subset of SQL that is available to most DBMSs.

RDA is a set of protocols developed by the ISO and ANSI
standards committees.

RDA is used to establish a remote connection between a client and a
server. The client interfaces to a process that controls data transfers to and
from the database. The goal of RDA is to enable applications to interconnect
with heterogeneous databases and environments.

As an alternative to DRDA or RDA, a gateway product can be used to
access distributed data. Gateways are composed of at least two components—
one for each distributed location—that communicate with each other to
permit data to be accessed.

Accessing Distributed Data

The DBA must understand the type of access supported by the DBMS and
help the application developers match the DBMS capabilities to application
requirements. Many different types of access are possible, but not all are
supported by each DBMS, and further limitations exist with heterogeneous
implementations.

Not all methods of access are supported by each DBMS.

The simplest type of distributed database access is a remote request. This
consists of a single request to a single location within a single unit of work. A
remote request allows developers to operate within one DBMS while
referring to a different DBMS. This approach is the easiest—but least flexible
—method of coding distributed access.

A more complex type of distributed access is called remote unit of work. It
takes place when a single application program accesses data from multiple
locations, but not within the same unit of work. The programmer must know
where data is located and build units of work that access data by location. In
this scenario:

• Each request must be for a single location.
• Each unit of work can contain multiple SQL statements.
• Each unit of work must access data from a single location only.

Thus, multiple SQL requests per unit of work are permitted, but only to
one DBMS per SQL request.

The next step is to remove the unit of work limitation so that each unit of
work can access data from multiple locations. This type of access is referred
to as distributed unit of work. In this case, more than one DBMS can be
accessed per unit of work. Multiple SQL statements can read and/or modify
data at multiple database servers within a single unit of work.

The final and most robust form of distributed access is the distributed
request, where a single SQL statement accesses data from more than one
location at a time. Thus, a SQL statement can access multiple database
servers, and multiple SQL requests, both distributed and nondistributed, can
be contained within a single unit of work. This is the most flexible level of
distributed database access.

Frequently an additional product is required to support a distributed
request, such as IBM’s DataJoiner. Table 19.1 outlines the different types of

distributed data access, using the names given to them by the DRDA
protocols.

Table 19.1. Levels of Distributed Database Support

Two-Phase COMMIT
In order to modify distributed data across two different platforms, the DBMS
must be able to ensure that the modifications are treated as a single operation.
As with any unit of work, all of the SQL statements within the COMMIT
scope either succeed or fail. Therefore, for each distributed COMMIT, either
the results of all operations are applied to each database, or none of the
results are applied—regardless of the database and its location. This requires
a two-phase COMMIT, where one phase is the preparation and the other is
the COMMIT.

The DBMS must be able to ensure that the modifications are
treated as a single operation.

Distributed two-phase COMMIT enables application programs to update
data in multiple database servers within a single unit of work. The two-phase
COMMIT process coordinates the COMMITs across the multiple platforms.
The two-phase COMMIT provides a consistent outcome, guaranteeing the
integrity of the data across platforms, regardless of communication or system
failures. One of the database servers acts as the coordinator of the two-phase
COMMIT, while the other database servers are participants.

During the preparation phase, each participant prepares for a COMMIT.
Each participant informs the coordinator when log records are successfully
written and indicates that it is ready to COMMIT changes. When all
participants are ready to COMMIT, the second phase, the actual COMMIT,
begins. This phase is implemented as a series of communications between the

coordinator and its subordinate participants. During the COMMIT phase,
success is presumed, even in the case of system failure. Because all
participants have elected to continue the COMMIT, success can be presumed
with no danger of data integrity violations. However, if any participant fails
to COMMIT, the coordinator will need to roll back the changes for all
participants.

Whenever applications perform multisite updates within a single unit of
work, a two-phase COMMIT must be used to ensure data integrity.

Distributed Performance Problems
Performance can be particularly troubling in a distributed database
environment. As with any system that relies on network activity, the biggest
threat to performance is network traffic. The more data that must be sent
along the network, the greater the potential for performance problems.

The biggest threat to performance is network traffic.

But let’s back up for second. Recall the definition of performance given in
Chapter 9: “Database performance is the optimization of resource use to
increase throughput and minimize contention, enabling the largest possible
workload to be processed.” Performance in a distributed environment also is
defined by throughput and response time. However, the requester and the
server emphasize different aspects of this definition.

Performance in a distributed environment is defined by
throughput and response time.

The server views performance primarily in terms of throughput.
Remember that throughput is the amount of work that can be done in a unit of
time. The server must serve multiple requesters. The more requesters that can
be serviced, the better the server is performing. The requester, however,
views performance more in terms of response time. Response time is the
amount of time required to accomplish a predefined set of work. Response
time is a more useful indicator to end users because they are the ones who are
waiting for a result—the longer the response time, the longer it takes to
complete the user’s job.

To analyze the throughput of a distributed database request, the DBA must
inspect the entire throughput chain required to satisfy that request. Failure to

analyze the performance of any one component can result in performance
degradation. The throughput chain for a request includes every piece of
hardware and software and every configuration that must be traversed to
deliver service to that end user. Typical components of a throughput chain
include

• The computer hardware, local operating system, networking software,
and local databases for the requester

• The network hardware, wiring, gateways, routers, and hubs
• Any middleware or transaction processing system used by the requester

or the server
• The computer hardware, local operating system, networking software,

and databases on the server
• Disk storage and storage management software

Each link in the chain is required to complete a given transaction. The best
throughput that any given configuration can achieve is always confined by
the slowest component of the chain. To tune distributed performance, the
DBA should expend more effort on the weaker links in the throughput chain.

Summary
Because data is required at various points throughout an organization, the
DBA must understand the various ways of moving data around. This can
involve copying data from place to place—either complete copies of the data
or a subset of the data. Utilities such as LOAD and UNLOAD, IMPORT and
EXPORT, are ideal for accomplishing many of these tasks.

Sometimes the database environment must be designed such that logically
related data is distributed to different physical locations. This is a distributed
database. The DBA must be capable of designing distributed databases given
knowledge of the capabilities of the DBMS, the needs of the organization,
and the locations that must be supported.

Data is likely to reside in global locations within your organization. As a
DBA, it is your duty to ensure its integrity, efficiency, accessibility, viability,
and recoverability.

Data is likely to reside in global locations within your
organization.

Review
1. Why is a two-phase COMMIT necessary when data is modified at two

locations within a single unit of work?
2. Describe a technique for unloading data from multiple tables into a

single UNLOAD file.
3. What techniques can be used to limit the amount of data that is

unloaded?
4. What is the biggest threat to efficient performance for a distributed

database system?
5. Describe the two-phase COMMIT process.
6. How can LOAD and UNLOAD be used to maintain test beds of data

for applications?
7. How are nulls handled when loading data into a table using the LOAD

utility?
8. Name and define the three capabilities used to describe distributed

technology and databases.
9. What is the difference between replication and propagation?

10. What issues and constructs can cause data integrity problems after a
LOAD?

Bonus Question
Read the following paragraphs and describe a distributed database
implementation that would make sense for the data discussed. Keep in mind
the concepts of data placement for distribution efficiency as you outline
where each type of data should be kept.

Acme Corporation is headquartered in Phoenix, AZ. It has distribution
centers located in Los Angeles, New York City, London, and Tokyo.
Acme wishes to build a distributed database for tracking goods from its
distribution centers to its retail outlets.

All edible goods are distributed out of the Los Angeles distribution
center, except for meat, fish, and poultry, which are distributed from
every location. Electronics are distributed out of New York City only.
European goods are distributed out of the London center, and Asia-

Pacific goods are shipped out of the Tokyo center. All other goods can
be distributed from any distribution center.

Suggested Reading
Bell, David, and Jane Grimson. Distributed Database Systems. Wokingham,

England: Addison-Wesley (1992). ISBN 0-201-54400-8.
Bobak, Angelo R. Distributed and Multi-Database Systems. New York, NY:

Bantam Intertext (1993). ISBN 0-553-09156-5.
Burleson, Donald K. Managing Distributed Databases. New York, NY:

John Wiley & Sons (1994). ISBN 0-471-08623-1.
Chorafas, Dimitris N., and Heinrich Steinmann. Solutions for Networked

Databases. San Diego, CA: Academic Press (1993). ISBN 0-12-174060-
9.

Hackathorn, Richard D. Enterprise Database Connectivity. New York, NY:
John Wiley & Sons (1993). ISBN 0-471-57802-9.

Podcameni, Silvio, Manfred Mittelmeir, and Michele Chilanti. Distributed
Relational Database: Cross-Platform Connectivity and Applications. 3rd
ed. Upper Saddle River, NJ: Prentice Hall (1996). ISBN 0-13-570797-8.

Schur, Stephen G. The Database Factory. New York, NY: John Wiley &
Sons (1994). ISBN 0-471-55844-3.

20. Data Warehouse Administration

The ongoing quest for more and better business intelligence has caused many
organizations to develop data warehouses and data marts to serve their
analytical needs. Although, at the most basic level, a data warehouse is
simply a database that has been designed and optimized for a specific type of
processing, DBAs need to administer them differently from typical databases.
This chapter outlines why this is so.

A data warehouse is designed and optimized for a specific
type of processing.

What Is a Data Warehouse?
So, just what is a data warehouse, and why should you treat it differently
from a DBA perspective? William H. Inmon, recognized as the father of the
data warehouse, defines data warehouse in his book Building the Data
Warehouse (1996) as follows:

Data Warehouse:
A subject-oriented, integrated, nonvolatile, and time-variant
collection of data in support of management’s decisions.

But what exactly does that definition mean? Let’s break it down.
• Subject-oriented. Data pertains to a particular subject instead of the

many subjects pertinent to the company’s ongoing operations.
• Integrated. Although the data can originate from a variety of disparate

sources, the data within a data warehouse is merged into a coherent
whole.

• Nonvolatile. Data is stable in a data warehouse. Although data can be
added, data cannot be removed. This provides a consistent picture of
the business for analysis.

• Time-variant. Data stored within a data warehouse is identified with a
particular time period.

For our purposes, data warehousing can be defined as the process of

extracting, integrating, transforming, and cleansing data and storing it in a
consolidated database. The data warehouse contains atomic data and lightly
summarized data. Once the data is consolidated and made available, the data
warehouse becomes the only data source that management should access for
decision making.

Data warehousing is the process of extracting, integrating,
transforming, and cleansing data and storing it in a
consolidated database.

What, then, is a data mart? A data mart is basically a departmental data
warehouse defined for a single business unit or area. Actually, there is no
universally agreed-on difference between a data warehouse and a data mart.
A data mart is not necessarily smaller than an enterprise data warehouse. It
may be smaller, but size is determined based on business needs. For example,
departmental analysis at the business unit level may require more historical
information than cross-department, enterprise-wide analysis.

At any rate, both data marts and data warehouses need to be treated
differently from traditional database systems from a DBA perspective.

Analytical versus Transaction Processing
The key difference between a traditional database and a database designed as
a data warehouse is the type of processing each supports. The traditional
database is designed primarily for transaction processing—that is, supporting
the transactions that are required for business operations to be conducted.
Transactions read and write data on a regular basis. In contrast, data
warehouses are designed for analytical processing—that is, supporting the
business intelligence and knowledge discovery needs of the organization.
Analytical operations are read intensive with very few, if any, write
operations required.

Data warehouses are designed for analytical processing.

Terms that are commonly used to describe analytical processing include
decision support, DSS, business intelligence (BI), advanced analytics, OLAP,
data mining, and information center queries. Each of these activities is read
intensive, consisting of queries that sift through the data looking for patterns
and trends.

DSS stands for decision support system, which is a read-only database
designed for analytical processing.

OLAP stands for online analytical processing. With OLAP technology,
end users can navigate through a data warehouse to derive intelligence from
data through interactive and iterative queries against the warehoused data.
OLAP uses a multidimensional view of detail, summary, and aggregate data
to access information for further analysis. The key term here is
multidimensional. A dimension consists of structural attributes viewed as
similar by the end user. For example, years, quarters, months, days, and so on
make up the time dimension.

OLAP uses a multidimensional view of detail, summary, and
aggregate data.

A dimension is a modifier of the basic fact that is being analyzed.
Examples of facts include sales amounts, inventory totals, and expense
amounts. Each fact depends on multiple dimensions. For example, sales
amounts will differ by geographic region, time, product, and so on. OLAP
permits multidimensional analysis of facts by applying complex calculations
across dimensions. Additionally, OLAP provides many other capabilities,
including analysis and trending over time, subsetting of data, drill-down
through varying levels of detail, “reach-through” to operational data, and data
comparison methods.

The bottom line is that OLAP, in contrast to OLTP, focuses on analytical,
rather than transactional, processing. Table 20.1 compares OLAP and OLTP
characteristics.

Table 20.1. OLAP versus OLTP

Data mining is the process of discovering heretofore unknown information
and patterns lurking within an organization’s data. Data mining is fast
becoming a requirement for the modern, competitive company. Data mining
processes apply heuristic algorithms to historical data to automatically
uncover patterns in the data. The quantity and quality of available data and
the caliber of the pattern discovery algorithms determine the value of the data
mining applications. Consequently, organizations that deploy data mining
tend to store more data for longer periods.

Both OLAP and data mining are methods for searching out patterns in
corporate data. However, OLAP is user driven, while data mining is
computer driven. This introduction to OLAP and data mining is necessarily
brief—an entire book could be devoted to each of these subjects. The key
from the DBA perspective is to plan for administering and managing the data
warehouse databases in a manner consistent with their usage.

OLAP and data mining are methods for searching out patterns
in corporate data.

Information Center is an antiquated term that was used for DSS processing
in the early 1980s. Those readers who recall the proliferation of the
Information Center in the 80s will associate it with data warehousing.

Administering the Data Warehouse
The issues of importance when managing a data warehouse differ from those
of traditional database administration. Some of the tasks are equivalent, but
the implementation and expectations are different.

Data warehouses are accessed mostly by read operations for analytical
processing, whereas the traditional database is accessed by a mix of read and
write operations for transactional processing. The data warehouse is strategic
—it allows users to discover hidden trends and new ways of conducting
business. The traditional database is tactical—it allows the business to
conduct day-to-day operations.

Be aware of the complexity of data warehouses before undertaking any
implementation project. Detailed knowledge of the applications accessing the
databases that feed the data warehouse must be available. Be sure to allot
development time for learning the complexities of the source systems.
Furthermore, the documentation for production systems is often inadequate

or nonexistent, so additional time can be lost just trying to understand what
already exists. Furthermore, analyzing the source data to determine what
level of data scrubbing is required is a time-consuming task.

All of these issues must be factored into the task of data warehouse
administration. Let’s examine some of the different tasks required to
administer data warehouses efficiently and effectively.

Too Much Focus on Technology?
When you’re developing a data warehouse, be sure to include tools, people,
and methods in your warehouse blueprint. Too often, the focus is solely on
the technology and tools. A data warehouse project requires more than just
sound technology. It needs careful planning and implementation (methods) as
well as a means to learn from the efforts of others (people) through
mentoring, consulting, education, seminars, and user groups.

A data warehouse project requires more than just sound
technology.

Data Warehouse Design
When designing the data warehouse, be sure to create a physical design with
the special needs of the data warehouse in mind, instead of just mimicking
the design of similar production OLTP databases. Common physical design
techniques used for OLTP databases, such as a database in third normal form,
can in fact inhibit an OLAP database from performing well. This is so
because the data access requirements for file and table structures, indexes,
and clustering sequence in a data warehouse differ from those of OLTP
databases, as do the access requirements and patterns.

A common database design for the data warehouse is the star schema. This
name derives from the pattern formed by the data model when it is
diagrammed, as in Figure 20.1. In a star schema design, a central fact table
stores the primary business activity at the center of the star. This fact table is
usually based on a numeric value or a group of numeric values. The fact table
is surrounded by the dimensions that affect the activity, and the dimension
tables make up the points of the star.

Figure 20.1. The star schema

A common database design for the data warehouse is the star
schema.

In this simple example, the Revenue table is the fact table, and the five
dimensions of the star are the Movie, Theater, Customer, Market, and Time
tables. As an end user, you may want to review revenue by any one, or
perhaps a combination, of these dimensions.

The star schema is well suited for the design of data warehouse databases

for the following reasons:
• The design is flexible enough to facilitate quick changes or additions as

the data warehouse grows or the application changes.
• The design is easy to understand for both developers and end users.
• The design mimics the way end users typically think about and use

their business data.
• The design is easily implemented as a physical database and results in

efficient queries because many DBMSs are built to recognize and
optimize star joins.

Sometimes additional details are required, and the star schema becomes a
snowflake schema. A snowflake schema is a star schema in which the
dimension tables have additional relationships. When additional tables are
required that relate to one or more dimension tables, a snowflake schema is
born.

A DBA working on a data warehouse implementation should take care to
optimize the DBMS installation for star schema support. Some DBMS
products require special installation parameters to enable the optimizer to
more efficiently process star schema queries. Be sure to examine the
installation parameters carefully and set them properly for data warehousing,
otherwise some of your queries may be suboptimally processed.

Of course, star schema and snowflake schema designs are not the only
aspects of data warehouse design of concern to the DBA. To aid in the
performance of certain regularly occurring queries, it is common for some
portions of the data warehouse to be denormalized. Because a data warehouse
is a read-only database, the DBA should consider the many denormalization
options discussed in Chapter 4. Table 20.2 summarizes the various
denormalization options to consider.

Table 20.2. Types of Denormalization

As you design the data warehouse, be alert for situations where
denormalization may be beneficial. In general, denormalization speeds data
retrieval, which may be desirable for a data warehouse. However, proceed
with caution when denormalizing the data warehouse design.
Denormalization is not mandatory simply because denormalized data is
optimized for data access and the data warehouse is primarily “read only.”
Because the data must be populated into the data warehouse at some point, a
data warehouse is in actuality “read mostly,” not read only. Denormalized
data is difficult to maintain and should be avoided if performance is
acceptable. So, as with a traditional database implementation, denormalize
only when a completely normalized design will not perform optimally.

Proceed with caution when denormalizing the data warehouse
design.

Another consideration for the physical design of a data warehouse is data
compression. Because data warehouses tend be substantial in size,
compression can be used to reduce storage requirements. The performance
impact of compression will depend on the ability of your DBMS to compress
data. Sometimes compression aids performance because more rows can be
stored in the same amount of space and fewer I/Os are required.

Finally, the DBA should design the physical database for the data
warehouse such that it encourages parallel operations. Due to the high
volume of data that must be processed by the analytical queries typical of
OLAP and DSS, performance is usually enhanced by parallel activities.

Consider partitioning tablespaces to take advantage of parallelism features of
the DBMS, and consider basing the partitions on the usage patterns of your
data warehouse access. In addition, placing indexes and data tablespaces on
different disk devices can help parallel tasks to operate more efficiently.

Data Movement
A big part of any data warehousing effort is establishing the data
requirements and then creating methods to capture and move the data into the
warehouse. Without a clear understanding of end user needs, the DBA will
have great difficulty determining what data to move, never mind how to
move it.

Establishing the data requirements demands a clear
understanding of end user needs.

To establish what data is required, the DBA must elicit answers to two
important questions:

• What is the purpose of the data warehouse?
• What are the results expected from the data warehouse?

The next step is to ferret out the required data from the OLTP systems and
databases. The data warehouse team must understand each piece of data,
including its source (where it is created and by whom), its relationship to
other data elements, its meaning, and what it needs (if anything) to make it
viable for inclusion in the data warehouse. All of this metadata should be
captured and maintained so that unanticipated changes to the data in the
OLTP systems after the data warehouse goes live can be accommodated.

If a source for the data cannot be found internally, you may need to
purchase data from external suppliers and integrate it into your data
warehouse.

After all data has been identified, as well as any transformations that are
required, processes need to be established for the extraction and movement of
the data. Typically, the extraction process gathers the data from the source
OLTP databases and places it in an intermediate staging area. However, this
still-raw data may need to be transformed before it is placed into the data
warehouse.

Some data warehouses are designed to remain in read-only mode, except

when an ETL process is occurring. Switching between read-only and read-
write modes is accomplished using database commands or by setting system
parameters (depending upon the DBMS being used).

Tools can be used to assist, including LOAD and UNLOAD utilities,
import and export programs, propagation software, and ETL products. Be
sure to include the cost of such software in your data warehousing budget,
and make sure that all DBAs who need to use this software are sufficiently
trained.
Consistent Data Acquisition

Businesses react and adapt to industry trends, with resulting changes to data.
As the data in operational systems changes, so must the data in the
warehouse. Over time, fields will be eliminated, meanings will change, sizes
and types will change, and more. You must plan to keep track of physical
data changes, as well as changes to the semantics of the data. Regardless of
the type of change, you will need utilities, tools, and processes to keep on top
of these issues and respond appropriately.

As the data in operational systems changes, so must the data in
the warehouse.

Data Cleansing
The quality of the data in the data warehouse is of utmost importance to the
overall usefulness of the data warehouse. If the data is not reliable, or cannot
be understood by the users, the data warehouse will fail. In other words, data
in the warehouse is only as good as its source. Failure to clean dirty data can
result in the creation of a data outhouse instead of a data warehouse.
Therefore, the data warehouse project requires data cleansing and scrubbing
tasks to be defined and performed as the data is moved from other sources to
the data warehouse.

Data scrubbing can be used to “clean” data as it is moved into the data
warehouse. One component of data scrubbing is the transformation of codes
into meaningful values for the user. For example, a CUSTOMER-CODE of 5
means nothing to the typical user, but a CUSTOMER-CODE of
“Corporation” or “Individual” is usable and helpful.

Transform codes into meaningful values for the user.

A number of insidious data problems can reduce the usefulness of a data
warehouse. We’ve all had the experience of looking at the contents of one of
our major files or databases and knowing intuitively that the data is incorrect.
There is just no way that an employee was born in 1999. And that next record
looks bad, too. How could she have been born in 1979 but hired in 1978?

All too often, these types of data integrity problems are glossed over. “No
one would actually take that information seriously, would they?” Well,
maybe people won’t, but computerized systems will. Incorrect information
can be summarized, aggregated, or manipulated in some way, and then
populated into another data element. When erroneous data elements are
moved into the data warehouse and processed analytically, your company’s
business can be impacted. What if warehouse data is being analyzed to
overhaul hiring practices? Erroneous data could impact employment
decisions if enough of those hire and birth dates were inaccurate.

Never cover up data integrity problems. Document them and bring them to
the attention of your manager and the users who rely on the data. Usually, the
business units using the data are authorized to modify and validate their
business data.

Never cover up data integrity problems.

Small data discrepancies can become statistically irrelevant when large
volumes of data are averaged. However, averaging is not the only analytical
function that is employed by analytical data warehouse queries. What about
sums, medians, maximums, minimums, and other aggregate and scalar
functions? Even further, can you actually prove that the scope of your data
problems is as small as you think it is? The answer is probably no.

This is just one small example of the data integrity violations that many
application systems allow into their production data stores. Some of the
integrity violations may seem to be inexcusable. For example, most of us
have encountered a SEX or GENDER column (or field) that stored
everything from “*” to “!” to a blank. Shouldn’t it be a simple matter to
programmatically force the values to be either “M” or “F”? The short answer
is yes, but this simplifies that matter too much, because certain information,
by law, has to be optional.

The real problem is that a systematic manner of recording “unknown”
values has not been employed. Every program that can modify data should be

forced to record a special “unknown” indicator if a data value is not readily
available at the time of data entry. Most relational DBMS products enable
data columns to store a null to indicate “unknown” or “unavailable”
information. Prerelational DBMS products and data files do not have this
option. However, some specific, standard default value can be chosen. The
trick is to standardize the default value.

Standardization of “unknown” values can be a tedious process. Our
primitive example used a data element with a simple domain of two valid
values. Most data elements have domains that are considerably more
complex. Determining which values are valid can be difficult for someone
who is not intimately familiar with the application system that allowed the
values to be inserted in the first place. Is “1895-01-01” a valid date for that
field, or is it a default for an “unknown” value?

Standardization of “unknown” values can be a tedious process.

Only an in-depth analysis of the programs and the metadata in the
corporate repository can provide the answer. Nineteenth-century dates may
be valid for birth dates, stock issuance dates, account inception dates,
publication dates, and any number of other dates with long periods of
“freshness.” However, just because the program allows it to be entered does
not mean it is actually a valid date! It is quite simple for a user to type in
1895 instead of 1985. If the data entry program is not intelligent enough to
trap these types of errors, your systems will insert dirty data into production
data stores. This type of data integrity problem is the most difficult to spot. It
is quite likely that only the end user most familiar with the data could spot
these types of problems.

So, what is the solution? Several techniques can be used, but the best
approach is to foster an environment in which data is truly treated as a
corporate asset. The problem is attracting the appropriate high-level
management personnel who can implement a policy that values data. But
now we are moving the discussion outside the scope of data warehousing and
back to data administration. So, let’s get back on track.

A key part of the data movement activities for populating a data warehouse
will involve the identification of invalid and coded data, and transforming
that data into useful, queryable information. Automated ETL software can
help you with this, but it cannot do it all for you.

Transform the data into useful, queryable information.

Data Quality Issues

Maintaining data quality will be an ongoing concern. Both the end users and
the data warehouse construction and maintenance team are responsible for
promoting and fostering data quality. Data problems will be discovered not
only throughout the development phase of the data warehouse but also
throughout its useful life.

Be sure to establish a policy for how data anomalies are to be reported and
corrected before the data warehouse is made generally available.
Additionally, be sure to involve the end users in the creation and support of
this policy; otherwise, it is doomed to fail. Remember, the end users
understand the data better than anyone else in the organization, including the
data warehouse developers and DBAs.

Establish a policy for the reporting and correction of data
anomalies.

Do not underestimate the amount of time and effort that will be required to
clean up dirty data. Understand the scope of the problems and the processes
required to rectify those problems. Take into account the politics of your
organization and the automated tools available. The more political the battle,
the longer the task will take; the fewer tools available, the longer the task will
take. Furthermore, if the tools you do have are not understood properly, the
situation will probably be worse than having no tools at all.
Operational Problems

As the previous discussion makes clear, you will encounter problems in the
operational systems feeding the data warehouse—problems that may have
been running undetected for years. Your options for handling them are few:

• Ignore the problem with the understanding that it will exist in the data
warehouse too.

• Fix the problem in the operational production system.
• Fix the problem during the data transformation phase of data

warehouse population, if possible.

Previously undetected operational problems may be

uncovered.

Of course, the second and third options are the favored approaches. Fixing
the problem in the operational system is the best solution of all, but you will
need to examine the budget and deadlines associated with the data warehouse
project to determine whether production problems can be remedied during
the project. If not, you can fix the data problems as the data flows into the
data warehouse. You should also plan on tracking the source of the errors in
the production systems, if possible, so that a problem once identified is at
least documented.

However, do not mix operational needs into the data warehouse project
plan. When a data warehousing project is first initiated, the objectives may be
a mix of operational and analytical/informational goals. This is a recipe for
disaster. Redefine the project to concentrate on nonoperational, informational
needs only. The primary reason for the existence of the data warehouse is to
segregate operational processing from reporting.

Do not mix operational needs into the data warehouse project
plan.

Data Warehouse Scalability
As a data warehouse becomes accepted within the organization, demand for
its services will grow. The need for new reports and summary tables
increases, and the data warehouse can explode to several times its original
size. Some industry surveys indicate that 60 to 70 percent of data warehouses
are filled with duplicate or redundant data such as summary tables and
indexes. This can more than double the disk storage required to store the data
warehouse. The more users on the system and the more simultaneous queries
there are, the more potential there is for delays in response time. It is
important, therefore, to architect the system so that it will be able to scale
linearly with demand. The DBA can choose to use parallel processors,
parallel databases, bitmapped indexes, data compression, and other
techniques to provide better scalability.
Size Issues

One aspect of scalability is size. Many novices incorrectly assume that a data
warehouse must be large. While it is true that many data warehouses are quite
large and consume massive amounts of storage, a data warehouse can be

small and still provide value to the organization. The reality is that size
doesn’t matter.

The reality is that size doesn’t matter.

Data Warehouse Performance
Data warehouse performance is similar to overall database performance, as
discussed in Chapter 9. However, different aspects of performance are
emphasized. In general, data warehouse performance can be viewed from
four perspectives:

• Extract performance—how smoothly data is updated and refined in the
warehouse

• Data management—the quality of the data warehouse design and
database maintenance

• Query performance—how well the database is tuned for analytical
processing and how well each query is written

• Server performance—the configuration and performance of the
hardware

A data warehouse is populated, at least in part, with data extracted from
production systems. The efficiency with which data is extracted from the
production system impacts the usability and performance of the data
warehouse. The longer it takes to gather data and load it into the data
warehouse, the longer the period that the data warehouse will not reflect
current data. Moreover, that lack of currency can impact the usefulness of any
data analysis performed on the data. It is therefore imperative to optimize the
speed with which the data warehouse is loaded, unloaded, and accessed.
High-speed database utilities can be used to optimize the flow of data
throughout the life cycle of the data warehouse.

The design of the data warehouse is intrinsic to its viability. A data
warehouse must be designed for easy access and analysis. The DBA must
understand how the data is going to be accessed and design the database
structures accordingly. With OLTP systems, dynamic activity occurs against
live data. Many concurrent updates, inserts, and deletes can be going on at
any time. The way in which tables are indexed is probably the most crucial
element of database design for OLTP systems. In contrast, the OLAP and
DSS systems used for data warehousing are read-only systems with no (or

limited) online modification capabilities—instead, data is loaded during off-
peak hours. Therefore, the data warehouse may require many finely tuned
indexes for daily analytical queries and fewer (perhaps no) indexes during the
loads. The DBA must carefully plan to balance the efficiency of the queries
against the efficiency of the load processes.

A data warehouse must be designed for easy access and
analysis.

The data warehouse indexes do not have to be the same indexes that exist
in the operational system, even if the data warehouse is nothing more than an
exact replica or snapshot of the operational databases. The DBA must
optimize the indexes, based on the access patterns and query needs of the
decision support environment of the data warehouse. Additionally, consider
using bitmap indexes for data warehouses to optimize the performance of
your DSS applications.

Furthermore, from a database design perspective, methods for ensuring
data integrity during data warehouse operations are not needed. Because data
is cleansed and scrubbed during the data transformation process,
implementing data integrity mechanisms such as referential integrity,
triggers, and check constraints on data warehouse tables is not efficient. Even
without a comprehensive cleansing, the data in the warehouse will be as good
as the data in the source operational systems (which should use RI and check
constraints).

Always remember that the data warehouse is a decision support vehicle.
Although the data will be updated and summarized periodically, it should not
be updated by the DSS users. If your design calls for a data warehouse in
which all the data is modified immediately as it is changed in production, you
need to rethink your data warehouse design.

The data warehouse is a decision support vehicle.

Consider starting data warehouse databases in read-only mode if your
DBMS permits. Issuing a START command to enable read-only mode can
have the additional effect of eliminating locking on the read-only databases.
Of course, when the data warehouse is refreshed, the databases have to be
restarted in read-write mode.

From the query performance perspective, everything is different in the data
warehouse environment. Subsecond response time is not expected—indeed, a
query can run all day long if the results of that query are expected to deliver
significant analytical insight. That does not mean that the DBA does not need
to monitor data warehouse query performance. It simply means that the goals
of monitoring DSS queries are different. The DBA should examine trends
instead of absolutes.

For example, in a data warehouse it would be interesting to note that
queries running between 3:00 p.m. and 4:00 p.m. from the finance
department on expense data average between 10 and 25 seconds response
time. The DBA can then examine the daily response time by time ranges to
determine whether performance is falling within expected ranges or not. If
query response time suddenly and consistently jumps for certain time ranges,
the DBA may need to help end users write more efficient queries.
Alternatively, the DBA could change the data warehouse implementation to
better support the users by building indexes or transforming data by
aggregation or summarization, for example.

Because data warehouses are read only in nature, you should be able to run
DSS and OLAP queries using dirty reads. Recall from Chapter 5 that a dirty
read is implemented with the UNCOMMITTED READ isolation level. With
this isolation level, queries might read data that never actually exists in the
database, because the data has been changed by another process but is not yet
committed. This is rarely a concern in the data warehouse because of its read-
only nature.

The server on which the data warehouse resides requires peak performance
around the clock, but this demand is mitigated by the difference between
OLTP and OLAP/DSS processing. However, the server hardware and
configuration should not become a bottleneck for data warehouse
performance and thus must be monitored and tuned.

Organizations should use an agent-based performance monitor that
collects, analyzes, and stores thousands of performance measures; is
configurable for multiple environments; and offers both real-time and
historical perspectives on viewing all critical metrics. In this manner,
organizations can implement an integrated database performance solution that
is capable of monitoring and managing the performance of the following:

• Relational databases in Windows, UNIX, and mainframe environments

• Servers in distributed environments
• Entire enterprise network
• Distributed client/server transactions

Automatic Summary Tables (aka Materialized Query Tables)

Most experts agree that aggregating records in a data warehouse can palpably
enhance the performance of large data warehousing applications. This is so
because the vast amount of detailed information that exists in most data
warehouses cannot be easily understood. Summarizing the data into logical
groups makes it easier to be assimilated and analyzed in a cogent manner.

Aggregating records can palpably enhance the performance of
large data warehousing applications.

The single most dramatic way to affect performance in a large data
warehouse is to provide a proper set of aggregate (summary) records
that coexist with the primary base records.1

However, summarizing data poses several problems. First, summarizing
data can require an enormous amount of processing. Then, once summarized,
the data must be stored, which takes up valuable disk space. Even more
troubling is the problem of identifying what data should be aggregated.

Many modern DBMSs provide the ability to automate aggregation using
automatic summary tables, also known as materialized query tables or
materialized views. The basic concept is to create a new aggregated table
from a base table by using basic SQL functions such as COUNT, SUM,
AVG, MIN, or MAX. The result is a table that is aggregated at a higher-level
dimension.

Regardless of the actual DBMS implementation, the basic idea is that the
DBA controls the creation of summary tables. The summary table is defined
by means of a query using SQL functions. Users do not need to even know
that summary tables exist. The DBMS optimizer can determine when using a
summary table can optimize a query written against the detail data and then
automatically rewrite the query to use the summary table. Furthermore, in
most cases, the DBMS automatically maintains aggregates. In other words,
when underlying data changes, the DBMS automatically updates the

summary table data.

The DBA controls the creation of summary tables.

In general, automatic summary tables can significantly optimize data
warehouse performance. However, the DBA will need to monitor which
aggregates are used most frequently to ensure that the proper automatic
summary tables are built. Additionally, the DBA will need to plan for
additional disk usage to support the aggregated data.

Data Freshness
Because data is constantly changing in the OLTP systems, data warehouse
processes must be set up to keep data up-to-date. As business users analyze
data in the warehouse, the freshness of the data is an issue. The results of an
analytical query issued against data that is up-to-date as of yesterday are
likely to be more useful than the same query run against month-old data.

Data warehouse processes must be set up to keep data up-to-
date.

The difference between the data in the data warehouse and the data in the
production system is known as data latency. Business needs will drive the
desired amount of latency. Some data warehouses require very fresh data
(that is, low latency), whereas other data warehouses can tolerate high
latency.

The DBA must establish a means for the business users to determine the
freshness of the data. Whenever new or updated data is loaded into the data
warehouse, the business users must be capable of ascertaining the validity
date of that data. Think of it like the date that is stamped on a carton of milk.

However, do not be confused into thinking that only a completely up-to-
date data warehouse is of use. When examining data for patterns and trends,
the freshness of the data may be irrelevant—or, perhaps, mostly irrelevant.
The importance of data freshness will vary from data element to data
element, from business unit to business unit, and from query to query.

The bottom line, though, is that business users should be given an easy
way to establish when the data was last loaded and how fresh the data is.

Data Content

The data warehouse administrator may need to provide metadata on the
contents of the data warehouse. This metadata could include the types of data
being stored, which types of data change most frequently, and how fast
certain types of data are growing. Keeping track of growth patterns helps to
determine the areas of the data warehouse that may require attention in terms
of storage allocation, reorganization, or redesign.

Furthermore, it is possible that no matter how closely you manage the
population of the data warehouse, invalid or inappropriate data will be
loaded. Developing methods to analyze and verify data integrity and
relationships in the data warehouse is a worthwhile endeavor.

Develop methods to analyze and verify data integrity and
relationships in the data warehouse.

The primary value of the data warehouse is in its data content. Therefore, it
is good practice for the DBA to gain as much understanding of that data
content as possible.

Data Usage
A data warehouse management task that is not associated with traditional
database administration is the identification of unused data. Maintaining
certain data in the warehouse does not make sense when certain thresholds or
conditions are met. This situation may occur because of usage reasons (data
is no longer used by the business), technology reasons (reaching a capacity
limit), regulatory reasons (change in regulations or laws), or business reasons
(restructuring data or instituting different processes).

A data warehouse is usually a very large consumer of disk storage.
Sometimes users go overboard when designing a data warehouse and store
more data than is required. The data warehouse DBA must deploy methods to
examine what data has been accessed and how frequently. The DBA should
ascertain from the business users whether such inactive data is still required.

If large amounts of unused data are identified, the DBA may decide to
remove the data from the warehouse. Such action should not be taken
indiscriminately. Only after verifying that the data has been unused for at
least a year—to take into account seasonal access variations—should any
action be taken on that data.

The unused data may then be purged from the data warehouse or perhaps

moved to cheaper storage media (tape, optical disc, or CD-R, for example).
Of course, purged data should be stored for a period of time to assure that it
was not purged in error.

Purged data should be stored for a period of time.

The capability to track data warehouse activity is a useful administrative
goal. For example, the DBA may opt to profile usage on a daily basis, and
then summarize it by day of the week, week, or month. Usage by business
unit or department is also a useful statistic. The more you can track data at
discrete levels—even down to the column level—the better. Furthermore, this
information can be coupled with performance monitoring statistics to gauge
response time against what was actually accessed. In general, the more you
know about who is using what data and when, the better you will be able to
manage the data warehouse environment.

Financial Chargeback
In most organizations, data warehouse projects are managed by multiple
departments, each of which has its own financial goals. Data warehouse
DBAs should ensure that they can charge back appropriate costs to business
units and users so that they can meet financial reporting requirements. An
integrated solution is required that monitors IT costs by providing critical
chargeback services that track information resources used organization-wide.

For chargeback purposes, you should consider measuring and tracking
every request made to the data warehouse, including who requested the data,
the number of rows returned by the request, the CPU cycles spent to return
the data, and which tables were accessed. Depending on your particular
organizational needs, you may also wish to track the specific time of day the
request was made. Some organizations choose to charge different rates based
on the activity in the system at specific times.

Measure and track every request made to the data warehouse.

Even if your organization chooses not to actually bill departments by
usage, it can make sense to establish a financial chargeback system to
demonstrate the value of the data warehouse to the business units that use it
the most.

Backup and Recovery

The DBA must create a backup and recovery plan for the data warehouse
even though most access is read only. Some novices mistakenly view backup
and recovery as a non-issue for data warehouses, but this is simply not the
case. Data is moved into the data warehouse on a consistent basis—some of it
from external sources that might not be easily duplicated.

Furthermore, if warehouse data is lost due to some type of failure, the
production data from which it was gathered may no longer exist in the same
form. Perhaps the production database was purged to provide space for more
transactions. If the data was not archived, it cannot be reproduced, and even
if it was archived, it may be difficult to restore. In addition, data in the data
warehouse typically exists in different forms from production data. Data may
have been cleansed, transformed, or aggregated before being populated into
the data warehouse. Such data may be difficult or impossible to recreate.
Furthermore, data warehouses often contain external data that, if lost, may
have to be purchased again, creating an unnecessary financial drain on the
company.

So, for all of the reasons you need to provide a backup and recovery plan
for traditional databases, you need to do the same for the data warehouse
databases. Of course, the backups need be taken only whenever data is added
to the data warehouse.

Indeed, backup and recovery needs special consideration within the
context of the data warehouse. The data warehouse should have a backup and
recovery strategy that will enable the organization to recover all essential data
in an emergency. Data warehouses are becoming just as essential to
businesses as transaction-oriented databases.

Backup and recovery of the data warehouse needs special
consideration.

Depending on the size and nature of the data warehouse, you may decide
not to back up particular pieces of the data warehouse because you can
refresh the data more efficiently. Such cases, however, are more the
exception than the rule. Review the cost/benefit of each data warehouse and
data mart, keeping in mind how often the data is updated or refreshed and
how long a recovery would take to implement.

Finally, disaster recovery requirements must not be overlooked.
Organizations are becoming more and more dependent on the information

that a data warehouse provides, thereby raising the criticality of data
warehouse applications. This means the data warehouse must be treated like
any other critical system in terms of disaster recovery planning.

Don’t Operate in a Vacuum!
The DBA must be aware of the business requirements of the data warehouse
and ensure that these needs are met. This is a challenge, but it is simple when
compared to the challenge of keeping the data warehouse accurate and
available in light of changing operational systems.

As business needs change, operational systems change. When operational
databases and files change, the data warehouse will be affected as well. When
a data warehouse is involved, however, both the operational database and the
data warehouse must be analyzed for the impact of changing any data
formats. This is the case because the data warehouse stores historical data
that you might not be able to change to a new format. Before any changes are
made to the operational system, the data warehouse team must be prepared to
accept the new format as input to the data warehouse and to either maintain
multiple data formats for the changed data element or to implement a
conversion mechanism as part of the data transformation process.

Be aware, though, that conversion can result in lost or confusing data.
When undertaking a conversion, it is wise to plan thoroughly and automate
the process as much as possible with tested, trusted tools and scripts. Relying
solely on human conversion will almost surely result in errors in the data.

Conversion can result in lost or confusing data.

Summary
Data warehouses can provide organizations with a competitive advantage as
users begin to analyze data in conjunction with business trends. Once a data
warehouse has been implemented, you cannot turn back because your users
will be hooked, your organization will be more profitable, and you’ll have the
satisfaction of contributing to the success of the business.

DBAs whose duty it is to manage their company’s data warehouse need to
gain an understanding of the analytical nature of data warehousing. Many of
the tasks required to support a data warehouse are similar to the tasks
required to support a traditional, OLTP-focused database. However, there are

differences that need to be understood and built into your data warehouse
administration policies and procedures.

Managing and administering a data warehouse requires a combination of
knowledgeable people, full-featured tools, and robust methods. Only through
the integration of these disparate resources can the DBA assure that the data
warehouse will be built and managed effectively.

Review
1. What is the difference between a data warehouse and a data mart?
2. Is it necessary to develop a backup and recovery plan for the data

warehouse, since it is a read-only environment?
3. Describe a few data cleansing techniques that may need to be applied

to data before it can be loaded into the data warehouse.
4. When designing a data warehouse, how should problems that are

identified in the operational OLTP systems be handled?
5. Describe the star schema and why it is an effective design for data

warehouse databases.
6. What are the four perspectives of data warehouse performance

management?
7. When might data need to be purged from the data warehouse?
8. What is the difference between OLAP and data mining?
9. Discuss the various options that must be considered specifically when

creating the physical design of the data warehouse.
10. Denormalization is always a good option for data warehouse

databases: true or false?

Suggested Reading
Adamson, Christopher. Star Schema: The Complete Reference. New York,

NY: McGraw-Hill (2010). ISBN 978-0-07-174432-4.
Barquin, Ramon, and Herb Edelstein, eds. Planning and Designing the Data

Warehouse. Upper Saddle River, NJ: Prentice Hall (1997). ISBN 0-13-
255746-0.

Devlin, Barry. Data Warehouse from Architecture to Implementation.

Reading, MA: Addison-Wesley (1997). ISBN 0-201-96245-2.
Hackney, Douglas. Understanding and Implementing Successful Data

Marts. Reading, MA: Addison-Wesley (1997). ISBN 0-201-18380-3.
Inmon, W. H. Building the Data Warehouse. 2nd ed. New York, NY: John

Wiley & Sons (1996). ISBN 0-471-14161-5.
Inmon, W. H., and Richard Hackathorn. Using the Data Warehouse. New

York, NY: John Wiley & Sons (1994). ISBN 0-471-05966-8.
Inmon, W. H., Claudia Imhoff, et al. Building the Operational Data Store.

New York, NY: John Wiley & Sons (1996). ISBN 0-471-12822-8.
Inmon, W. H., John A. Zachman, et al. Data Stores, Data Warehousing and

the Zachman Framework. New York, NY: McGraw-Hill (1997). ISBN 0-
07-031429-2.

Kelly, Sean. Data Warehousing in Action. New York, NY: John Wiley &
Sons (1997). ISBN 0-471-96640-1.

Kimball, Ralph. The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling. 2nd ed. New York, NY: John Wiley & Sons
(2002). ISBN 0-471-20024-7.

Lewis, William J. Data Warehousing and E-Commerce. Upper Saddle
River, NJ: Prentice Hall (2001). ISBN 0-13-091154-2.

Poe, Vidette. Building a Data Warehouse for Decision Support. Upper
Saddle River, NJ: Prentice Hall (1996). ISBN 0-13-371121-8.

Turban, Efraim. Decision Support and Expert Systems. Englewood Cliffs,
NJ: Prentice Hall (1995). ISBN 0-02-421701-8.

Witten, Ian H., and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques. San Francisco, CA: Morgan Kaufmann (2005).
ISBN 0-12-088407-0.

21. Database Connectivity

Installing the DBMS and creating databases are vitally important parts of the
DBA’s job. However, if the DBMS is not connected to the network, no one
will ever be able to access the data.

Multitier, Distributed Computing
This section offers a short introduction to multitier, distributed computing,
including client/server. The DBA must possess an understanding of the terms
commonly used in a multitier processing setting to assure database access in
a distributed business environment.

A Historical Look
In the early days of computing, computers required large amounts of power
and resources to run. Batch processing was the only operating mode, and
users received printed reports as their only source of information. Mainframe
programmers communicated with computers through punched cards. As
technology progressed in the 1970s, online processing gave the user more
power and closer availability to data. In the 1980s and 1990s, personal
computers became widely available and affordable. Inexpensive software
accelerated the growth of the PC, which today is a machine with considerable
power and memory capacity. Some are as powerful as the older mainframes.

Initially, PCs were used as stand-alone equipment with their own resident
data and software. The only way users could share data was by copying it to a
diskette and giving it to someone else. PCs were also used to emulate
mainframe terminals. Although terminal emulation helped somewhat, it did
not add significantly to the overall productivity.

PCs were initially used as stand-alone equipment.

As PC usage expanded, end users became more computer literate. This
initiated an insatiable desire for more data and more connectivity to corporate
systems. Seamless access to corporate databases on many platforms became a
requirement. However, for mission-critical applications to achieve
productivity enhancements, the computing assets—mainframe, midrange, and
personal—of the organization had to be integrated. Deploying the correct

computing resources to resolve the issues for which they were best suited
optimized productivity. Over time, a company’s overall competitiveness
could be impacted if end users had to spend an inordinate amount of time and
effort simply to access and analyze corporate data—wherever it resided.

The need to share information gave way to networks of workgroups using
the same data, printers, and software. This helped IT departments to include
PCs in traditional system management tasks such as backup and technical
support. As users grew more accustomed to PCs and their simpler interface,
expectations for mainframe and midrange applications grew. The use of
icons, dropdown menus, and multiple colors became a requirement of new
applications that could be accommodated easily on a high-powered personal
computer but were not commonplace for corporate mainframe applications.

Organizations have adopted and integrated technology across multiple
computing platforms. Today, distributed, multitier processing is
commonplace and the network keeps these disparate platforms connected. IT
personnel need to administer a complex environment to deliver computing
services to the business.

Distributed, multitier processing is commonplace today.

With the advent of the World Wide Web, users became more comfortable
interacting with their computers through a Web browser. Today, the Web
browser is the most popular client through which applications are accessed.

Business Issues
Three forces in business have driven the change to multitier environments:
downsizing, upsizing, and rightsizing. As the name implies, downsizing is a
transition downward, from mainframes to networked PC workstations. The
proliferation of more powerful, less expensive PCs has made downsizing an
attractive option for many large mainframe shops. Upsizing is the move from
stand-alone PCs to a network that connects many PCs together and provides
access to corporate databases. Finally, rightsizing is the practice of placing
applications on the most appropriate platform for the requirements. For
example, applications requiring high availability and scalability may require a
mainframe, at least for some pieces of the application. In contrast, an
application requiring rapid delivery and a highly customized interface will
likely require a PC workstation running some version of Windows for some

of its components.

What Is Client/Server Computing?
Client/server computing enables a user on a PC to run standard business
applications and access corporate shared resources over a network
connection. Basically, client/server can be defined as a relationship between
two or more computing entities that function together to accomplish a task.
Each of these entities performs a portion of the work involved. One entity
(the “client”) requests services and the other (the “server”) fulfills the
requests. Of course, a client/server environment may use multiple servers,
each fulfilling different types of requests—database access, application
processing, file access, printing, and so on.

Client/server can be defined as a relationship between two or
more computing entities that function together to accomplish a
task.

Today Client/Server Computing Is Ubiquitous
Although the term client/server is not used as commonly as it was in the
1990s, client/server computing still forms the basic infrastructure upon
which most modern applications are run.

Various interconnected servers enable common computer resources to be
shared in a client/server implementation. Most PC-based business software
applications access these networked files and printers as if they were directly
connected to the desktop PC. For example, in a networked environment, the
end user perceives a common pool of disk drives, printers, and other
resources without necessarily being able to distinguish between local and
remote resources. The most commonly used types of servers include print
servers, file servers, database servers, and application servers.

Print servers provide network users access to multiple printers as a
sharable resource. Instead of having a printer connected to each desktop PC,
print servers provide easy access to a printer by any PC connected on a
network.

File servers provide a means of sharing data files among users on the
network. A file server is not intended to perform computational tasks, nor

does it run programs on behalf of clients. It primary purpose is simply to
enable the storage and retrieval of data.

Database servers advance the data-sharing capabilities of the client/server
system by enabling targeted data access. Unlike LAN-based file servers,
which require the entire file to be retrieved, a database server is able to accept
SQL queries and respond with only the requested data.

Application servers provide services for business applications. One
advantage of application servers is their ability to reuse common business
logic.

When a client/server system is implemented, the designers must determine
which parts of the application should run on which computing assets. A
client/server application consists of the following three software layers:

• Presentation logic consists of the tasks required to display information
on a computer screen. For client/server systems, this usually involves a
GUI with point-and-click, drag-and-drop capabilities, interactive help
facilities, and other ease-of-use functionality.

• Business logic delivers the core elements of an application needed by
the end user to manipulate information for managing business. This
business logic is unique to the particular business at hand and
incorporates methods for implementing business strategies, conducting
business transactions, and enforcing company policies.

• Database management systems are used by most client/server systems
to provide quick access to structured data in a secure manner and to
facilitate data modification while enforcing data integrity. File storage
systems store the data managed by the DBMS (and handle data that is
not managed by a DBMS).

The presentation-logic layer is the screen (or report) that the user sees—the
graphical interface. The application-logic layer provides computer processing
that allows business tasks to be accomplished. Underneath both of these
software layers is the data-management layer. If a business task requires
information from multiple databases, the data access facilities should be
consistent and transparent to the front-end software components.

The presentation-logic layer is the screen that the user sees.

In a client/server environment, each of these components, though

independent, interoperates with the other components to provide the end user
with a seamless end-to-end application. The end user does not need to know
that separate components are being accessed over a network to deliver
application functionality. Client/server processing allows the physical
placement of two or more components on separate computing platforms and
systems, as shown in Figure 21.1.

Figure 21.1 Client/server processing

The client computer typically is a PC connected to a network. The client
manages the user presentation and provides access to the network resources.
When a network service is needed, the client sends a request over the
network to the desired server.

A server typically consists of powerful hardware and the networking
components necessary to connect to clients, as well as the software to fulfill
service requests made by clients. Servers must be powerful enough to handle
multiple requests from multiple clients. Timely response from a server is
necessary to allow client applications to appear as an integrated and unified
application. The hardware used for the server can be a powerful PC (perhaps

with multiple CPUs), a UNIX-based machine, a midrange computer, or a
mainframe computer. Table 21.1 outlines the types of computing platforms
that are most appropriate for the different client/server component layers.

Timely response from a server is necessary.

From a data management perspective, the database server provides clients
with access to shared data. The server must control that access as well as
activities such as data backup and recovery, performance management, and
error handling.

Of course, solid networking capabilities are required to create a
client/server system. The network is the enabling technology for client/server
systems and much of modern computing systems. Without networking
capabilities, computerized systems would not be able to connect to one
another.
Centralized versus Distributed Processing

Centralized processing uses a host computer that is accessed via dumb
terminals. PCs can be connected to a centralized system, but their only
function in a centralized system is basic terminal emulation. The host-based
system cannot access data stored on the PC, and any PC-based applications
cannot access host data for local desktop processing (without first
configuring software to enable PC-to-host connectivity). With centralized
systems, the PC community is isolated from integrated, seamless processing.

In centralized processing, all data is stored on a large, centralized
computer, typically a mainframe. All users run predefined applications,
sometimes referred to as legacy applications, that have been built to access
that data. Maintenance and porting of centralized applications to non-
mainframe computer technology is expensive and difficult.

In centralized processing, all data is stored on a large,
centralized computer.

Table 21.1. Recommended Hardware for Client/Server Component
Layers

Distributed processing involves the utilization of multiple computers to
fulfill a service request. As the names implies, business tasks are distributed
or allocated to multiple processors. The goal is to facilitate processing on the
computing platform that is most efficient. A network that links together
multiple computers is the first requirement for distributed processing.
Additionally, system software must be capable of allocating tasks to different
computers.

Distributed processing uses multiple computers to fulfill a
service request.

Another term that is sometimes associated with distributed applications is
cooperative processing. This refers to the functionality of two nodes
cooperating and sharing the processing duties for a business problem. For
example, one node may run some basic verification routines for new data
entered, while the other node performs more rigorous testing of business
rules.

Types of Client/Server Applications
In a client/server system, applications are modularized to allow them to
execute over two or more nodes. The client application makes requests to a
server node, which may be filled by different servers, depending on the type
of request. By using software modules, client/server processing allows the
sharing of commonly used software and other requested resources.

Client/server networks can be set up in a wide variety of configurations,
depending on the needs of the application and the computing resources
available to the organization. Keep in mind that a client/server system
normally consists of three software layers: the presentation logic, the
application or business logic, and the DBMS. How the processing of these
layers is distributed will greatly influence the design, implementation, ease of
use, and overall response time. These tasks can be broken apart in various
ways across the network as shown in Figure 21.2. The first and last lines in

this figure are not client/server models, because all of the processing is
centralized—either on a PC workstation or a high-end server. Let’s examine a
few of the client/server configurations.

Figure 21.2 Distributing tasks across the network

Client/server networks can be set up in a wide variety of
configurations.

Line 2 in the figure shows a common client/server variation: the
distributed user presentation model. In this model, the user presentation logic
is split between the workstation client and the server. The client performs the
graphical and menu-driven interface elements and handles some tasks such as
physically updating the screens and the rules for how the interface looks and
acts. Other presentation-level tasks such as data validation may be performed
on the client or on the server. Nevertheless, to the end user, the presentation
layer appears to be handled entirely by the workstation. Business logic and
data management tasks are performed on the server.

Line 3 in the figure shows the decentralized user presentation model,
where all of the presentation logic is performed on the client workstation.

Dividing the processing in this manner works well, especially when
client/server technology is to be phased into an organization slowly over
time. Ideal applications for this model are ones that require some
restructuring, but rewriting is not justified by the business needs.

Line 4 shows an alternative form of decentralization where portions of the
business logic are implemented on the client and other portions are
implemented on the server. This model is difficult to implement and maintain
because application code that controls business functionality resides on
multiple platforms.

Line 5, the centralized data management model, places all presentation and
application logic for business tasks on the client and all data access and
management software on the server. A DBMS database server handles all
data requests and modifications. This provides a secure environment to
administer and control corporate information. It also helps to ensure a high
degree of data integrity.

Line 6 shows an alternative approach, the distributed data management
model, where data resides both on the client node and on the server. The
advantage to this approach is that queries to the local DBMS are faster. From
a maintenance perspective, the administration required for a large number of
distributed DBMSs is more complex. Consider the way in which ATMs
work. If you use your own bank’s ATM, the response time typically is very
fast. This is so because the transaction accesses information on your account
locally on the bank’s server (probably a mainframe computer). However, if
you use another bank’s ATM, the response time is often much slower
because the transaction goes through a central clearinghouse. In other words,
information on bank accounts is distributed among all the banks connected to
the clearinghouse.

Line 7, as mentioned before, is not a client/server system; it is a centralized
system on a client machine.

As a DBA, you will be required to assist client/server application
developers to help determine the best location for data in terms of efficiency,
ease of management, and the capabilities of your DBMS.

Of course, not every client/server model is adequately described by the
simple diagram we have used thus far. Indeed, a popular client/server model
in use today is the multitier implementation, as shown in Figure 21.3.

Figure 21.3 Multitier client/server implementation

One of the most popular client/server models in use today is
the multitier implementation.

In this client/server implementation, two servers are deployed: one for the
application and another for the DBMS. The client handles all (or most)
presentation-logic duties. This is the model deployed by many popular third-
party applications such as SAP ERP and Oracle’s PeopleSoft and Siebel
applications. Supporting such applications requires networking expertise as
well as a high degree of knowledge that spans multiple platforms (because
each tier is implemented using a different type of computer).
Thin Client or Fat Client

Distributed and decentralized user presentation client/server implementations
are sometimes referred to as thin client because only limited functionality
resides on the client computer. Client/server models where most of the
processing occurs on the client are called fat client. Referring back to Figure

21.2, the lines toward the bottom of the diagram (in particular, lines 5 and 6)
represent fat client implementations because more logic resides on the client
than on the server.

Modern multitier distributed applications prefer thin client to fat client
implementations because it is easier to manage and upgrade thin client.
Distributing changes to hundreds, or perhaps thousands, of nodes can be
difficult when the program logic resides on multiple clients throughout an
organization.

Modern client/server applications prefer thin client to fat
client.

Indeed, the predominant client interface for most modern applications is
the Web browser.

Network Traffic
In general, network traffic is the primary source of poor performance in
client/server and multitier applications. The less data that is sent across the
network, the better the performance will be. The DBA should look for
opportunities to decrease the size of requests sent across the network both
from the client to the server and from the server back to the client. Stored
procedures can be a useful tactic because issuing a call to a stored procedure
over the network usually will require less bandwidth than issuing several
SQL statements. Furthermore, the stored procedure, if designed properly, can
execute multiple requests on the server and return to the client only the data
that is required. This helps to reduce network traffic.

Network traffic is the primary source of poor performance in
client/server applications.

Additional methods can be used to minimize network traffic. For example,
design the application programs to minimize the number of individual
network requests. Perhaps several requests can be grouped together or
combined to reduce network calls.

The DBA should investigate configuration options for the data distribution
methods used by the DBMS, as well as database gateway options for
reducing network traffic.

Database Gateways
In order for an application to access a database over a network, database
gateway software is required. The database gateway allows clients to access
data stored on database servers. The major DBMS vendors provide gateway
software for their DBMS products, and several third-party vendors provide
offerings that are more heterogeneous.

When selecting a database gateway, you will need to know what types of
databases need to be accessed and what networking protocol will be used. For
example, if DB2 and Oracle databases must be accessed, the gateway will
need to support both of these DBMS products. Similarly, the gateway may
need to support multiple networking protocols if, for instance, a combination
of TCP/IP and SNA networking is used. Example database gateway offerings
include IBM’s DB2 Connect, DataDirect’s Shadow, and Oracle Database
Gateways.

The gateway may need to support multiple networking
protocols.

The DBA sets up and configures the database gateway software, usually
with the assistance of a network specialist. When setting up the database
gateway, you will need to decide whether the gateway should be installed on
every client machine or a server should be set up to handle connection
requests. If the gateway resides on each client, coordinating software
distribution during an upgrade of the database gateway software can be
difficult. Implementing the database gateway as a server simplifies software
upgrades but requires connection requests to be routed to the connection
server.

Furthermore, the configuration process may require the DBA to set DBMS
configuration parameters or update system catalog tables to specify the
locations and protocols used by the database gateway. The proper installation
and configuration of the database gateway often can be one of the most
demanding and difficult DBA tasks.

Some of the features to look for in a database gateway include
• Location transparency, meaning that users do not need to be aware of

the physical location of data, just the names of the tables to be accessed
• Commit transparency, meaning that distributed and local transactions

are committed using standard SQL COMMIT
• Two-phase COMMIT, meaning that distributed transactions commit

data appropriately across the heterogeneous database systems
• Automatic data type translation between the disparate DBMS products

in use
• Both query and update capabilities for all the heterogeneous DBMS

products in use

Database Drivers
Applications can access databases using a database driver, which is a
software component that uses a standard API (ODBC or JDBC). The primary
functionality of a database driver is to process API calls, submit SQL
requests to the database, and return results to the application.

A database driver requests and retrieves data over the network from the
database server using database protocol packets, typically delivered using
TCP/IP. Although core database driver functionality sounds simple enough,
performance can vary greatly. It is possible to improve (or degrade)
application performance significantly based on nothing other than changing
the database driver.

The database driver translates standards-based API calls into low-level
database requests. Of course, database drivers perform other tasks such as
data conversion, buffering, error handling and mapping, load balancing, and
connection pooling, to name a few. The manner in which a database driver
communicates with the database depends on its architecture. Some database
drivers communicate directly to the database server, whereas others require
translation from one protocol to another. The manner in which the database
driver performs all of these functions can have a significant impact on the
performance of your database applications.
Types of Database Drivers

The first database drivers were ODBC drivers. Recall from Chapter 5 that
ODBC (Open Database Connectivity) is a standard C programming language
interface for accessing data from a database server. In theory, ODBC is
independent and can work across multiple DBMSs and operating systems.
This requires an ODBC driver to translate requests from the application to the
database server. The application uses ODBC functions through an ODBC

driver manager with which it is linked, and the driver passes the query to the
DBMS. There are numerous providers of ODBC database driver software.

With the burgeoning popularity of Java, a similar CLI-based technique was
needed to communicate between Java programs and database systems. Hence
the introduction of JDBC (Java Database Connectivity). A JDBC driver
provides the same type of functionality as an ODBC driver, but there are four
different types of JDBC database drivers, distinguishable by their
architecture.

The bridge architecture is the first type of database driver. This type of
database driver, also known as a Type 1 driver, bridges from one standard to
another. A Type 1 JDBC driver accepts JDBC calls and bridges them to
ODBC calls, which are then sent to the database. The Type 1 driver is
platform dependent using ODBC, which in turn depends on native libraries of
the underlying operating system on which the Java Virtual Machine (JVM) is
running. A Type 1 driver typically is not optimal in terms of performance and
security and, worse, may not support newer functionality.

The second type of database driver is client based. This type of database
driver, also known as a native or Type 2 driver, communicates with the
database through the client software of the DBMS. In other words, a Type 2
driver is proprietary. Perhaps the biggest drawback of the Type 2 driver is the
overhead of managing the installation, configuration, and maintenance of
software on every client machine. When you install a new version of the
DBMS, you generally also must install a new version of the Type 2 driver on
all client machines.

The third type of database driver uses a network protocol architecture, also
known as a Pure Java or Type 3 driver. The Type 3 driver makes use of a
middle tier between the calling program and the database that converts calls
into the vendor-specific database protocol. The Type 3 driver offers better
performance than Type 1 and Type 2 drivers because it reduces network
bandwidth requirements and eliminates latency. Because the communication
between client and server is database independent, there is no need for vendor
software to be installed on the client machine. Also the client-to-middleware
software need not be updated for a new DBMS version. The primary
drawback is that database-specific coding is required in the middle tier.

The fourth type of database driver communicates directly with the DBMS,
eliminating the need for client software. The database wire driver, better

known as a Type 4 driver, offers the best performance and maintainability of
the various types of database drivers. Type 4 drivers install inside the JVM of
the client. This provides better performance than Type 1 and Type 2 drivers
as it does not have the overhead of conversion of calls into ODBC or
database API calls. And unlike Type 3 drivers, it does not need associated
software to work. The Type 4 driver can immediately connect to the database
without configuring additional software. Because there is no client software
to install, configure, and maintain, the DBA workload to support this type of
driver is minimal.
Guidance

In general, you should work to minimize the amount of data that is
communicated between the database driver and the database server. The more
you can limit network traffic of this nature, the better your applications
should perform.

Connection Pooling
Database applications that require network connection can use connection
pooling to improve performance. With connection pooling enabled, when the
application requests a connection, it can obtain it from a pool of previously
used connections. When the connection is no longer required, instead of the
connection shutting down, it gets saved in a connection pool.

A connection pool is simply a cache of database connections maintained so
that the connections can be reused when future requests to the database are
required. When connections are reused, the overhead of creating a connection
each time one is required can be eliminated. This requires no change to the
application code.

Connection pooling can be implemented by an application server or within
the database driver. Parameters are required to set the initial, minimum, and
maximum sizes of the connection pool, as well as to configure how long
connections should remain in the pool for reuse.

Databases, the Internet, and the Web
Connecting databases to the Web is not as difficult as managing the databases
once they have been connected. As with any server, the only way to enable
access to a database server over the Web is to enable some form of
telecommunications connection between the database server and the Internet.

This can be accomplished in many ways, from the slow and simple approach
of using a dial-up connection to permanent and faster connections using
frame relay, ISDN, or T1 and T3 lines. Of course, you also may choose to use
an Internet service provider (ISP) to host your Web site and the databases
used by your Web applications.

Many larger organizations choose to host their own databases instead of
turning them over to an ISP. By hosting your own databases, you have a
better degree of control over the data—the data resides on site, is accessible
by your organization even if the Internet connection goes down, and is more
easily secured. When an ISP hosts your database, the data is under the control
of an external entity, not your organization. This might be acceptable for
smaller databases, noncritical data, or very small organizations lacking the
capacity to manage and administer databases in the DBMS environment.

By hosting your own databases, you have better control over
the data.

Some service providers simply set up and enable the server hardware,
while you install, configure, and maintain the software (DBMS) that is run on
that server. This may be a suitable compromise to turning over all control to
the ISP. Choosing to host your database server with your ISP can
dramatically reduce costs because dedicated connections can be quite
expensive.

When you host database servers that are designed to serve Internet users,
following these guidelines can help:

• Favor dedicated hardware for the database server. Do not mix and
match Web server software and database server software on the same
computer. Dedicated hardware makes it easier to separate database and
Web resources for tuning and management.

• Favor using the fastest network connections available for connecting
the application logic to the database server and the database server to
the Internet connection. The faster the network connection is, the better
the performance will be.

Internet-Connected Databases
Organizations are rapidly adopting Internet technologies and integrating them
into their business processes—in other words, businesses are becoming e-

businesses. However, the duties of the DBA become more difficult when it
comes to managing databases that are connected to the Internet. The first
factor complicating Web database administration is the increased reliance on
availability.
Availability

Because an e-business is an online business, it never closes. There is no such
thing as a batch window for an e-business application. Customers expect full
functionality on the Web regardless of the time of day. And remember, the
Web is worldwide—when it is midnight in Chicago, it is 3:00 P.M. in Sydney,
Australia. An e-business must be available and operational 24 hours a day, 7
days a week, 366 days a year (do not forget leap years). It must be prepared
to engage with customers at any time or risk losing business to a company
whose Web site is more accessible. Some studies show that if Web users
click the mouse and do not receive a transmission back to their browser
within 7 seconds, they will abandon that request and go somewhere else.

An e-business never closes.

The net result is that e-businesses are more connected, and therefore must
be more available in order to be useful. As e-businesses integrate their Web
presence with traditional IT services such as database management systems,
they are creating heightened expectations for data availability. In fact, the
term e-vailability is sometimes used to describe the increased availability
requirements of Web-enabled databases.

E-vailability describes the level of availability necessary to keep an e-
business continuously operational. Downtime and outages are the enemies of
e-vailability. Recall from the discussion in Chapter 8 that 70 percent of
application downtime is caused by planned outages to the system—and only
30 percent by unplanned outages.

Downtime and outages are the enemies of e-vailability.

But what does all of this mean for the e-DBA? Because e-DBAs are
charged with maintaining the high degree of availability required by e-
business, one of their first priorities is to minimize downtime resulting from
planned outages. How can an e-DBA accomplish this? The best way to
reduce downtime is to avoid it. The following steps can be taken to avoid or

reduce downtime:
• Perform routine maintenance while systems remain operational.
• Exploit the features of the DBMS that promote availability.
• Automate DBA functions.
• Consider high-speed utilities and third-party automation solutions.
• Exploit hardware technologies.

These techniques are covered in detail in Chapter 8. Nevertheless,
sometimes downtime cannot be avoided. If this is the case, performing tasks
faster can shorten the duration of an outage. Be sure that you are using the
fastest and least error-prone technology and methods available to you. For
example, if a third-party RECOVER, LOAD, or REORG utility can be run in
half or a quarter of the time of a traditional database utility, consider
migrating to the faster technology. In many cases, the faster technology will
pay for itself much quicker in an e-business than in a traditional business
because of the increased availability requirements.

Performing tasks faster can shorten the duration of an outage.

Another way to minimize downtime is to automate routine maintenance
tasks. For example, recall from Chapter 7 how changing database structures
can be a difficult task. Tools are available that enable DBAs to make any
desired change to a relational database using a simple online interface.
Pointing, clicking, and selecting with the tool generates scripts that automate
the required database changes. When errors are avoided using automation,
downtime is diminished, resulting in greater e-vailability. Chapter 7 provides
extensive coverage of database change management issues.
Database Design

When databases are designed for e-business applications, the tendency is for
the DBA to get swept up in the dynamics of Web-based design and
development. This can be a dangerous mistake when designing databases.
Let’s investigate the impact of e-business on the design process and discuss
the basics of assuring proper database design.

One of the biggest problems that a DBA will encounter when moving from
traditional development to e-business development is coping with the mad
rush to “Get it done NOW!” Industry pundits have coined the phrase

“Internet time” to describe this phenomenon. Basically, when a business
starts operating on “Internet time,” things move faster. One “Web month” is
said to be equivalent to about three standard months. The nugget of truth here
is that Web projects move very fast for a couple of reasons:

• Business executives want to conduct more and more business over the
Web to save costs and to connect better with their clients.

• Everyone else is moving fast, so you had better move fast, too, or risk
losing business.

When a business operates on “Internet time,” things move
faster.

Rapid application development (RAD) techniques have been around for
about three decades now and have been used with varying degrees of success.
Sometimes RAD is required for certain projects. But RAD can be bad for
database design. Why? Applications are temporary, but data is permanent.
Organizations are forever coding and recoding their applications—sometimes
developing the next incarnation of an application before releasing the last
one.

But when did you ever throw away data? Oh, sure, you may redesign a
database or move from one DBMS to another. But what did you do with the
data? Chances are, you saved the data and migrated it from the old database
to the new one. Some changes had to be made, maybe some external data was
purchased to combine with the existing data, but the data lives on. To glean
the most value from your data, it is wise to take care when designing the
database. It is easier to navigate a well-designed database and therefore easier
to retrieve meaningful data from it. Chapters 3 and 4 outline the techniques
necessary for designing and implementing a well-constructed database.

But what if you are forced to design a database on “Internet time”?
Well, the best advice I can give you is to be aware of design failures that

can result in a hostile database. A hostile database is a database that is
difficult to understand, hard to query, and takes an enormous amount of effort
to change. Of course, it is impossible to list every type of database design
flaw that could be introduced to create a hostile database. However, let’s
examine some common database design failures.

Be aware of design failures that can result in a hostile

database.

Assigning inappropriate table and column names is a common design error
made by novices. Database names that are used to store data should be as
descriptive as possible to allow the tables and columns to document
themselves, at least to some extent. Application programmers are notorious
for creating database naming problems, such as using screen-variable names
for columns or coded jumbles of letters and numbers for table names.

When rushed for time, some DBAs resort to designing the database with
output in mind. This can lead to flaws such as storing numbers in character
columns because leading zeroes need to be displayed on reports. This is
usually a bad idea for a relational database. If the column is created as a
character column, the developer will need to program edit checks to validate
that only numeric data is stored in the column. Yet, as discussed earlier, it is
better for integrity and efficiency to let the database system perform the edit
checking. Therefore, data storage should be based on its domain. Users and
programmers can format the data for display, instead of forcing the data into
display mode for database storage.

Don’t design the database with output in mind.

Another common database design problem is overstuffing columns. This
actually is a normalization issue. Sometimes, for convenience, a single
column is used to store what should be two or three columns. Such design
flaws are introduced when the DBA does not analyze the data for patterns
and relationships. An example of overstuffing would be storing a person’s
name in a single column instead of capturing first name, middle initial, and
last name as individual columns.

Poorly designed keys can wreck the usability of a database. A primary key
should be nonvolatile, because changing the value of the primary key can be
very expensive. When you change a primary key value, you have to ripple
through foreign keys to cascade the changes into the child table. A common
example is using a Social Security number for the primary key of a personnel
or customer table. This is a flaw for several reasons. First, a Social Security
number is not necessarily unique. Second, Social Security numbers are
unique to the United States, so if your business expands outside the USA,
what do you store as the primary key?

Poorly designed keys can wreck the usability of a database.

Actually, failing to account for international issues can have greater
repercussions. For example, when storing addresses, how do you define zip
codes or postal codes? Many countries use postal codes that are not
necessarily numeric. And how do you define state or province? How do you
assure that you capture all of the information for every person to be stored in
the table, regardless of country? The answer, of course, is proper data
modeling and database design.

Denormalization of the physical database is a design option, but it can be
done only if the design was normalized to begin with. Actually, a more
fundamental problem with database design is improper normalization. By
focusing on normalization, data modeling, and database design, you can
avoid creating a hostile database.

Without proper up-front analysis and design, the database is unlikely to be
flexible enough to easily support the changing requirements of the user. With
sufficient preparation, flexibility can be designed into the database to support
the user’s anticipated changes. Of course, if time is not taken during the
design phase to ask the users about their anticipated future needs, you cannot
create the database with those needs in mind.

If data is the heart of today’s modern e-business, database design is the
armor that protects that heart. Data modeling and database design are the
most important parts of creating a database application. If proper design is
not a component of the database creation process, you will wind up with a
confusing mess of a database that may work fine for the first application, but
not for subsequent applications. And heaven help the developer or DBA who
has to make changes to the database or application because of changing
business requirements. That DBA will have to try to tame the hostile
database!

Database design is the armor that protects the heart of e-
business.

Web Development and Web Services
Another popular type of application development technique relies upon Web
services. A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. Other services

interact with a Web service to conduct business. Typically, the Web service is
engaged using service-oriented architecture (SOA) and a SOAP message.

What Is SOAP?
SOAP, or Simple Object Access Protocol, is a protocol specification for
exchanging structured information in a Web services implementation. It
relies upon XML for its message format, as well as other protocols such as
HTTP and SMTP.

What Is REST?
The name “representational state transfer” purposely builds the image of
how a well-designed Web application should behave. The user progresses
through the application by selecting links (state transitions) via a network
of Web pages, where each link results in the next page (representing the
next state of the application) being transferred to the user.

At any rate, Web services are a form of multitier processing but designed
using components that deliver specific functionality, or a service. Instead of
defining an API, SOA defines the interface in terms of protocols and
functionality. SOA separates functions into distinct units, or services, that
developers make accessible over a network in order to allow users to
combine and reuse them in the production of applications.

Another technique is to use representational state transfer, or REST.
REST-style architectures are based on the client/server model. Requests and
responses are built around the transfer of representations of resources. A
resource can be any coherent and meaningful concept that may be addressed.
A resource is usually a document that captures the current or intended state of
a resource.

The client sends requests when it is ready to make the transition to a new
state. The client is considered to be in transition as long as one or more
requests are outstanding. The representation of each application state contains
links that may be used the next time the client chooses to initiate a new state
transition.

A RESTful Web service is implemented using HTTP and the principles of

REST. SOAP, on the other hand, encourages each application designer to
define a new vocabulary of nouns and verbs, disregarding many of HTTP’s
existing capabilities such as authentication, caching, and content type
negotiation. Some believe this aspect of SOAP causes too much reinvention.

Summary
Modern databases are designed and implemented for use across a network
where users are connected to the database from many different types of
computing platforms. The way in which databases are designed,
administered, and supported will impact the usability of connected databases.
A different set of issues and problems must be tackled for client/server and
Internet-enabled databases. DBAs should be prepared to handle these
problems by becoming well versed in not only how to connect databases but
also how to manage those databases in an efficient manner once they are
connected.

Review
1. Name the four types of database drivers, and discuss the pros and cons

of each type.
2. Why is database design a potential problem area for Internet-enabled

database application development projects?
3. What is the difference between a fat client and a thin client?
4. In a client/server environment, there are always multiple clients

communicating with only one server: true or false?
5. A client/server application comprises what three components?
6. What is the biggest DBA challenge when managing an Internet-enabled

database?
7. What is connection pooling?
8. Cite examples of flaws introduced during the design phase of an

Internet-enabled database that could lead to the creation of a hostile
database.

9. Your organization deploys PCs, midrange systems, and mainframe
computers. Discuss the three layers of a client/server application and
which computing platform would work best for each layer.

10. What is e-vailability?

Suggested Reading
Abiteboul, Serge, et al. Data on the Web: From Relations to Semistructured

Data and XML. San Francisco, CA: Morgan Kaufmann (2000). ISBN 1-
55860-622-X.

Applequist, Daniel K. XML and SQL: Developing Web Applications.
Boston, MA: Addison-Wesley (2002). ISBN 0-201-65796-1.

Ceri, Stefano, et al. Designing Data-Intensive Web Applications. San
Francisco, CA: Morgan Kaufmann (2003). ISBN 1-55860-843-5.

Feiler, Jesse. Database-Driven Web Sites. San Francisco, CA: Morgan
Kaufmann (1999). ISBN 0-12-251336-3.

Gagliardi, Gary. Client/Server Computing. Englewood Cliffs, NJ: Prentice
Hall (1994). ISBN 0-13-290784-4.

Goodson, John, and Robert A. Steward. The Data Access Handbook. Upper
Saddle River, NJ: Prentice Hall (2009). ISBN 0-13-714393-1.

Hackathorn, Richard D. Enterprise Database Connectivity. New York, NY:
John Wiley & Sons (1993). ISBN 0-471-57802-9.

Lewis, Philip M., Arthur Bernstein, and Michael Kifer. Databases and
Transaction Processing. Boston, MA: Addison-Wesley (2002). ISBN 0-
201-70872-8.

Orfali, Robert, Dan Harkey, and Jeri Edwards. Essential Client/Server
Survival Guide. New York, NY: Van Nostrand Reinhold (1994). ISBN 0-
442-01941-6.

Purba, Sanjiv, ed. High-Performance Web Databases. Boca Raton, FL:
Auerbach (2000). ISBN 0-8493-0882-8.

Riccardi, Greg. Principles of Database Systems with Internet and Java
Applications. Boston, MA: Addison-Wesley (2001). ISBN 0-201-61247-
X.

Salemi, Joe. Guide to Client/Server Databases. Emeryville, CA: ZD Press
(1993). ISBN 1-56276-070-X.

Sheldon, Tom, ed. LAN Times Guide to Interoperability. Berkeley, CA:
McGraw-Hill (1994). ISBN 0-07-882043-X.

Terplan, Kornel, and Jill Huntington-Lee. Applications for Distributed
Systems and Network Management. New York, NY: Van Nostrand
Reinhold (1995). ISBN 0-442-01873-8.

Theriault, Marlene L. Oracle8i Networking 101. Berkeley, CA: McGraw-
Hill/Oracle Press (2000). ISBN 0-07-212517-9.

Toledo, Hugo, Jr. Oracle Networking. Berkeley, CA: McGraw-Hill/Oracle
Press (1996). ISBN 0-07-882165-7.

22. Metadata Management

In addition to managing data, DBAs need to be able to manage and control
the definition of the data elements used in databases. Without an
understanding of the structure, limitations, definition, and description of data,
it is likely that data will be misinterpreted or misused. Furthermore, data that
is not well defined can cause database integrity problems.

What Is Metadata?
Have you ever watched the Antiques Roadshow1 program on television? In
this show, people bring items to professional antique dealers to have them
examined and evaluated. The participants hope to learn that their items are
long-lost treasures of immense value. The antique dealers always spend a lot
of time talking to the owners about their items. They always ask questions
like “Where did you get this item?” and “What can you tell me about its
history?” Why do they ask these questions? Because the details in the
answers to those questions provide knowledge about the authenticity and
nature of the item. The dealer also carefully examines the item, looking for
markings and dates that provide clues to the item’s origin.

Users of data must be able to put it into context before the data becomes
useful as information. Information about data is referred to as metadata. The
simplest definition of metadata is “data about data.” To be a bit more precise,
metadata describes data, providing information such as type, length, textual
description, and other characteristics. For example, metadata allows the user
to know that the customer number is a five-digit numeric field, whereas the
data itself might be 56789.

Metadata is “data about data.”

So, using our Antiques Roadshow example, the item being evaluated is the
“data.” The answers to the antique dealer’s questions and the markings on the
item are the “metadata.” Value is assigned to an item only after the metadata
about that item is discovered and evaluated.

Metadata characterizes data. It is used to provide documentation such that
data can be understood and more readily consumed by your organization.

Metadata answers the who, what, when, where, why, and how questions for
users of the data.

From Data to Knowledge and Beyond
The basic building block of knowledge is data. Data is a fact represented as
an item or event out of context and with no relation to other facts. Examples
of data are 27, JAN, and 010110. Without additional details, we know
nothing about any of these three pieces of data. Consider:

• Is 27 a number in base ten, or is it in octal (which would translate to 23
in base ten)?

• If 27 is a number in base ten, what does it represent? Is it an age, a
dollar amount, an IQ, a shoe size, or something else entirely?

• What does JAN represent? Is it a woman’s name (or a man’s name)? Or
does it represent the first month of the year? Or perhaps it is something
else entirely?

• Finally, What about 010110? Is it a binary number? Or is it a
representation of a date, perhaps January 1, 1910? January 1, 2010? Or
something else entirely?

Data is a fact represented as an item or event out of context.

Because of the lack of context, these are all examples of data. Information,
on the other hand, adds context by specifying relationships between data, and
possibly other information. Data in context with metadata makes information.
The relationships may represent information, yet the relations do not actually
constitute information until they are understood. In addition, the relationships
that represent data have a tendency to be limited in context, mostly about the
past or present, with little if any implication for the future.

Webster’s New Collegiate Dictionary defines knowledge as “the fact or
condition of knowing something with familiarity gained through experience
or association.” Knowledge adds understanding and retention to information.
It is the next natural progression after information. To have “knowledge”
requires information in conjunction with patterns found in data, information,
and other knowledge. Therefore, knowledge couples information with
understanding and cognition.

The final step would be to move from knowledge to wisdom. Wisdom can

be thought of as applied knowledge. You may have the knowledge that fatty
foods are bad for you, but if you eat them anyway, you are not wise.

Wisdom can be thought of as applied knowledge.

In order for data to be anything more than simply data, metadata is
required. Without metadata, data has no identifiable meaning—it is merely a
collection of digits, characters, or bits. Metadata gives data its form and
makes it usable by information professionals.

Metadata Strategy
A wise organization will develop a metadata strategy to collect, manage, and
provide a vehicle for accessing metadata. A sound metadata strategy should
address the following:

• A policy for how metadata is used in the organization
• Procedures for identifying and defining data ownership and

stewardship
• Identification of the types of metadata that need to be collected
• A description of the purpose for each type of metadata that is identified

—a clear and concise reason why each piece of metadata is required by
the organization

• Methods for the collection and storage of metadata (typically using a
repository)

• Methods for accessing the metadata
• Policies to enforce data stewardship procedures and security for

metadata access
• Identification of metadata sources, both internal and external
• Measurements to gauge the quality and usability of metadata

Metadata publicizes and supports the data your organization produces and
maintains. By assembling and managing metadata, your organization will
have access to relevant facts about your data, making your systems more
usable and your databases more useful.

DBAs should participate in the team that develops the metadata strategy,
but the data administration organization, if one exists, should be the leader of
the metadata effort.

Data Stewardship
A data steward is accountable for actions taken using a defined set of data.
A data stewardship policy will identify individuals within the organization
whose responsibility it is to create, maintain, and delete data. A data
steward is not necessarily the data owner. A comprehensive data
stewardship policy will also define the consumers of the data—that is,
those who directly use the data during the course of their jobs.

Data Warehousing and Metadata
Companies that implement data warehousing systems are more likely than
other companies to have embarked on a metadata management strategy.
Users require accurate information about the data contained in a warehouse
before the data can be used appropriately for business. Therefore, such
businesses have a critical need for readily available, high-quality metadata.
At times, though, little if any metadata is captured and managed prior to the
onset of a data warehousing effort.

A data warehousing effort has a critical need for readily
available, high-quality metadata.

Types of Metadata
Even though all metadata describes data, there are many different types and
sources of metadata. At a fundamental level, though, all metadata is one of
two types: technology metadata or business metadata. Technology metadata
describes the technical aspects of the data as it relates to storing and
managing the data in computerized systems. Business metadata, on the other
hand, describes aspects of how the data is used by the business and is needed
for the data to have value to the organization. Knowing, for instance, that the
LICNO column is a positive integer between 1 and 9,999,999 is an example
of technology metadata. Of course, the business user also requires this
information. Knowing that a number referred to as a LICNO is the
practitioner license number for certified course instructors, that it must be
unique, and that every instructor can have one and only one license number is
an example of business metadata (though these details also are also useful to
the DBA in order to create the database appropriately and effectively).

All metadata is one of two types: technology metadata or
business metadata.

For DBAs, the DBMS itself is a good source of metadata. The system
catalog used to store information about database objects is a vital store of
DBA metadata—technology metadata. DBAs and developers make regular
use of the metadata in the DBMS system catalog to help them better
understand database objects and the data contained therein. Depending on the
DBMS, users can write queries against the system catalog tables or views, or
they can execute system-provided stored procedures to return metadata from
the system catalog tables. Just about any type of descriptive information
about the composition of the data may be found in the system catalog. For
example, most DBMSs store all of the following metadata in the system
catalog:

• Names of every database, table, column, index, view, relationship,
stored procedure, trigger, and so on

• Primary key for each table and any foreign keys that refer back to that
primary key

• Which tables are in which views
• Data type, length, and constraints for each column of every table
• Names of the physical files used to store database data, as well as

information about file storage, extents, and disk volumes
• Authorization and security information detailing which users have what

type of authority on which database objects
• Date and time of the last database definition change, as well as the ID

of the user who implemented the DDL for the change
• Database organization information

The DBMS system catalog is a particularly effective source of metadata
because it is active, integrated, and nonsubvertible. The system catalog is
active because the metadata is automatically built and maintained as database
objects are created and modified. As the DBA creates databases, the DBMS
automatically collects and populates metadata in the system catalog. The
integration of the system catalog and the DBMS, coupled with the active
nature of the system catalog, keeps the technology metadata in the system
catalog accurate and up-to-date. Additionally, the DBMS system catalog is

nonsubvertible, meaning that normal DBMS operations are the only
mechanism for populating the system catalog. Of course, the subvertibility of
the system catalog will differ from DBMS to DBMS. Some DBMSs provide
options to enable direct updates to the system catalog, but such an option is to
be used only in emergencies and generally under the direction of the DBMS
vendor’s technical support personnel.

The DBMS system catalog is a particularly effective source of
metadata.

Although a wealth of metadata can be found in the system catalog, this
DBMS metadata is usually insufficient to fully describe data. For example,
descriptions of database objects are not commonly found in the DBMS
system catalog. Some DBMSs provide system catalog description columns
that can be populated at the DBA’s discretion. However, many DBAs avoid
this for fear of disorganizing the system catalog. It’s also possible that
descriptions for the database objects were not available when the objects
were created. Additional metadata that is useful but is not found in the system
catalog includes

• Metadata for non-database files (flat or sequential files)
• Modification information regarding when and by whom data in the

database was last changed
• Copybook information for the database table (or non-database file), as

well as which programs use that information
• Information on batch jobs and transactions that access the data
• Operational metadata on IT infrastructure components
• Data model metadata describing the logical database design and how it

maps to the physical database implementation
• Data warehousing and ETL metadata defining data source(s), system of

record, and other analytical information
• Data ownership and stewardship metadata

Of course, this is an incomplete list. A myriad of different metadata types
and purposes exist that can be cataloged and managed. Capturing and
maintaining metadata better documents databases and systems, thereby
making them easier to use. The more metadata that you make available to
business users, the more value they will be able to extract from their

information systems.

Capturing and maintaining metadata makes databases and
systems easier to use.

Repositories and Data Dictionaries
A repository stores information about an organization’s data assets. In other
words, repositories are used to store metadata. A properly implemented
repository stores all pertinent metadata for the corporation. It can act as a
single, centralized mechanism to assist in the migration of data from multiple
sources to a data warehouse.

A repository stores all pertinent metadata for the corporation.

In choosing a repository, base your decision on the metadata storage and
retrieval needs of your entire organization, not just the databases you wish to
support. Typically, a repository can

• Store information about your data, processes, and environment.
• Support multiple ways of looking at the same data. An example of this

concept is the three-schema approach, in which data is viewed at the
conceptual, logical, and physical levels.

• Store in-depth documentation, and produce detail and management
reports from that documentation.

• Support data model creation and administration. Integration with
popular ETL, data modeling, and CASE tools is also an important
evaluation criterion.

• Support for versioning and change control. Versioning helps to
synchronize application development, eliminating rework and
increasing flexibility.

• Enforce naming conventions.
• Parse and extract metadata from multiple sources. For example, if your

site is a big COBOL shop, the repository vendor should offer tools that
automatically examine your COBOL source code to extract metadata.

• Generate copybooks from data element definitions.
These are some of the more common functions of a repository. When

choosing a repository for database development, the following features
generally are desirable:

• The data stores used by the repository can be stored using database
tables in your DBMS. This enables your applications to directly read
the data dictionary tables. For example, if you are primarily an Oracle
shop, you should favor using a repository that stores its metadata
information in Oracle tables. Some repository products use multiple
DBMSs and allow the user to choose the DBMS to be used.

• The repository should be capable of directly reading the system catalog
or views on the system catalog for each DBMS you use. This ensures
that the repository will have current information on database objects.

• If the repository does not directly read the system catalog, an interface
should be provided to simplify the task of populating the repository
using the system catalog information.

• The repository provides an interface to any modeling and design tools
used for the generation of database objects.

Most of the popular repository products are mainframe based and rely on a
centralized metadata “database,” or repository. This approach is usually
better suited for documenting OLTP-based systems. Such a repository may
be more difficult to use in a data warehouse environment because a
mainframe focus can present challenges when managing metadata in a
distributed, state-of-the-art data warehouse implementation. Many ETL tools
used in data warehousing projects also contain a repository that is geared
toward the needs of the data warehouse. Organizations needing to manage
metadata for both OLTP and data warehouses should make sure that the data
in their ETL repositories can be migrated successfully to the OLTP
repository.

Other repository products are application-centric. Such repository
technology focuses on application development metadata—which is useful,
but not comprehensive. For example, the Microsoft Repository is focused on
Visual Studio and manages Microsoft computing assets.

Some repository products are application-centric.

Repository Benefits
Repository technology provides many benefits to organizations that properly

exploit their capabilities. The metadata in the repository can be used to
integrate views of multiple systems, helping developers to understand how
the data is used by those systems. Usage patterns can be analyzed to
determine how data is related in ways that may not be formally understood
within the organization. Discovery of such patterns can lead to business
process innovation.

In general, the primary benefit of a repository is the consistency it provides
in documenting data elements and business rules. The repository helps to
unify the “islands of independent data” inherent in many legacy systems. The
repository enables organizations to recognize the value in their legacy
systems by documenting program and operational metadata that can be used
to integrate the legacy systems with new application development.

A repository provides consistency in documenting data
elements and business rules.

Furthermore, a repository can support a rapidly changing environment
such as that imposed by Internet development efforts on organizations. The
metadata in the repository can be examined to produce impact analysis
reports to quickly determine how changes in one area will affect others.

Reusability is a big time-saver. If something can be reused instead of being
developed again from scratch, not only will time be saved but also valuable
resources can be deployed on more crucial projects. Repositories facilitate
reuse by enabling the documentation of application components and making
this metadata available to the organization.

Finally, repositories are an invaluable aid to data warehousing initiatives.

Repository Challenges
One of the biggest challenges in implementing and using repository
technology is keeping the repository up-to-date. The repository must be
populated using data from multiple sources—all of which can change at any
time. When the composition or structure of source data changes, its metadata
most likely will need to change, too.

Keeping the repository up-to-date can be difficult to
accomplish.

The process for populating the repository is complicated and should be

automated as much as possible. Refer to Figure 22.1. Metadata sources come
from multiple areas and locations within an organization and can include

• Application component metadata from program development tools,
application programs, and code libraries

• Business metadata from business user input, documents, and memos
• Data modeling metadata from data modeling tools
• Database metadata from the DBMS system catalog
• ETL metadata from data warehousing tools
• Operational metadata from automated operations and job scheduling

tools
• Other types of metadata such as data usage metadata from query tools

Figure 22.1. Populating the repository

Populating the repository is complicated.

To be successful, this information needs to be collected, parsed, and
recorded in the corporate metadata repository. The integration process must
take into account the frequency of change for each metadata source.
Whenever metadata changes at the source, the metadata in the repository will
be out of sync until the source metadata is scanned, captured, and integrated
into the repository again.

Many shops do not own a repository. More accurately, very few shops own
a centralized metadata repository. Furthermore, many organizations that do
own a repository do not always implement the proper integration and usage
procedures, causing the repository to be neglected. As soon as the metadata
in the repository becomes outdated, inaccurate, or nonexistent, the repository
will cease to be of value. Of course, the fault does not necessarily lie with the
repository technology—more likely the fault lies with the organization that
does not implement procedures for keeping the metadata in the repository up-
to-date. Of course, such an effort requires a significant budget, commitment,
and the efforts of skilled data management professionals, including DAs and
DBAs.

Very few shops own a centralized metadata repository.

Data Dictionaries
Data dictionaries were the precursors to repository technology. Data
dictionaries were popular in the 1980s. The purpose of a data dictionary is to
manage data definitions. In general, they offered little automation—the user
had to manually key in the definitions. In some cases the data dictionary was
integrated into the DBMS, and databases could be defined using the metadata
in the data dictionary, but this was prerelational—before DBMS products had
system catalogs.

The purpose of a data dictionary is to manage data definitions.

As more and more types of metadata were identified and organizations
wished to accumulate and manage such metadata, the data dictionary was
transformed into the repository. Use of CASE tools, such as Excelerator and
Advantage Gen, for application and database development enabled more
metadata to be captured and maintained during the development process. As
developers became more sophisticated over time, data dictionaries evolved to
provide more than just data attribute descriptions. The products became
capable of tracking which applications accessed what databases. Developers
who used the data dictionary properly were able to maintain their systems
and applications more easily.

Truthfully, IBM’s AD/Cycle and Repository Manager initiatives caused
much of this transformation. Even though both initiatives ultimately failed in
the marketplace, repository technology was forever changed by IBM’s

ventures into this field. For more information on IBM’s initiatives in this
area, consult IBM’s Repository Manager/MVS by Henry C. Lefkovits, the
definitive book on the topic.

Summary
This chapter on metadata management has been necessarily brief. As a DBA,
you will need to understand the role of metadata as it impacts the DBMS,
databases, and database users. Organizations that spend a lot of time
managing and maintaining metadata will likely have a data administrator on
staff. Alternatively, the data warehouse administrator or architect might focus
on metadata management.

DBAs may become involved in certain aspects of metadata management,
such as repository selection, installation, and maintenance. However, most
DBAs will use metadata far more than they will be called upon to store,
manage, and maintain metadata.

DBAs will use metadata more than they will be called upon to
store, manage, and maintain metadata.

Review
1. What is metadata?
2. Why is metadata important to an organization?
3. At a high level, what are the two types of metadata?
4. What is the difference between data and information?
5. Describe the purpose of a repository.
6. Why should the DBA participate in developing a metadata

management strategy even in organizations with a well-defined data
administration function?

7. Discuss the barriers to successful repository implementation.
8. Why is the DBMS system catalog useful for metadata analysis?
9. What is a data steward?

10. DBAs never require business metadata to do their job, and business
users never need technology metadata: true or false? Explain why it is
true or false.

Suggested Reading
Baca, Murtha, ed. Introduction to Metadata, Version 3. Los Angeles, CA:

Getty Publications (2008). ISBN 978-0-89236-896-9.
Bruce, Thomas A. Designing Quality Databases with IDEF1X Information

Models. New York, NY: Dorset House (1991). ISBN 0-932633-18-8.
Carlis, John, and Joseph Maguire. Mastering Data Modeling: A User-Driven

Approach. Boston, MA: Addison-Wesley (2001). ISBN 0-201-70045-X.
Durell, William R. Data Administration: A Practical Guide to Successful

Data Management. New York, NY: McGraw-Hill (1985). ISBN 0-07-
018391-0.

———. The Complete Guide to Data Modeling. Princeton, NJ: Data
Administration, Inc. (1993). No ISBN.

Fleming, Candace, and Barbara von Halle. Handbook of Relational
Database Design. Reading, MA: Addison-Wesley (1989). ISBN 0-201-
11434-8.

Hay, David C. Data Model Patterns. New York, NY: Dorset House (1996).
ISBN 0-932633-29-3.

Inmon, W. H. Data Architecture: The Information Paradigm. Wellesley,
MA: QED Information Sciences (1989). ISBN 0-89435-268-7.

Lefkovits, Henry C. IBM’s Repository Manager/MVS. Wellesley, MA: QED
Information Sciences (1991). ISBN 0-89435-349-7.

Marco, David. Building and Managing the Metadata Repository. New York,
NY: John Wiley & Sons (2000). ISBN 0-471-35523-2.

Marco, David, and Michael Jennings. Universal Meta Data Models. New
York, NY: John Wiley & Sons (2004). ISBN 0-471-08177-9.

Modell, Martin E. Data Analysis, Data Modeling, and Classification. New
York, NY: McGraw-Hill (1992). ISBN 0-07-042634-1.

Perkinson, Richard C. Data Analysis: The Key to Database Design.
Wellesley, MA: QED Information Sciences (1984). ISBN 0-89435-105-2.

Ross, Ronald G. Entity Modeling: Techniques and Application. Boston, MA:
Database Research Group (1988). ISBN 0-941049-00-0.

Schmidt, Bob. Data Modeling for Information Professionals. Upper Saddle

River, NJ: Prentice Hall (1999). ISBN 0-13-080450-9.
Seiner, Robert S. “Questions Metadata Can Answer.” The Data

Administration Newsletter. http://www.tdan.com/i011fe01.htm.
Simsion, Graeme C., and Graham C. Witt. Data Modeling Essentials. 3rd

ed. San Francisco, CA: Morgan Kaufmann (2005). ISBN 0-12-644551-6.
Tannenbaum, Adrienne. Implementing a Corporate Repository: The Model

Meets Reality. New York, NY: Wiley Professional Computing (1994).
ISBN 0-471-58537-8.

———. Metadata Solutions. Boston, MA: Addison-Wesley (2002). ISBN 0-
201-71976-2.

Wertz, Charles K. The Data Dictionary: Concepts and Uses. Wellesley,
MA: QED Information Sciences (1986). ISBN 0-89435-180-X.

http://www.tdan.com/i011fe01.htm

23. DBA Tools

Every major DBMS product provides a complete, functional database
management system that can be used out of the box to store and manage data.
Although organizations can install and use the DBMS as delivered, many will
quickly find that the functionality needed to adequately support large-scale
database development is not provided by the DBMS product alone.

The administration and maintenance of database applications is time-
consuming if you use only the standard features of the DBMS. Fortunately,
many DBA tools that enhance the functionality of relational database
management systems are available from third-party vendors.

Types and Benefits of DBA Tools
A DBA tool reduces the amount of time, effort, and human error involved in
maintaining efficient database systems and applications. Such tools ease the
administrative burden and reduce the possibility of error.

DBA tools reduce the amount of time, effort, and human error
involved in maintaining efficient database systems.

The need for these tools becomes apparent simply by reviewing the sheer
number of products that are available. Most organizations implement at least
one add-on tool for their DBMS; many organizations use dozens to ease the
administrative burdens associated with managing production database
development. Many varieties of tools are available that fulfill market niches
not adequately supported by the major DBMS vendors. The remainder of this
chapter provides a rundown of the categories and types of products available
to the DBA to assist in managing and administering databases.

Data Modeling and Design
Database modeling and design tools provide a consistent and coherent means
of creating conceptual and logical data models and transforming them into
physical database designs. Database modeling and design tools do not have to
be unique to a specific database, but some are. Tools developed specifically
to support your DBMS can significantly reduce development time by
automating repetitive tasks and validating the models. However, if you use

multiple DBMS products in your organization, you will be better off
choosing a tool that can support all of them rather than choosing multiple
tools geared for a specific database.

Tools specifically supporting your DBMS can significantly
reduce development time.

When choosing a modeling and design tool, look for one that can
• Support the standard tasks associated with logical data modeling such

as entity-relationship diagramming and normalization.
• Create a physical data model geared to each of your target DBMS

platforms. This model should support all features of each DBMS. For
example, for DB2 on the mainframe it should be able to depict all DB2
objects, referential integrity, VCAT (volume catalog)- and
STOGROUP-defined tablespaces, system-managed storage, and
capacity planning.

• Provide an expert system to verify the accuracy of the physical data
model and to suggest alternative solutions.

• Cross-reference the logical model to the physical model, capturing text
that supports physical design decisions such as denormalization and
type of tablespace.

• Generate standard DDL automatically to fully implement the database
defined in the physical data model. The DDL created by the tool from
the physical model should support all of the options for each DBMS
supported.

• Interface with application development tools and repository products
used within the organization.

Database Change Management
As we discussed in Chapter 7, making changes to your databases can be an
arduous and error-prone job. However, it is a rare database that does not need
to undergo some sort of change during its useful life. A variety of tools are
available to assist the DBA in managing and effecting database changes.
These tools optimize and automate multiple change management tasks,
including database alteration, database comparison, security authorization,
audit tracking, catalog querying, space management, and handling referential

integrity.

A variety of tools are available to assist in managing and
effecting database changes.

Change Management Tools

The predominant form of change management tool is the database alteration
and comparison tool. Although the structure of relational databases can be
modified using the ALTER statement, this statement is functionally crippled
in most DBMS products. In theory, the DBA should be able to alter all of the
parameters that can be specified for an object when it is created, but no
current DBMS product supports this. For example, most DBMS products
enable you to add columns to an existing table, but only at the end.
Furthermore, they do not permit the DBA to remove columns from a table—
instead, the table must be dropped and then recreated without the specified
columns.

The ALTER statement is functionally crippled in most DBMS
products.

Another problem that DBAs encounter when modifying database
structures is the cascading DROP effect. If a change to a database object
mandates that it be dropped and recreated, all dependent objects are dropped
when the database object is dropped. This includes tables, all indexes on the
tables, all primary and foreign keys, any related synonyms and views, any
triggers, all authorizations, and, of course, the data. Ensuring that DDL is
issued after the modification to reverse the effects of cascading DROPs can
be a tedious, complex, and error-prone procedure.

Many types of database object alteration cannot be performed using the
generic ALTER statement.

Additionally, many other types of database object alterations cannot be
performed using the generic ALTER statement. Depending on the DBMS,
you may not be able to

• Change the name of a database, table, alias, view, column, tablespace,
dbspace, trigger, stored procedure, user-defined function, relationship,
or index

• Change database partitioning

• Move a table from one database, dbspace, or tablespace to another
• Rearrange column ordering
• Change a column’s data type and length
• Remove columns from a table
• Change the primary key without dropping and adding the primary key
• Add columns to a view or remove columns from a view
• Change the SELECT statement on which a view is based
• Change the indexing columns
• Change the uniqueness specification of an index
• Change the clustering of an index or table

Such a list usually provides all the justification needed to obtain a database
alteration tool. Of course, the exact list will differ from DBMS to DBMS.
Database alteration tools provide an integrated environment for altering
database objects. Such tools usually provide a menu-driven or point-and-click
interface that allows the DBA to specify the type of change needed. The
burden of ensuring that the database change is performed correctly is moved
from the DBA to the tool. At a minimum, an ALTER tool should

The burden of ensuring that the database change is performed
correctly is moved from the DBA to the tool.

• Maintain tables easily without manually requiring the DBA to code
DDL.

• Retain or reapply all dependent objects, authorizations, and data
affected by the ALTER if a drop is required.

• Navigate hierarchically from object to object.
• Provide GUI-based modification showing “before” and “after”

definitions of the objects before the changes are applied.
• Batch requested changes into a group that can be executed in the

foreground or the background.
• Analyze changes to ensure that the requested alterations do not violate

any DDL rules. For example, if a series of changes is requested and one
change causes a subsequent change to be invalid (an object is dropped,
for instance), this should be flagged before execution.

• Provide the capability to monitor changes as they are applied.
An automated change management solution enables the DBA to focus on

the required change instead of on the arcane details of how the DBMS
implements such change. The tool is built to understand not just the discipline
of change management but also the DBMS in which the changes are to be
made. This built-in intelligence shifts the burden of ensuring that a change to
a database object does not cause other implicit changes from the DBA to the
tool. Furthermore, once the change has been identified and implemented for
one system, it can easily be deployed on other database copies with minimal,
or perhaps no, changes.

Another benefit of a change management tool is in database analysis and
planning. The impact of changes can be examined prior to implementing any
change. This is an invaluable resource for ensuring safe and efficient database
changes. This type of tool also uses automation to minimize the resources
required to implement database change. Instead of writing a new, complex
change script from scratch for each database change, the DBA can rely on the
change management tool to accomplish this. Application and database
availability will be enhanced because the product will implement the change
in the least intrusive, quickest manner possible.

The impact of changes can be examined prior to implementing
any change.

All in all, a database change management product will improve
availability, minimize errors, and speed up your time to market.
Database Comparison Tools

Over time, the DBA will make changes to databases throughout the
organization. It is possible that even with an automated database change
management solution, some changes will be implemented on some systems
but not on others. DBAs at large companies must keep track of dozens, if not
hundreds or thousands, of database servers. Ensuring that changes are
migrated effectively to all of those database servers can be a difficult task.

Ensuring that changes are migrated effectively can be a
difficult task.

A database comparison tool enables the DBA to compare one database to

another in terms of its database objects and structures. Such tools will
identify differences and automatically generate the DDL to make the
databases the same—from a structural perspective, not a data content
perspective. The database comparison tool should allow the DBA to make the
following types of comparisons:

• One live database to another live database (on the same server or
another server)

• A live database to a DDL script file
• One DDL script file to another DDL script file

DBAs who manage a large number of database servers should consider
using such products. As mentioned earlier, database comparison tools
compare only the structure of the database, not the contents. However, some
vendors offer tools that can compare the contents of one table to the contents
of another. Such tools are often useful during application program testing and
debugging.
Database Object Migration Tools

Many DBMS products do not provide a feature to migrate database objects
from one database server or subsystem to another. Without a tool, you can
accomplish this only by manually storing the DDL CREATE statements (and
all subsequent ALTER statements) in a script file and then executing the
script on the other database server. The DBA would then need to unload the
data from the source system and load it to the target system (if the data were
being migrated as well as the database schema). Manual processes such as
this are error prone. In addition, this process does not take into account the
migration of table data and database security.

Migration tools facilitate the quick migration of database objects from one
environment to another (e.g., from test to production). Although similar to a
table altering tool, an object migration tool has minimal altering capability
(some interface directly with an ALTER tool or are integrated into a single
tool). The migration procedure is typically driven by panels or GUI screens
that prompt the user for the objects to migrate.

Migration tools facilitate the quick migration of database
objects.

Migration can typically be specified at any level. For example, if you

request the migration of a specific database, you also could migrate all
dependent objects and security. Capability is provided such that database
object names, authorization IDs, and other objects can be renamed according
to the standards of the receiving instance, subsystem, or server. When the
parameters of the migration have been specified completely, the tool creates a
job to implement the requested database objects in the requested
environment.

A migration tool can reduce the time required by database administrators
to move databases from environment to environment. Quicker turnaround
results in a more rapid response to user needs, thereby increasing the
efficiency of your business.
Referential Integrity Tools

Referential integrity (RI) is used by relational databases to ensure the validity
of primary key to foreign key relationships. However, RI can be difficult to
administer and implement. RI tools eliminate this difficulty by

• Analyzing data for both system- and user-managed referential integrity
constraint violations

• Executing faster than the DBMS-provided integrity checking facility or
utility

• Enabling additional types of RI to be supported; for example, by
analyzing primary keys for which no foreign keys exist and deleting the
primary key row (pendant DELETE processing)

Additionally, tools are available that allow data to be viewed and extracted
in referential sets. Such a capability makes it easier to create reasonable test
data by using a subset of the data in the production databases.
Catalog Query and Analysis Tools

The system catalog or data dictionary contains a wealth of information
essential to the operation of the DBMS. Information about all database
objects, authority, and recovery is stored and maintained in the system
catalog. DBAs rely on this information to perform their job. The system
catalog is composed of relational tables and can be queried using SQL and/or
vendor-supplied stored procedures. Some DBMS vendors provide system
catalog views that are easier to query and monitor. However they are
accessed, these tables provide an information base for many monitoring and

administrative tasks.

DBAs rely on the system catalog to perform their job.

Coding SQL every time the DBA needs to access information in the
system catalog can be a very time-consuming process. Often, the DBA must
combine information from multiple catalog tables to provide the user with
facts relevant for a particular task. Moreover, for the most part, DBMS
vendors have made the catalog tables difficult to understand and query by
using odd naming conventions, denormalized structures, unused columns,
poor data type choices, and little documentation. As DBMS vendors add
features to new versions of their products, the system catalog becomes more
and more difficult to understand as new data is forced into an already ugly
system catalog design and implementation. When stored procedures and
views are provided, querying the catalog tables is easier; however, crucial
information is sometimes missing from these canned “queries.”

Add-on query tools can ease the burden of developing SQL queries to
access the system catalog tables. Sometimes these tools are referred to as
catalog visibility tools because they make it easier to access information
stored in the system catalog. The basic feature common to all catalog tools is
the capability to request catalog information using a GUI (or panel-driven)
interface without using SQL statements.

A GUI is a basic feature common to all catalog tools.

System catalog tools that provide only this level of capability are
rudimentary tools at best. Most of these tools provide much more
functionality. Instead of merely enabling data access, many tools can do one
or more of the following tasks:

• Create syntactically correct DDL statements for all database objects by
reading the appropriate system catalog tables. These statements are
generally executed immediately or saved in a data set for future
reference or use.

• Modify any updateable statistical columns using a non-SQL interface.
• Create syntactically correct authorization/security statements from the

catalog in the same way that DDL is generated.
• Perform “drop analysis” on a SQL DROP statement. This analysis

determines the effect of the cascading DROP by detailing all dependent
objects and security that will be deleted as a result of executing the
DROP.

• Provide a hierarchic listing of database objects. For example, if a
specific table is chosen, the tool can migrate quickly up the hierarchy to
show its tablespace and database, or down the hierarchy to show all
dependent indexes, views, synonyms, aliases, referentially connected
tables, and plans.

• CREATE and DROP database objects, and grant and revoke security
from a screen without coding SQL. Additionally, some tools log all
DROPs and REVOKEs such that they can be undone in the event of an
inadvertent DROP or REVOKE execution.

• Operate directly on the system catalog or on a copy of the system
catalog to reduce system-wide contention.

• Generate the full set of database commands used to manage the
database. Examples could include starting/stopping a database or
tablespace, displaying system information, and many other commands.

These features aid DBAs in performing their day-to-day duties.
Furthermore, a catalog query tool can greatly diminish the amount of time
required for a junior DBA (or new staff member) to become a productive
member of the DBA team.

Table Editors
There are only two methods of updating relational data supplied by most
DBMS products out of the box:

• SQL DELETE, INSERT, and UPDATE statements
• Database utilities such as LOAD or IMPORT

SQL statements operate on data a set at a time, so a single SQL statement
can affect multiple rows—or even all of the rows. Coding SQL statements for
every data modification required during the application development and
testing phase can be time-consuming. Furthermore, database utilities such as
LOAD and IMPORT are not a viable means of making small targeted
changes to data. They are designed and optimized for moving data in bulk.

A table editing tool can reduce the time needed to make simple data
alterations by providing full-screen editing capability for database tables. The

user specifies the table to edit, and a table editor launches. The data is
presented to the user as a series of rows, with the columns separated by
spaces. A header line indicates the column names. The data can be scrolled
up and down as well as left and right. To change data, the user simply types
over the current data.

A table editing tool can reduce the time needed to make
simple data alterations.

This type of tool is ideal for supporting the application development
process. A programmer can make quick changes without coding SQL. In
addition, if properly implemented, a table editor can reduce the number of
erroneous data modifications made by beginning SQL users.

Exercise caution before using a table editor on critical production data.
When a table editor is used, all columns are available for update, and a simple
miskeying can cause unwanted updates. Native SQL should be used if you
must ensure that only certain columns are updated. Tested SQL statements
and application programs are characterized by their planned nature—the
modification requests were well thought out and tested. This is not true for
changes implemented through a table editor.

Performance Management
Assuring optimal performance is one of the biggest problems faced by DBAs
on an ongoing basis. The loudest complaints come from users who have to
wait longer than they are used to waiting for their applications to respond.
This is especially true if the users never had to wait in the past.

However, what causes those formerly fast applications to stall and deliver
subpar performance? If there were an easy answer to that question, many
DBAs would be out of work. Performance management tools help the DBA
to gauge the responsiveness and efficiency of SQL queries, database
structures, and system parameters. Such tools run in the background to
capture database performance statistics and alert the DBA when problems
occur. Advanced performance tools can take proactive measures to correct
problems as they happen.

Every database application, at its core, requires three components in order
to operate: the system, the database, and the application. To deliver
performance, the DBA must be able to monitor and tune each of these

components. There are tools available to the DBA for monitoring and
optimizing each of these components.

To deliver performance, the DBA must be able to monitor the
system, the database, and the application.

System Performance Tools

System performance tools examine the database server, its configuration, and
usage. The most commonly used system performance tool is the performance
monitor. Database performance monitoring and analysis tools support many
types of performance-oriented requests in many ways. For example, system
performance tools can operate

• In background mode as a batch job that reports on performance
statistics written by the DBMS trace facility

• In foreground mode as an online monitor that either traps trace
information or captures information from the DBMS control blocks as
applications execute

• By sampling the database kernel and user address spaces as the
program runs and by capturing information about the performance of
the job, independent of database traces

• By capturing database trace information and maintaining it in a history
file (or table) for producing historical performance reports and for
predicting performance trends

• As a capacity planning device that gives statistical information about an
application and the environment in which it will operate

• As an after-the-fact analysis tool on a workstation that analyzes and
graphs all aspects of application performance and system-wide
performance

Each database performance monitor supports one or more of these features.
The evaluation of database performance monitors is a complex task.
Sometimes more than one performance monitor is used at a single site—
perhaps one for batch reporting and another for online event monitoring.
Maybe an enterprise-wide monitoring solution has been implemented and one
component of that solution is a database module that monitors your DBMS,
but it lacks the details of a more sophisticated DBMS monitor. So, another
performance monitor is purchased for daily DBA usage, while the module of

the enterprise-wide monitoring solution is used for integrated monitoring by
system administrators.

Modern database performance tools can set performance thresholds that,
once reached, will alert the DBA, perform another task to report on, or
actually fix the problem. These tools are typically agent based. An agent is a
piece of independent code that runs on the database server looking for
problems. It interacts with, but does not rely on, a console running on another
machine that is viewed by the DBA. This agent architecture enables efficient
database monitoring because the agent is not tied to a workstation and can act
independently. The agent sends information to the DBA only when required.

Additionally, some system performance tools are available that focus on a
specific component of the DBMS such as the data cache. Such a tool can be
used to model the memory requirements for database caching, to capture data
cache utilization statistics, and perhaps even to make recommendations for
improving the performance of the data cache.

Some system performance tools focus on a specific
component of the DBMS such as the data cache.

Another type of performance optimization tool enables database
configuration parameters to be changed without recycling the DBMS
instance, subsystem, or server. These tools are useful when the changes
require the DBMS to be stopped and restarted. Such tools can dramatically
improve availability, especially if configuration parameters need to be
changed frequently and the DBMS does not support dynamic parameter
modification.

A few ISVs provide invasive system performance tools that enhance the
performance of databases by adding functionality directly to the DBMS and
interacting with the database kernel. Typically, these products take advantage
of known DBMS shortcomings.

For example, products are available that enhance the performance of
reading a database page or block or that optimize data caching by providing
additional storage and control over buffers and their processing. Care must be
taken when evaluating invasive performance tools. New releases of the
DBMS may negate the need for these tools because functionality has been
added or known shortcomings have been corrected. However, this does not
mean that you should not consider invasive database performance tools. They

can pay for themselves after only a short period of time. Discarding the tool
when the DBMS supports its functionality is not a problem if the tool has
already paid for itself in terms of better performance.

Care must be taken when evaluating invasive performance
tools.

One final caution: Because invasive performance tools can interact very
closely with the database kernel, be careful when migrating to a new DBMS
release or a new release of the tool. Extra testing should be performed with
these tools because of their intrusive nature.
Database Performance Tools

Most DBMSs do not provide an intelligent database analysis capability.
Instead, the DBA or performance analyst must use system catalog views and
queries, or a system catalog tool, to keep watch over each database and its
objects. This is not an optimal solution because it relies on human
intervention for efficient database organization, opening up the possibility for
human error.

Fortunately, database analysis tools are available that can proactively and
automatically monitor your database environment. These database analysis
tools typically can

• Collect statistics for tables and indexes: standard statistical information,
extended statistics capturing more information (for example, data set
extents), or a combination of both

• Read the underlying data sets for the database objects to capture current
statistics, read the database statistics from the system catalog, read
tables unique to the tool that captured the enhanced statistics, or any
combination thereof

• Set thresholds based on database statistics whereby the automatic
scheduling of database reorganization and other maintenance tasks can
be invoked

• Provide a series of canned reports detailing the potential problems for
specific database objects

Application Performance Tools

Writing SQL statements to access database tables is the responsibility of an

application development team. However, the DBA usually gets involved
when it comes to the performance of SQL. With SQL’s flexibility, the same
request can be made in different ways. Because many of these methods are
inefficient, application performance can fluctuate wildly unless the SQL is
analyzed and tuned by an expert prior to implementation.

On the Importance of Application Performance . . .
As much as 80 percent of all database performance problems are caused by
inefficient SQL and application code.

The EXPLAIN or SHOWPLAN commands provide information about the
access paths used by SQL queries by parsing SQL in application programs
and placing encoded output into a PLAN_TABLE or by producing a standard
access path report. To gauge efficiency, a DBA must decode this data and
determine whether a more efficient access path is available.

SQL code reviews are required to ensure that optimal SQL design
techniques are used. As discussed in Chapter 6, an application walk-through
should perform a review of all SQL statements, the selected access paths, and
the program code in which the SQL is embedded. The review also includes
an evaluation of database statistical information to ascertain whether
production-level statistics were used at the time of the EXPLAIN.

A line-by-line review of application source code and EXPLAIN output is
tedious and prone to error, and it can cause application backlogs. SQL
analysis tools greatly simplify this process by automating major portions of
the code review process. The SQL analysis tool typically

• Analyzes the SQL in an application program, describing the access
paths chosen in a graphic format, an English description, or both.

• Issues warnings when specific SQL constructs are encountered. For
example, each time a sort is requested (by ORDER BY, GROUP BY,
or DISTINCT), a message informs the user of the requisite sort.

• Suggests alternative SQL solutions based on an “expert system” that
reads SQL statements and their corresponding PLAN_TABLE entries
and poses alternative SQL options.

• Extends the rules used by the “expert system” to capture site-specific
rules.

• Analyzes at the subsystem, instance, server, application, plan, package,
or SQL statement level.

• Stores multiple versions of EXPLAIN output, creates performance
comparisons, and plans history reports.

SQL analysis tools can automate major portions of the code
review process.

Tools that analyze the performance of the application code in which the
SQL is embedded are available too. These tools usually capture in-depth
information about programs as they are run and provide reports that specify
which areas of the code consume the most resources. Unfortunately, most of
these tools do not necessarily interface to SQL analysis tools. If you are
interested in why this might be a problem, see the sidebar “Application and
SQL Analysis.”

Application and SQL Analysis
Consider an application program that contains a singleton SELECT inside
a loop. The singleton SELECT requests a single row based on a WHERE
clause, checking for the primary key of that table. For each iteration of the
loop, the program changes the primary key value being searched such that
the entire table is read from the lowest key value to the highest key value.

SQL analysis tools will probably not target the SQL statement as
inefficient because the predicate value is for the primary key, which
should invoke indexed access. The application program analysis tool
may flag the section of the code that accesses the data as inefficient, but
it will not help you to fix it or tell you why it is inefficient.

A knowledgeable performance analyst or DBA would have to use
both tools and interpret the output of each to arrive at a satisfactory
conclusion. For example, it could be more efficient to code a cursor,
without a predicate, to retrieve every row of the table, and then fetch
each row one by one. This method would eliminate index I/O, might use
parallel access, and therefore should reduce I/O and elapsed time—
thereby enhancing performance.

Only a trained analyst can catch this type of design problem during a
code walk-through. Although a plan analysis tool significantly reduces

the effort involved in the code review process, it cannot eliminate it.

The first feature required of SQL analysis tools is the ability to read and
interpret standard EXPLAIN or SHOWPLAN output. The tool should be able
to read the plan table or interface directly with the DBMS command to obtain
the output. It then must be able to automatically scan the EXPLAIN or
SHOWPLAN data and report on the selected access paths and the predicted
performance. Advanced tools will provide recommendations for improving
the SQL by adding indexes or modifying the SQL.
End-to-End Performance Tools

Modern applications require multiple system components and run across
multiple networked devices to deliver functionality. When performance
problems arise, it can be difficult to determine what, exactly, is causing the
problem. Is it on the client or the server? Is it a networking problem? Is it a
database issue or a code problem?

End-to-end performance monitoring tools exist that track an application
request from initiation to completion. These solutions provide enhanced
visibility specifically into application performance—giving organizations the
power to understand both when and why performance has degraded, and the
information needed to improve matters in a business-prioritized fashion.

End-to-end performance monitoring tools track application
requests from initiation to completion.

Following the workload as it progresses across multiple pieces of hardware
and software makes problem determination possible.

Backup and Recovery
As we learned in Chapters 15 and 16, assuring the recoverability of database
systems is a complex task. In order to do the job properly, DBAs need to
understand the backup and recovery features of the DBMS, how it interfaces
to the disk storage systems, and the business impact of data to the
organization. Sometimes DBAs need a helping hand.

Fortunately, there are a number of tools that streamline and automate the
backup and recovery process. The simplest form of backup and recovery tool
is the high-speed utility. ISV utilities that speed up the process of making

image copy backups and using those backups for recovery can be used to
reduce downtime and increase data availability. Some tools also simplify, not
just speed up, these processes. For example, many high-speed backup and
recovery utilities can back up entire databases or database objects using
masking and wildcarding techniques. For example, consider the following
command:

COPY GL21DBX2.T*

A command such as this might be used to make an image copy backup of
every tablespace in the database named GL21DBX2 that begins with the
letter T. Not only is this simpler than explicitly listing every tablespace, but
the backup script will not need to be edited if a new tablespace is added that
conforms to the wildcarded mask.

The simplest form of backup and recovery tool is the high-
speed utility.

Additional products are available that automate the entire recovery process.
Such tools might be able to accept a recovery request, examine the log and
the image copy backups, make a recommendation on how to recover, or, even
further, build the scripts to perform the recovery that would result in the most
data recovered in the least amount of downtime.

A final type of recovery tool is the log-based recovery tool. Such a tool can
be used to examine the log and produce reverse SQL, as discussed in Chapter
15. For example, assume the DBA issued a DELETE statement in error.
Using the log-based recovery tool, the DBA would input the program name
and the time it ran. The tool would examine the log, find the DELETE, and
create INSERT statements to reproduce the deleted data. Simply by running
the INSERT statements, the database is recovered. Of course, this is a
simplistic example, but a log-based analysis tool can come in handy when
erroneous database modifications need to be identified and rectified quickly.

Database Utilities
Many database utilities that ship free with the DBMS are simple, no-frills
programs that are notorious for poor performance, especially on very large
tables. However, these utilities are required to populate, administer, and
organize your databases. The typical utilities that are provided are LOAD,
UNLOAD, REORG, BACKUP, and RECOVER, as well as utilities for

integrity checking.

Many database utilities that ship free with the DBMS are
notorious for poor performance.

Third-party vendors provide support tools that replace the database utilities
and provide the same or more functionality in a more efficient manner. For
example, it is not unheard of for third-party vendors to claim that their
utilities execute anywhere from four to ten times faster than the native DBMS
utilities. These claims must be substantiated for the data and applications at
your organization (but such claims are quite believable). Before committing
to any third-party utility, the DBA should be sure that the product conforms
to at least the following requirements:

• Does not subvert the integrity of the data in the database.
• Provides at a minimum the same features as the corresponding native

utility. For example, if the REORG utility reorganizes both indexes and
tablespaces, the enhanced REORG tool must be able to do the same.

• Does not subvert standard database features. For example, DB2 image
copies are maintained in the DB2 system catalog. An enhanced backup
tool for DB2, therefore, should store its image copies there as well.

• Provides an execution time at least twice as fast as the corresponding
database utility. For example, if the Sybase DUMP utility requires 20
minutes to back up a table, the enhanced backup tool must dump the
same table in no more than 10 minutes. Of course, this does not need to
be a hard-and-fast rule. Sometimes even a moderate increase in
processing time is sufficient to justify the cost of a third-party utility
offering.

• Corrects deficiencies in the standard database utilities. For example, if
the LOAD utility does not load data in sequence by clustering index,
the replacement LOAD utility should do so.

When testing utility tools from different vendors, be sure to conduct fair
tests. For example, always reload or recover prior to testing REORG utilities,
otherwise you may skew your results due to different levels of table
organization. Additionally, always run the tests for each tool on the same
object with the same amount of data, and make sure that the data cache is
flushed between each test run. Finally, make sure that the workload on the

system is the same (or as close as possible) when testing each product
because concurrent workload can skew benchmark test results.

Conduct fair tests when testing utility tools from different
vendors.

Utility Management Tools

Another variety of database utility offering is the utility manager. This type
of tool provides administrative support for the creation and execution of
database utility job streams. These utility generation and management tools

• Automatically generate utility parameters, JCL, or command scripts.
• Monitor the database utilities as they execute.
• Automatically schedule utilities when exceptions are triggered.
• Restart utilities with a minimum of intervention. For example, if a

utility cannot be restarted, the utility manager should automatically
terminate the utility before resubmitting it.

Data Protection, Governance, Risk, and Compliance Tools
As we discussed in Chapters 15 and 16, database security and protection,
along with governance, risk, and compliance (GRC) requirements, impose
the need for security and compliance management. There are tools that can be
used to improve database security and compliance, some of which are
important for DBAs to understand and use.

On the other hand, GRC is a business proposition, and the majority of the
solutions in this category are not relevant for DBAs. The DBA must be aware
of the tools that integrate with the DBMS and their databases, or impose
additional requirements in terms of administrative workload or performance
implications.
Auditing Tools

An audit is the examination of a practice to determine its correctness.
Database auditing software helps in monitoring the data control, data
definition, and data integrity in the database environment. Most DBMS
products provide limited audit mechanisms, but these features are typically
difficult to use and maintain. Auditing tools provide the ability to audit at a
more granular level and simplify the ability to report on the audit trails.

Auditing tools provide the ability to audit at a granular level.

A typical auditing facility permits auditing at different levels within the
DBMS, for example, at the database, database object level, and user levels.
But capturing so much information, particularly in a busy system, can cause
performance to suffer. Production of the required audit details must be
accomplished without diminishing the operations of the computerized
systems that keep the practice functioning.

The detail and authenticity of the audit trail produced are just as important
as the operational systems’ performance. The audit trails must be detailed
enough to capture “before” and “after” images of database changes. If the
mechanism capturing the audit details is not comprehensive and efficiently
engineered, it ceases to be a compliance solution. Furthermore, the audit trails
must be stored somewhere that protects the authenticity of the audited
information while allowing seamless access for reporting.

Due to the potential volume of changes made to database data, a useful
auditing facility must allow for the selective creation of audit records to
minimize performance and storage problems. The general rule of thumb is
that only data that must be audited to be in compliance should be audited, and
nothing more.

Typical aspects that can be captured by database auditing tools include
• All accesses by high-level users (such as DBADMIN and SYSADMIN)
• Authorization failures
• SQL GRANT and REVOKE statements
• DDL statements issued
• DML statements issued
• SQL BIND requests or new program invocations
• Utility executions

There are several popular techniques that can be deployed to audit database
data. By far, the best technique engages proactive monitoring of database
operations directly at the database server. This technique captures all requests
for data as they are made. By capturing the audit details at the server level,
the software can guarantee that all access is monitored. Other techniques,
such as trace-based auditing or parsing database logs, can miss certain types
of database activities.

A robust database access auditing solution that addresses regulatory
compliance should be able to provide answers to at least the following
questions:

1. Who accessed the data?
2. At what date and time was the access?
3. What program or client software was used to access the data?
4. From what location was the request issued?
5. What SQL was issued to access the data?
6. Was the request successful, and if so, how many rows of data were

retrieved?
7. If the request was a modification, what data was changed? (A “before”

and “after” image of the change should be accessible.)
Of course, there are numerous details behind each of these questions. A

robust database access auditing solution should provide an independent
mechanism for long-term storage and access of audit details. The solution
should offer canned queries for the most common types of queries, but the
audit information should be accessible using industry-standard query tools to
make it easier for auditors to customize queries as necessary.

The auditing tool should produce a set of prepackaged reports geared for
supporting industry and governmental regulations. For example, to support
PCI DSS, the tool should offer prepackaged reports geared to prove
compliance. The reports should be easy to produce and easy to read.

Organizations with strict security and auditing requirements, or with
significant regulatory or industry compliance requirements, should consider
using a database auditing tool because of the weak auditing capabilities of
most DBMS products.
Access Trending Tools

Trending tools usually rely on database auditing technology to watch
database accesses and establish trends and patterns. Such tools are useful for
identifying and prohibiting behavior outside of the norm to proactively halt
database attacks.

As an example, consider an end user who works on sensitive data on a
daily basis. A trending tool can establish that user’s normal patterns. Perhaps
the person generally accesses sensitive data between 9:00 and 11:00 in the

morning and again between 2:00 and 4:00 in the afternoon. The data is
accessed methodically, usually on a customer-by-customer basis. And the
user does this consistently, more or less, every workday.

Then, on Saturday evening, the same user attempts to access sensitive data
for all of the customers in the Northeast region. That sounds like a potential
security issue. The trending tool can capture and report upon this so that the
atypical request is documented. Or, for organizations that are more cautious,
the trending tool may be able to prohibit such nonstandard access, requiring
management authorization before allowing it to proceed.

Data access trending has the potential to protect data that you may not even
know is being surreptitiously accessed.
Data Profiling Tools

Another useful category of data management tool provides data profiling
capabilities. Profiling your data is a methodology for gaining insight into
your business data and refining your processes for improving data quality.

A data profiling tool is used to discover structure, data, and relationship
anomalies in your data. Profiling techniques help you to uncover instances of
improper data where the data does not match the metadata definition, patterns
do not match, values are inaccurate, and there are occurrences of redundant
data.

For example, consider a database table with a column containing Social
Security numbers. We know that they should all be of the format nnn-nn-
nnnn. A data profiling tool can be deployed to examine that particular column
to show what percentage of the data does not conform to that pattern. Or,
consider another column where you do not know the specific pattern of the
data. In this case, the data profiling tool can uncover a pattern where perhaps
one was thought not to exist.

At any rate, data profiling tools are useful for cleaning up data, such as is
required for compliance and data warehousing projects.
Data Masking Tools

Data masking is an additional category of data protection solution that can be
used to obfuscate actual values in the database. You may need to mask data
values for reporting or other reasons to hide sensitive data. PCI DSS
regulations are one area that requires data masking. Payment card values

cannot appear unmasked on receipts. The next time you use a credit card to
buy something, try to find your credit card number. It will be masked.

An additional place where data masking may be required is when
accessing production data for testing purposes. The testing process requires
valid data, but it does not need to be actual values. Data masking solutions
can process “real” values and turn them into valid but different values for
testing.

For example, you might need to mask Social Security numbers. You do not
want personally identifiable details such as name, address, and so on to be
associated with an actual Social Security number on most reports.
Security Tools

Database security is usually provided internal to the database by use of
GRANT and REVOKE SQL statements, which grant authorization explicitly
and implicitly to database users. Some DBMS products provide authorization
exits to enable communication with external security management packages.
This eases the administrative burden of database security by enabling the
corporate data security function to administer groups of users.

The implementation of security in most relational databases has several
problems. Paramount among these deficiencies is the effect of the cascading
REVOKE. If authority is revoked from one user who has previously granted
authority to other users, all dependent authorizations also are revoked.

A database security add-on tool can address this problem. These tools
typically analyze the effects of a REVOKE. These tools enable the user to
revoke the authority and optionally reassign all dependent authority, either by
recreating the appropriate GRANT statements to reapply the authorizations
implicitly revoked or by revoking the authority and automatically reapplying
all implicit REVOKEs in the background.

A database security add-on tool typically analyzes the effects
of a REVOKE.

Database security tools provide other functions. Consider the
administrative overhead when database users are hired, quit, or are
transferred. Security must be added or removed. A good security tool enables
a user to issue a GRANT LIKE command that can copy database authority
from one database object to another or from one database user to another.

Suppose that a DBA is transferred to another department. A security tool
can assign all of that DBA’s authority to another user before revoking his
authority. Or suppose that a new table is created for an existing application,
and it requires the same authorizations as the other tables in the application.
This type of tool enables a user to copy all security from one table to the new
table.

There is one other type of database security product. Rather than
augmenting database security, however, a security replacement product
supplants database security with an external package. This product’s primary
benefit is that it consolidates security administration for the data and the
database. A second benefit is that the cascading REVOKE effect can be
eliminated because most external data security packages do not cascade
security revocations.

A security replacement product supplants database security
with an external package.

Database security replacement tools have their weaknesses, too. These
tools do not conform to the rigorous definition of the relational model, which
states that the DBMS must control security. Some do not provide all types of
database security. For example, system-level authorizations are frequently
omitted. Another drawback is that if the external security package fails, the
data is unprotected.

Data Warehousing, Analytics, and Business Intelligence
The data warehouse administrator requires a lot of help to automate the
management of warehouse databases and to assist users in effectively
querying the data warehouse.
ETL Tools

ETL stands for extract, transform, and load. ETL tools ease the burden of
data movement and transformation because the tools understand the data
format and environment of each DBMS they work with. A company’s choice
of ETL tools depends on the following factors:

• How many DBMS products need to be supported? If the project
requires only a single DBMS (unlikely), the ETL features built into that
DBMS might be sufficient for the project’s needs.

• To what extent must data be replicated across multiple DBMS
products?

• Does the data have to be synchronized across DBMS products?
• How much data manipulation and transformation is required as data

moves from the OLTP source systems to the data warehouse?
• Is the data static or dynamic?
• If it is dynamic, is it updated online, in batch, or both?

The answers to these questions will help to determine the type of data
warehousing tool necessary. Two basic types of data conversion tools are
popular in the market today: replication and propagation.

Replication tools extract data from external application systems and
heterogeneous databases for population into target database tables.
Sometimes the target databases supported by this type of tool are narrow, but
the source databases typically are broad. For example, a tool may be able to
extract data from IMS, Oracle, SQL Server, non-database files, and other
structures but will only support loading into a DB2 table. Before choosing a
replication tool, be sure you know the full list of source and target data
structures that must be supported, and choose your replication tool with care.

Choose replication tools with care.

Propagation tools capture data as it changes at the source (external
applications and heterogeneous databases) and then insert it into target
database tables. A propagation tool is similar in function to a replication tool,
but propagation tools are active. They constantly capture updates made in the
external system, either for immediate application to the target tables or for
subsequent batch updating. This differs from the extract tool, which captures
entire data structures, not data modifications.

In heterogeneous data-processing shops, the same data may need to be
stored in multiple DBMS products. In a multiple-DBMS environment, the
movement of data from DBMS to DBMS is a tedious task. ETL tools can be
useful for converting data from DBMS to DBMS even outside of
warehousing needs.
Query and Reporting Tools

Most DBMS products bundle a simple query tool with the product. Usually

this tool is very rudimentary and only permits SQL statements to be run with
no formatting of the output. Most organizations will find these tools
inadequate for developing professional, formatted reports or complete
applications. These tools may also be inadequate for inexperienced users or
those who want to develop or execute ad hoc queries.

Query and report-writing tools address these deficiencies. The capability to
format reports without programming is probably their greatest asset. Another
important feature is a GUI interface that allows you to develop data
manipulation requests without writing complex SQL.

Query and report-writing tools address the deficiencies of
bundled query tools.

Many vendors provide table query and reporting tools that can be used to
enhance ad hoc query capabilities. These products typically

• Provide standard query formats and bundled reports
• Provide access to multiple file formats and heterogeneous databases
• Deliver extensive formatting options
• Offer more analytical functions than SQL
• Use static or dynamic SQL for stored queries
• Execute database commands from the query tool

Database query tools typically use point-and-click, drag-and-drop
technology to greatly ease the report generation process. Fourth-generation
languages (4GL) are also popular for accessing relational data. These
products provide more functionality than a report-writing tool and use a GUI
front end that makes them easier to use than 3GL programming languages
such as Visual Basic, COBOL, or C. Generally, 4GL tools work in one of
three ways:

• Queries are developed using 4GL syntax, which then is converted
“behind the scenes” into SQL queries.

• SQL is embedded in the 4GL code and executed much like SQL
embedded in 3GL code.

Fourth-generation languages are popular for accessing
relational data.

• A hybrid methodology is used in which the executed SQL is either
difficult or impossible to review.

Newer DBMS versions and releases now include more advanced support
of queries, reports, and OLAP activities. For example, Microsoft SQL Server
Analysis Services provides in-depth analytical query capabilities rivaling
those of third-party OLAP tools. Of course, these services work for SQL
Server only. Organizations that have to support analytical and query
processing against heterogeneous databases should consider using a third-
party tool that supports all of the DBMS products in the organization.
Advanced Analytics

Advanced analytics is a business-focused approach, comprising techniques
that help build models and simulations to create scenarios, understand
realities, and hypothesize future states. Advanced analytics uses data mining,
predictive analytics, applied analytics, statistics, and other approaches in
order to enable organizations to improve their business performance.

Traditional business intelligence enables us to understand the here and
now, and even some of the why, of a given business situation. Advanced
analytics goes deeper into the “why” of the situation and delivers likely
outcomes. Although advanced analytics cannot infallibly predict the future, it
can provide astute models for judging the likelihood of upcoming events. By
allowing business managers to be aware of likely outcomes, advanced
analytics can help to improve business decision making with an
understanding of the effect those decisions may have in the next quarter or
year.

Advanced analytical capabilities can be used to drive a wide range of
applications, from tactical applications such as fraud detection to strategic
analysis such as customer segmentation. Regardless of the applications,
advanced analytics provides intelligence in the form of predictions,
descriptions, scores, and profiles that help businesses better understand
customer behavior and business trends.

Advanced analytics cannot infallibly predict the future, but it
can provide astute models for judging the likelihood of
upcoming events.

Most DBAs will not use advanced analytics tools but may be involved in

setting them up to work with the data warehouse and other databases.

Programming and Development Tools
Some tools straddle the line between DBA tool and programmer tool. For
example, third-party vendors offer many tools that enhance the database
application development environment. Programmers commonly use these
tools, but DBAs quite frequently are involved in the review and analysis of
such products. Some of the tasks that programming and development tools
can perform include

• Testing SQL statements in a program editor while the programmer
codes the SQL.

• Performing predictive performance estimation for programs and SQL
statements.

• Explaining SQL statements in an editing session.
• Generating complete code from in-depth specifications. Some tools

even generate SQL. When code generators are used, ensure that the
generated code is efficient before promoting it to production status.

• Providing an enhanced environment for coding procedural SQL when
creating triggers, stored procedures, and user-defined functions.

• Interfacing with 4GLs to create database access routines.
Because of the many varieties of database programming products, these

tools should be evaluated on a case-by-case basis.
Checkpoint/Restart Tools

Some DBMS products provide no inherent capability for storing checkpoint
information. When a program fails, a restart is difficult because there is no
track of the last data that was committed to the database unless the
programmer coded it into the program. Tools are available for some DBMS
products to store checkpoint information that can be used by application
programs during restarts. Automation of the restart process is another benefit
provided by some checkpoint/restart solutions. Such products are useful for
large batch database applications that issue many COMMITs. Many of these
products require little, if any, modification of the program.
Testing Tools

Testing tools enable you to issue a battery of tests against a test base and

analyze the results. Testing tools typically are used for all types of
applications, but some have been specifically extended to support testing
against database tables.
Debugging Tools

SQL debugging tools are useful for identifying and fixing syntax and logic
errors in difficult SQL statements. These tools are most useful for procedural
SQL dialects such as PL/SQL and Transact-SQL.

Miscellaneous Tools
In addition to the tools we have reviewed already, there are all kinds of niche
tools available. Some of them are non-database-specific tools, while others
are simply useful single-purpose programs that help when managing database
systems. Let’s examine some of these miscellaneous tool categories.

All kinds of niche tools are available.

Space Management Tools

Most DBMSs provide basic statistics for space utilization, but the in-depth
statistics required for both space management and performance tuning are
usually inadequate for heavy-duty administration. For example, most DBMSs
lack the ability to monitor the requirements of the underlying files used by
the DBMS. When these files go into extents or become defragmented,
performance can suffer. Without a space management tool, the only way to
monitor this information is with arcane and difficult-to-use operating system
commands. This can be a tedious exercise.

Additionally, each DBMS allocates space differently. The manner in which
the DBMS allocates space can result in inefficient disk usage. Sometimes
space is allocated, but the database will not use it. A space management tool
is the only answer for ferreting out the amount of used space versus the
amount of allocated space.

Each DBMS allocates space differently.

Space management tools often interface with other database and systems
management tools such as operating system space management tools,
database analysis tools, system catalog query and management tools, and
database utility generators.

Compression Tools

A standard tool for reducing storage costs is the compression utility. This
type of tool operates by applying an algorithm to the data in a table such that
the data is encoded in a more compact area. When the amount of area needed
to store data is reduced, overall storage costs are decreased. Compression
tools must compress the data when it is added to the table and subsequently
modified, then expand the data when it is later retrieved. Additionally, some
tools are available that compress database logs, enabling more log
information to be retained on disk before it is off-loaded to another medium.

Third-party compression routines are usually specified by using APIs at
the database or operating system level. Sometimes tables must be dropped
and recreated to apply the compression routine.

In general, a compression algorithm increases CPU costs while it decreases
storage and I/O costs. This trade-off is not beneficial for all tables. For
example, if a compression routine saves 30 percent on storage costs but
increases CPU consumption without decreasing I/O, the trade-off is probably
not beneficial.

A compression tool can decrease storage by reducing the size of the rows
to be stored. CPU consumption usually increases because additional
processing is required to compress and expand the row. I/O costs, however,
could decrease—perhaps dramatically so.

A compression tool can reduce the size of the rows to be
stored.

Some DBMSs support compression without requiring a third-party
product. The major advantage of third-party compression tools is that most of
the vendors provide additional flexibility and multiple compression
algorithms for different types of data.
Online Standards Manuals

Products are available that provide “canned” standards for implementing,
accessing, and administering databases. These tools are particularly useful for
new database shops. By purchasing an online standards manual, new—and
even more experienced—shops can quickly come up to speed with each new
DBMS.

Everyone benefits from these products if the third-party vendor

automatically ships updates whenever there is a new version or release of the
DBMS product. Online manuals can function as cheap training in the new
DBMS release (e.g., migrating from Oracle8i to Oracle9i).

Online manuals can function as cheap training.

Any product that delivers database standards should
• Provide online networked access so that all developers and DBAs can

access the manual
• Be extensible, so additional standards can be added
• Be modifiable, so the provided standards can be altered to suit prior

shop standards (e.g., naming conventions, programming standards)
Other Tools

Many types of database tools are available. The categories in this chapter
cover the major types of tools, but not all tools can be easily pigeonholed. For
example, consider a database space calculator. It reads table DDL and
information on the number of rows in the table to estimate space
requirements. A space calculator is often provided with another tool such as a
space management tool or a database design and modeling tool.

Additionally, some standard system management and programming tools
can be used to optimize the database environment. For example, a third-party
sorting tool can be used to presort data before loading or to sort output results
for comparison during database program testing.

Furthermore, new types of products are announced quite regularly. For
example, one vendor recently released a product that analyzes the SQL that
accesses a particular table and uses a set of expert rules to recommend the
most efficient indexes. Be sure to keep your eyes open for new and useful
types of tools not mentioned in this chapter.

New types of products are announced quite regularly.

Examine Native DBA Tools
Before moving forward to purchase any third-party DBA tools, be sure to
thoroughly examine the functionality provided by the DBMS vendor. DBMS
vendors have greatly improved the features offered in their native tools, and

if you have not investigated them recently, you should take another look.
For example, Oracle Enterprise Manager and Microsoft SQL Server SSMS

have become very feature-rich products. Be careful, though, as sometimes
only a base set of functionality is provided out of the box with additional
features requiring additional licensing and, importantly, additional cost.

Homogeneous shops, with only a single DBMS to support, frequently can
do well using the DBMS vendor’s DBA tools. Heterogeneous shops, with
multiple DBMS products, may do better by purchasing a tool from a third
party that manages multiple database systems.1

Evaluating DBA Tool Vendors
Advanced organizations augment their DBA staff with advanced software
tools that help to automate the task of database administration. Multiple
categories of database tools are available to organizations to improve the
efficiency of database administration. Sometimes the DBA will have to
choose from a list of similar tools provided by multiple vendors or investigate
a new vendor that offers a tool not available from the primary vendor.

Although the most important aspect of database tool selection is the
functionality of the tool and the way it satisfies the needs of your
organization, the nature and stability of the product vendor are important
also. This section provides suggested questions to ask when you are selecting
a database tool vendor.

The nature and stability of the product vendor are important.

• How long has the vendor been in business? How long has the vendor
been supplying tools for the particular DBMS products you manage? In
general, the longer the vendor has been in business, the better; and the
longer the vendor has worked with the DBMS products in question, the
better.

• Does your company have other DBA or system management tools from
this vendor? How satisfied are the users of those tools?

• Are other organizations satisfied with the tool you are selecting? Obtain
a list of other companies that use the same tool, and contact several of
them.

• Does the vendor provide a 24-hour support number? If not, what are the

vendor’s hours of operation? Does the vendor have a toll-free number?
If not, be sure to determine the cost of long-distance charges when you
are requesting customer support. You want to avoid accumulating
significant long-distance charges when you are requesting customer
support from a vendor. (You may be able to use Skype or another VOIP
technology to minimize these costs.)

• Does the vendor provide online technical support? Can you access it to
evaluate its usefulness before establishing a relationship with the
vendor? If so, scan some of the FAQs and reported problems for the
tools before committing to the vendor’s product. Keep in mind that the
Web support should be in addition to phone support, not a replacement.

• Evaluate the response of the technical support number. Call the number
with technical questions at least five times throughout the day: before
8:00 A.M., around noon, just before 5:00 P.M., after 9:00 P.M., and just
after midnight. These are the times when you could find problems with
the level of support provided by the vendor. Was the phone busy? Were
you put on hold? For how long? When you got a response, was it
accurate and friendly? Did the person who answered the phone have to
find someone with more technical knowledge? (This can indicate
potential problems.) If you really want to test the vendor, call after
midnight to gauge the response to an after-hours support request.

• Does this vendor supply other tools that your organization might need
later? If so, are they functionally integrated with this one? Does the
vendor supply a full suite of products or just a few? Does the vendor
provide solutions in each of the categories discussed above, or in just a
few? It is wise to work with a vendor that can satisfy all (or most) of
your database administration needs, not just a few of them. However, a
multivendor strategy can be helpful to minimize cost (because you can
pit one vendor against another to negotiate discounts).

• Are the vendor’s tools integrated with other tools? For example, a
product that analyzes databases to determine whether a reorg is required
should integrate the reorg with your shop’s job scheduler.

• Does the vendor provide training? Is it on-site training? Does the
vendor supply DBMS training as well as training for its tools? Is
computer-based training available for the vendor’s tools?

• Are installation, technical, and user manuals available in both hard and

soft copy? Are hard copies provided free of charge? If so, how many
copies? If not, what is the charge?

• Will the vendor answer database questions free of charge in addition to
questions about its product? For example, if the vendor provides Oracle
tools, are the support personnel skilled enough to answer a question
about Oracle Database administration? Sometimes vendors will do this,
but they do not typically advertise the fact. Try it out by calling the
technical support number.

• Does the vendor have a local office? If not, are technicians readily
available for on-site error resolution if needed? If so, at what price?

• Will the vendor deliver additional documentation or error resolution
information by overnight mail? Does the vendor publish a fax number?
An e-mail address?

• How are software fixes provided? Electronically? By tape? Over the
Web? Via FTP? Is a complete reinstallation required? Are fixes
typically accomplished using zaps? For mainframe folks, does the
vendor support SMP/E?

• How many man-hours, on short notice, is the vendor willing to spend to
solve problems? Is there a guaranteed time limit to resolve severe
product problems?

• Is the vendor willing to send a sales representative to your site to do a
presentation of the product tailored to your needs? Or is it a “phone
sales only” organization? If the vendor will not send someone on-site, it
can indicate that you are dealing with a small vendor or a vendor that
could be difficult to deal with later.

• Is the vendor a business partner of DBMS vendors such as Microsoft,
IBM, and Oracle? How soon will the vendor’s tools be modified to
support new releases and versions of the DBMS?

• Have the vendor’s tools been reviewed or highlighted in any industry
publications recently? If so, obtain the publications and read the
articles. Sometimes the articles will be available on the Web. Make sure
that they were not written by the vendor, but by a neutral third party—
preferably a customer, consultant, or industry analyst.

• Will the vendor supply a list of consultants who have used the product
and can vouch for its functionality?

• Will the vendor assist in developing a cost justification? Most tool
vendors are eager for your business and will be more than willing to
provide cost justifications to help you sell upper management on the
need for DBA tools.

• Does the vendor provide sample scripts (or JCL for the mainframe) to
run its product? Is an easy-to-use “Getting Started” manual available?

• Does the vendor charge an upgrade fee when you upgrade your
hardware or DBMS? How flexible are the terms and conditions of the
contract?

• Is the vendor willing to set a ceiling for increases in the annual
maintenance charge?

• If the vendor is sold or goes out of business, will the vendor supply the
source code of the tool? Is the source code escrowed? If not, are the
terms and conditions of the contract flexible in the event the vendor is
acquired? Given the state of the industry today, with mass vendor
consolidation, this is an important item to consider or you may be stuck
with unsupported products or a “difficult” vendor post acquisition.

• What is the current status of the vendor? Have any recent events or
business downturns resulted in lower market share? Did the company
recently undergo a layoff? Are there any outstanding lawsuits against
the company? Answers to these questions can help to identify the
stability of the vendor.

• Does the vendor supply database administration tools for all of the
DBMS products used at your shop? Can the same tool, using the same
interface, be used to manage multiple databases across multiple
operating systems?

• How does the vendor rank enhancement requests? Is every request
ranked equally or are certain customers favored over others? If so, how
can you be assured that you will be one of the vendor’s “favored”
customers?

These questions can provide the basis for your organization’s evaluation of
DBA tool vendors. Judge for yourself which criteria are most important to
your organization. You might consider applying a weighting factor to each
question to rate the responses. If you do so, be sure not to inform the vendor
of this weighting to ensure that any help the vendor may be supplying you is

“honest” help.

Homegrown DBA Tools
Some organizations build homegrown DBA tools to help support their
DBMS environments. Such tools are usually developed and maintained by
the DBAs or systems programmers. I have seen homegrown tools that
address just about every aspect of database administration that vendor-
marketed tools address.

There are pros and cons to pursuing a homegrown DBA tool strategy. Most
organizations view the biggest benefit as decreased cost. This may be true in
some cases, but it often is not. Although homegrown tools will not incur the
initial expense of a third-party tool, the ongoing maintenance expense can be
prohibitive. Every time a new version or release of the DBMS is installed, a
homegrown tool will need to be at least retested and usually recoded. Not
only does this incur a cost, but it takes valuable management time away from
the DBA. Instead of managing the organization’s databases, the DBA must
maintain the homegrown tools.

Homegrown tools have pros and cons.

New DBAs need to understand the DBA team’s tool philosophy when
coming on board. Does the company build its own tools or purchase third-
party tools? Sometimes the answer is a mixture of the two approaches.

Summary
Third-party DBA tools can significantly improve the efficiency of
applications that access relational data. When evaluating products, look for
features that are important to your organization. Consider adopting checklists
for product comparisons based on the features discussed in this chapter.
Remember, most DBMSs leave quite a bit to be desired in the administration,
data access, performance monitoring, and application development areas.
Third-party DBA tools can help to minimize these weaknesses and alleviate
your database administration pains.

Adopt checklists for product comparisons.

Review

1. Name the three categories of performance tools and briefly summarize
their typical capabilities.

2. If you are asked by management to develop a cost justification for
DBA tools, how can you minimize the amount of work it takes to
produce such a justification?

3. What type(s) of tool(s) would be most helpful to an organization that is
brand-new to database management, and why?

4. What is the purpose of a catalog visibility tool?
5. What is the benefit of purchasing database utilities from a third-party

vendor when most DBMS products already ship with a set of utilities
“in the box”?

6. What type of problem can be caused when using a table editor to
modify data in a production database table?

7. What does the acronym ETL mean?
8. Why would it be important to contractually guarantee that the vendor

escrow the source code for any tools your organization purchases?
9. What is the difference between a propagation tool and a replication

tool?
10. Name the seven questions that a database auditing tool should be able

to answer.

24. DBA Rules of Thumb

The first 23 chapters of this book cover the practices, policies, and
procedures associated with the management discipline of database
administration. This chapter provides guidance for DBAs as they embark on
the job of implementing those practices, policies, and procedures. Database
administration is a very technical discipline; it is also a very political
discipline—the DBA is highly visible within the organization. DBAs should
be armed with a proper attitude and sufficient technical knowledge before
attempting to practice database administration.

DBAs should be armed with a proper attitude and sufficient
technical knowledge.

The following sections outline some basic guidelines to help you become a
well-rounded, respected, and professional DBA.

Write Down Everything
During the course of performing your job as a DBA, you are likely to
encounter many challenging tasks and time-consuming problems. Be sure to
document the processes you use to resolve problems and overcome
challenges. Such documentation can be very valuable should you encounter
the same, or a similar, problem in the future. It is better to read your notes
than to try to recreate a scenario from memory.

Written notes and details also can be shared with your peers as a learning
aid. Notes that document the steps taken to overcome problems can be used
to improve subsequent DBA efforts and may prevent problems in the future.

Keep Everything
DBA is just the job for you if you are a pack rat. It is a good practice to keep
everything you come across during the course of your job. This includes, but
is not limited to,

Be a pack rat.

• Manuals—old and new, online and printed

• Scripts—to make changes, run reorgs, whatever
• Programs—quick-fix programs, sample programs, and so on
• Proceedings and presentations—from webinars, user groups, and

conferences
• Notes—from design reviews, specification meetings, team meetings,

user groups and conferences, and so on
• Textbooks—from any classes you have attended (as well as additional

technical books such as this one)
• White papers
• Reports—from performance monitors, queries, applications, and so on
• Articles—from magazines or links to Web sites
• Reference manuals—for all of your DBMS products and tools
• CDs—containing product demos, products, white papers, presentations,

and so on
Of course, keeping all of that information organized and accessible can be

a difficult challenge, although keeping everything from processes, to links, to
scripts, and so on can and will help DBAs to determine a proper course of
action when they find themselves in a jam. But organization, foresight, and
preparation are also required.

Being prepared for “whatever may happen” is not about having an
advanced set of DBA tools or a bunch of archived information, but having a
sound understanding of your DBMS, databases, supporting infrastructure,
and the interrelationship of the business with your data, and working from a
plan. Waiting for a failure to occur, and only then scrambling to find that
“perfect” script (that you may never have even tested), is a recipe for failure.

Automate!
Why should you do it by hand if you can automate? Anything you do can
probably be done better by a computer—if it is programmed properly. Once a
task is automated, you save yourself valuable time that probably will be spent
tackling other problems.

Furthermore, don’t reinvent the wheel. Someone, somewhere, at some time
may have already solved the problem you are attempting to solve. Look for
Web sites that allow you to download and share scripts. If you have the

budget, purchase DBA tools as discussed in Chapter 23.

Don’t reinvent the wheel.

Of course, you can take the automation idea too far. There has been a lot of
talk and vendor hype about self-managing database systems. And DBMS
vendors have made great strides in terms of automated administration
features. But even so, there are many reasons why DBAs are not on the fast
path to extinction. Self-managing databases systems, although a laudable
goal, are not close to delivering a “lights-out” DBMS environment. Little by
little and step by step, database maintenance and performance management
are being improved, simplified, and automated. But you know what? DBAs
will not be automated out of existence in my lifetime—and probably not in
your children’s lifetime either.

Many of the self-managing features require using the built-in (or freely
available) tools from the DBMS vendor, such as Oracle Enterprise Manager
or IBM Data Studio. But many organizations prefer to use heterogeneous
solutions that can administer databases from multiple vendors (Oracle, IBM,
Microsoft, etc.), all from a single console. Most of these tools have had self-
managing features for years and yet they have not made the DBA obsolete.

And let’s face it, a lot of the DBMS vendors’ claims are more hyperbole
than fact. Some self-managing features are announced years before they will
become generally available in the DBMS. All vendors’ claims to the
contrary, no database today is truly 100 percent self-contained. Every
database needs some amount of DBA management—even when today’s best
self-management features are being used.

What about the future? Well, things will get better—and probably more
costly. You don’t think the DBMS vendors are building this self-management
technology for free, do you? But let’s remove cost from the equation for a
moment. What can a self-managing database actually manage?

Most performance management solutions allow you to set performance
thresholds. A threshold allows you to set up a trigger that says something like
“When x percent of a table’s pages contain chained rows or fragmentation,
schedule a reorganization.” But these thresholds are only as good as the
variables you set and the actions you define to be taken upon tripping the
threshold. Some software is intelligent; that is, it “knows” what to do and
when to do it. Furthermore, it may be able to learn from past actions and

results. The more intelligence that can be built into a self-managing system,
the better the results typically will be. But who among us currently trusts
software to work like a grizzled veteran DBA? The management software
should be configurable such that it alerts the DBA as to what action it wants
to take. The DBA can review the action and give a “thumbs up” or “thumbs
down” before the corrective measure is applied. In this way, the software can
earn the DBA’s respect and trust. When the DBA trusts the software, he can
turn it on so that it self-manages “on the fly” without DBA intervention. But
today, in most cases, a DBA is required to set up the thresholds, as well as to
ensure their ongoing viability.

Of course, not all DBA duties can be self-managed by software. Most self-
management claims are made for performance management, but what about
change management? The DBMS cannot somehow read the mind of its user
and add a new column or index, or change a data type or length. This
nontrivial activity requires a skilled DBA to analyze the database structures,
develop the modifications, and deploy the proper scripts or tools to
implement the change. Of course, software can help simplify the process, but
software cannot replace the DBA.

Not all DBA duties can be self-managed by software.

Furthermore, database backup and recovery will need to be guided by the
trained eye of a DBA. Perhaps the DBMS can become savvy enough to
schedule a backup when a system process occurs that requires it. Maybe the
DBMS of the future will automatically schedule a backup when enough data
changes. But sometimes backups are made for other reasons: to propagate
changes from one system to another, to build test beds as part of program
testing, and so on. A skilled professional is needed to build the proper backup
scripts, run them appropriately, and test the backup files for accuracy. And
what about recovery? How can a damaged database know it needs to be
recovered? Because the database is damaged, any self-managed recovery it
might attempt is automatically rendered suspect. Here again, we need the
wisdom and knowledge of the DBA. The DBA may rely upon an automation
tool to simplify the recovery process, but the tool itself cannot perform the
task without the guidance of an experienced DBA.

And there are many other DBA duties that cannot be completely
automated. Because each company is different, the DBMS must be

customized using configuration parameters. Of course, you can opt to use the
DBMS “as is,” right out of the box. But knowledgeable DBAs can configure
the DBMS so that it runs appropriately for their organization. Problem
diagnosis is another tricky subject. Not every problem is readily solvable by
developers using just the “Messages and Codes” manual and a help desk.
What happens with particularly thorny problems if the DBA is not around to
help?

All of these caveats aside, automation should be a desired component of
the database administration equation. Automate the routine tasks to free up
more time to spend on the more difficult tasks and those that cannot be
completely automated.

Share Your Knowledge
Knowledge transfer is an important part of being a good DBA—both
transferring your knowledge to others and participating in having others’
knowledge transferred to you.

The more you learn, the more you should share that knowledge with
others. Many local database user groups meet quarterly or monthly to discuss
aspects of database management systems. Be sure to attend these sessions to
learn what your peers are doing. When you have some good experiences to
share, put together a presentation yourself. Sometimes you can learn far more
by presenting at these events than by simply attending because the attendees
will seek you out to discuss your approach. You might also use local user
groups as a springboard for presenting at international database user group
conferences hosted by the major user group associations (see the sidebar
“Major Database User Group Associations”).

Major Database User Group Associations
User group associations exist for each of the major DBMSs. These
associations host regional meetings and international conferences and
provide resources for database users and DBAs.

• IDUG: International DB2 User Group www.idug.org
• IIUG: International Informix Users Group www.iiug.org
• IOUG: Independent Oracle Users Group www.ioug.org
• ISUG: International Sybase User Group www.isug.com

http://www.idug.org
http://www.iiug.org
http://www.ioug.org
http://www.isug.com

• Professional Association for SQL Server www.sqlpass.org
Be sure to join the association for the DBMSs that you use and

participate in the opportunities provided for networking and career
advancement.

Another avenue for sharing your knowledge is using one of the many
online forums. Web portals and Web-based publications are constantly
seeking out content for their Web sites. Working to put together a tip or
article for these sites helps you to organize your thoughts and to document
your experiences. Furthermore, as the author of an article or column on the
Web, you will gain exposure to your peers. Sometimes this type of exposure
can help you to land that coveted job.

Use online forums.

You also should consider participating in social networking sites such as
Facebook, LinkedIn, and Twitter. Each of these social network communities
can be used to further your career and add to your professional network.
Facebook is useful for more casual interaction, but many database
professional participate, and the community developed through Facebook
connections can be beneficial for broad interaction. LinkedIn is a more
professional network and is useful for keeping in touch with coworkers and
contacts as they move from job to job. Twitter is probably the best method
for interacting with other DBAs and sharing stories, advice, and more. For
details refer to the sidebar “Twitter.”

Twitter
The basic idea of Twitter (www.twitter.com) is simple. It offers a platform
for users to publish messages of no more than 140 characters at a time.
And that can seem limiting . . . until you’ve used Twitter for a while. When
you tweet—that is, send a Twitter message—it gets broadcast to all of your
followers. Likewise, when anyone you follow sends a tweet, it gets
broadcast to you.

For example, you can follow me (the author) on Twitter at
@craigmullins. I share information on my blogs, writings, speaking
engagements, and so on. A well-developed feed of folks you follow on
Twitter can be a very useful conduit for news, trends, issues, and ideas.

http://www.sqlpass.org
http://www.twitter.com

Many professional DBAs participate on Twitter, as well as IT luminaries
such as Bill Gates (@BillGates), Robert Scoble (@scobleizer), and Don
Tapscott (@dtapscott). You can also follow industry analysts using
Twitter, including analysts from Red Monk, Gartner, IDC, and
Forrester.

You can also send direct messages to other users who follow you.
This can reduce the use of e-mail for short communiqués that do not
require in-depth follow-up or attachments. Some forward-thinking
companies have Twitter customer advocates who keep a watchful eye on
the tweetstream and respond to complaints, comments, and suggestions.

When participating in Twitter, be sure to use hashtags. A hashtag is a
term preceded by the # character, such as #DBA. The hashtag acts as
metadata to inform other Twitter users about the content of your
message.

Using Twitter, you can expand your network and interact with DBAs
all over the world.

Finally, if you have the time, consider writing for one of the database-
related magazines. Writing an article for publication will take the most
amount of time, but it can bring the most exposure. Furthermore, some
journals will pay you for your material.

However, the best reason to share your knowledge with others is because
you want them to share their knowledge and experiences with you. A spirit of
cooperation maintains the community of DBAs who are willing and eager to
provide assistance.

Analyze, Simplify, and Focus
As we learned in the previous chapters, the job of a DBA is complex and
spans many diverse technological and functional areas. It is easy for a DBA
to get overwhelmed with certain tasks—especially those that are not
performed regularly. In a complex, heterogeneous, distributed world it can be
hard to keep your eye on the right ball, at the right time. The best advice I can
give you is to remain focused and keep a clear head.

Understand the purpose for each task and focus on performing the steps
that will help you to achieve that end. Do not be persuaded to broaden the

scope of work for individual tasks unless it cannot be avoided. In other
words, don’t try to boil the ocean. If nonrelated goals get grouped together
into a task, it can become easy to work long hours with no clear end in sight.

I am not saying that a DBA should (necessarily) specialize in one
particular area (e.g., performance). What I am suggesting is that each task
should be given the appropriate level of focus and attention to details. Of
course, I am not suggesting that you should not multitask either. The
successful DBA will be able to multitask while giving full attention to each
task as it is being worked on.

What is the enemy of focus? There are many: distraction, lack of
knowledge, “management,” and always worrying about the next thing to try
or do. Such distractions can wreak havoc on tasks that require forethought
and attention to detail.

Analyze, simplify, and focus. Only then will tasks become measurable and
easier to achieve.

Don’t Panic!
A calm disposition and the ability to remain cool under strenuous conditions
are essential to the makeup of a good DBA. Problems will occur—nothing
you can do can eliminate every possible problem or error. Part of your job as
a DBA is to be able to react to problems with a calm demeanor and analytical
disposition.

When a database is down and applications are unavailable, your
environment will become hectic and frazzled. The best things you can do
when problems occur are to remain calm and draw on your extensive
knowledge and training. As the DBA, you will be the focus of the company
(or at least the business units affected) until the database and applications are
brought back online. It can be a harrowing experience to recover a database
with your boss and your users hovering behind your computer terminal and
looking over your shoulder. Be prepared for such events, because eventually
they will happen. Panic can cause manual errors—the last thing you want to
happen when you are trying to recover from an error.

Panic can cause manual errors.

The more comprehensive your planning and the better your procedures, the

faster you will be able to resolve problems. Furthermore, if you are sure of
your procedures, you will remain much calmer.

Measure Twice, Cut Once
Being prepared means analyzing, documenting, and testing your DBA
policies and procedures. Creating procedures in a vacuum without testing will
do little to help you run an efficient database environment. Moreover, it will
not prepare you to react rapidly and effectively to problem situations.

The old maxim applies: Measure twice, cut once. In the case of DBA
procedures, this means analyze, test, and then apply. Analyze your
environment and the business needs of the databases to create procedures and
policies that match those needs. Test those procedures. Finally, apply them to
the production databases.

Understand the Business, Not Just the Technology
Remember that being technologically adept is just a part of being a good
DBA. Although technology is important, understanding your business needs
is more important. If you do not understand the impact on the business of the
databases you manage, you will simply be throwing technology around with
no clear purpose.

Business needs must dictate what technology is applied to what database—
and to which applications. Using the latest and greatest (and most expensive)
technology and software might be fun and technologically challenging, but it
most likely will not be required for every database you implement. The
DBA’s tools and utilities need to be tied to business strategies and initiatives.
In this way, the DBA’s work becomes integrated with the goals and
operations of the organization.

The first step in achieving this needed synergy is the integration of DBA
services with the other core components of the IT infrastructure. Of course,
DBAs should be able to monitor and control the databases under their
purview, but they should also be able to monitor them within the context of
the broader spectrum of the IT infrastructure—including systems,
applications, storage, and networks. Only then can companies begin to tie
service-level agreements to business needs, rather than technology metrics.

DBAs should be able to monitor and control the databases

under their purview.

DBAs should be able to gain insight into the natural cycles of the business
just by performing their job. Developers and administrators of other parts of
the IT infrastructure will not have the vision into the busiest times of the day,
week, quarter, or year because they are not privy to the actual flow of data
from corporate business functions. But the DBA has access to that
information as a component of performing the job. It is empowering to be
able to understand business cycle information and apply it on the job.

DBAs need to expand further to take advantage of their special position in
the infrastructure. Talk to the end users—not just the application developers.
Get a sound understanding of how the databases will be used before
implementing any database design. Gain an understanding of the database’s
impact on the company’s bottom line, so that when the inevitable problems
occur in production you will remember the actual business impact of not
having that data available. This also allows you to create procedures that
minimize the potential for such problems.

To fulfill the promise of business/IT integration, it will be necessary to link
business services to the underlying technology. For example, a technician
should be able to immediately comprehend that a service outage to
transaction X7R2 in the PRD2 environment means that regional demand
deposit customers cannot access their accounts. See the difference?

Focusing on transactions, TP monitors, and databases is the core of the
DBA’s job. But servicing customers is the reason the DBA builds those
databases and manages those transactions. Technicians with an understanding
of the business impact of technology decisions will do a better job of
servicing the business strategy. This is doubly true for the DBA’s manager.
Technology managers who speak in business terms are more valuable to their
company.

Of course, the devil is in the details. A key component of realizing
effective business/IT integration for DBAs is the ability to link specific
pieces of technology to specific business services. This requires a service
impact management capability—that is, analyzing the technology required to
power each critical business service and documenting the link. Technologies
exist to automate some of this through event automation and service
modeling. Such capabilities help to transform availability and performance

data into detailed knowledge about the status of business services and
service-level agreements.

Today’s modern corporation needs technicians who are cognizant of the
business impact of their management decisions. As such, DBAs need to get
busy transforming themselves to become more business savvy—that is, to
keep an eye on the business impact of the technology under their span of
control.

Corporations need technicians who are cognizant of the
business impact of their management decisions.

Don’t Become a Hermit
Work with the application developers. Don’t isolate yourself in your own
little DBA corner of the world. The more you learn about what the
applications do and the application requirements, the better you can adjust
and tune the databases to support those applications.

A DBA should be accessible. Don’t be one of those DBAs whom everyone
is afraid to approach. The more you are valued for your expertise and
availability, the more valuable you are to your company.

Be accessible.

Use All of the Resources at Your Disposal
Remember that you do not have to do everything yourself. Use the resources
at your disposal. We have talked about some of those resources, such as
articles and books, Web sites and scripts, user groups and conferences. But
there are others.

Do not continue to struggle with problems when you are completely
stumped. Some DBAs harbor the notion that they have to resolve every issue
themselves in order to be successful. Sometimes you just need to know where
to go to get help to solve the problem. Use the DBMS vendor’s technical
support, as well as the technical support line of your DBA tool vendors.
Consult internal resources for areas where you have limited experience, such
as network specialists for network and connectivity problems, system
administrators for operating system and system software problems, and
security administrators for authorization and protection issues.

Know where to go to get help to solve the problem.

When you go to user groups, build a network of DBA colleagues whom
you can contact for assistance. Many times others have already encountered
and solved the problem that vexes you. A network of DBAs to call on can be
an invaluable resource (and no one at your company even needs to know that
you didn’t solve the problem yourself).

Finally, be sure to understand the resources available from your DBMS
vendors. DBMS vendors offer their customers access to a tremendous amount
of useful information. All of the DBMS vendors offer software support on
their Web sites. Many of them provide a database that users can search to
find answers to database problems. IBM customers can use IBMLink,1 and
both Oracle and Microsoft offer a searchable database in the support section
of their Web sites. Some DBAs claim to be able to solve 95 percent or more
of their problems by researching online databases. These resources can shrink
the amount of time required to fix problems, especially if your DBMS vendor
has a reputation of “taking forever” to respond to issues.

Of course, every DBA should also be equipped with the DBMS vendor’s
technical support phone number for those tough-to-solve problems. Some
support is offered on a pay-per-call basis, whereas other times there is a
prepaid support contract. Be sure you know how your company pays for
support before calling the DBMS vendor. Failure to know this can result in
your incurring significant support charges.

Keep Up-to-Date
Keep up-to-date on technology. Be sure that you are aware of all of the
features and functions available in the DBMSs in use at your site—at least at
a high level, but preferably in depth. Read the vendor literature on future
releases as it becomes available to prepare for new functionality before you
install and migrate to new DBMS releases. The sooner you know about new
bells and whistles, the better equipped you will be to prepare new procedures
and adopt new policies to support the new features.

Keep up-to-date on technology in general, too. For example, DBAs should
understand new data-related technologies such as NoSQL, but also other
newer technologies that interact with database systems. Don’t ignore industry
and technology trends simply because you cannot immediately think of a

database-related impact. Many non-database-related “things” (for example,
XML) eventually find their way into DBMS software and database
applications.

Keep up-to-date on industry standards—particularly those that impact
database technology such as the SQL standard. Understanding these
standards before the new features they engender have been incorporated into
your DBMS will give you an edge in their management. DBMS vendors try
to support industry standards, and many features find their way into the
DBMS because of their adoption of an industry standard.

Keep up-to-date on technology in general and on industry
standards.

As already discussed, one way of keeping up-to-date is by attending local
and national user groups. The presentations delivered at these forums provide
useful education. Even more important, though, is the chance to network with
other DBAs to share experiences and learn from each other’s projects.

Attend local and national database user groups.

Through judicious use of the Internet and the Web, it is easier than ever
before for DBAs to keep up-to-date. Dozens of useful and informative Web
sites provide discussion forums, script libraries, articles, manuals, and how-to
documents. Consult Appendix D for a list of DBA-focused Web resources.
Remember, though, this is just a starting point.

Invest in Yourself
Most IT professionals continually look for their company to invest money in
their ongoing education. Who among us does not want to learn something
new—on company time and with the company’s money? Unless you are self-
employed, that is!

Yes, your company should invest some funds to train you on new
technology and new capabilities, especially if it is asking you to do new
things. And since technology changes so fast, most everyone has to learn
something new at some point every year. But the entire burden of learning
should not be placed on your company.

Budget some of your own money to invest in your career. After all, you

probably won’t be working for the same company your entire career. Why
should your company be forced to bankroll your entire ongoing education?
Now, I know, a lot depends on your particular circumstances. Sometimes we
accept a lower salary than we think we are worth because of the “perks” that
are offered. And one of those perks can be training.

Budget some of your own money to invest in your career.

But some folks simply abhor spending any of their hard-earned dollars to
help advance their careers. Shelling out a couple of bucks to buy some new
books, subscribe to a publication, or join a professional organization
shouldn’t be out of the reach of most DBAs, though.

A willingness to spend some money to stay abreast of technology is a trait
that should apply to DBAs. Most DBAs are insatiably curious, and many are
willing to invest some of their money to learn something new. Maybe they
bought that book on XML before anyone at their company started using it.
Perhaps it is just that enviable bookshelf full of useful database books in their
cubicle. Or maybe they paid that nominal fee to subscribe to the members-
only content of that SQL Server portal. They could even have forked over the
$10 fee to attend the local user group.

Don’t get me wrong. I’m not saying that companies should not reimburse
for such expenses. They should, because it provides for better-rounded, more
educated, and more useful employees. But if your employer won’t pay for
something that you think will help your career, why not just buy it yourself?

And be sure to keep a record of such purchases because unreimbursed
business expenses can be tax deductible.

Summary
The job of the DBA is a challenging one—from both a technological and a
political perspective. Follow the rules of thumb presented in this chapter to
increase your likelihood of achieving success as a DBA.

Final Exam
1. At a high level, discuss the DBA’s primary job responsibilities.
2. Is a certified DBA necessarily a qualified DBA? Why or why not?
3. Why must the DBA be prepared to function as a jack-of-all-trades?

4. Why should database standards be implemented, and what are the risks
associated with a lack of DBA standards and procedures?

5. Name the TPC benchmarks and describe how they differ from one
another.

6. Name five requirements that must be planned for when installing a new
DBMS.

7. What is the difference between a conceptual data model and a logical
data model?

8. Why is data modeling important for database development?
9. Describe in broad terms the goals of normalization.

10. What is the difference between an entity and an entity occurrence?
11. Every attribute will do one of three things. Name those things and

describe them.
12. What is the only reason to denormalize a physical data model?
13. Under what circumstances should you consider a bitmap index rather

than a b-tree index?
14. Describe how a relational database uses indexes.
15. Why might the order in which columns are created in a table be

important for physical database design?
16. If indexes are beneficial to performance, why not create every

conceivable index just to be on the safe side?
17. Describe what the acronym ACID means, and define each component.
18. Why does locking assure data integrity?
19. What does relational closure mean and what is its significance in

application design?
20. What is the difference between a lock time-out and a deadlock?
21. Why is it important to review application code in addition to reviewing

SQL?
22. Cite several reasons for including representatives from application

development management in design reviews.
23. Why should the DBA lead most of the design reviews?
24. Why is it difficult to add a column between two existing columns in a

table?
25. Explain what is meant by cascading drop.
26. If you have to drop an entire database to effect a database change, what

other database structures will also be dropped automatically by the
DBMS?

27. Define what is meant by availability.
28. What is the typical cause of an unplanned outage?
29. What are nondisruptive database utilities, and why are they important

for maintaining database availability?
30. Define database performance.
31. What are the three “things” that need to be addressed in database

application tuning?
32. What does the 80/20 rule mean, and how should it be applied to

database application performance tuning?
33. According to most experts, what is the primary cause of performance

problems in database applications?
34. How does the data cache (or buffer pool) improve the performance of

database processing?
35. Why are certain database operations not logged?
36. What benefits can accrue by caching optimized SQL in memory?
37. What type of information is recorded on the database transaction log?
38. What is the greatest performance tuning technique a DBA can use to

improve database performance?
39. What is the benefit of clustering data?
40. What are the causes of database and index disorganization?
41. What is the benefit of allocating tablespaces and indexes to separate

disk devices?
42. Define what is meant by physical data independence.
43. What factors influence the optimizer during SQL access path

selection?
44. Name and describe the two predominant relational join methods.
45. Under what circumstances will a table scan outperform indexed

access?
46. Define what is meant by entity integrity.
47. Describe the difference between database structural integrity and

semantic data integrity.
48. What is the difference between a primary key constraint and a unique

constraint?
49. Name and describe four types of database structural integrity problems

that may be encountered by a DBA.
50. Explain two ways that views can be used to implement data security.
51. What two SQL DCL statements are used to establish and remove

database privileges?
52. What is a cascading REVOKE and what effect can it have on database

security?
53. What is the effect of granting a privilege to PUBLIC?
54. Why is it important to protect some database resources with security

mechanisms external to the DBMS?
55. Describe how SQL injection attacks work.
56. Explain the purpose for creating an audit trail of database operations.
57. Describe data masking and explain how it benefits regulatory

compliance efforts.
58. Why is a quiesce point important for a point-in-time recovery?
59. What factors determine whether a full or incremental image copy

backup should be taken for a database object?
60. Name and describe the three types of database failures that may require

recovery.
61. Name the different types of recovery, and discuss the factors that

influence when each type of recovery should be performed.
62. Describe what is meant by disaster in terms of database administration.
63. What factors should be considered when determining the criticality of

a database object for disaster recovery planning?
64. Once the disaster recovery plan is written, it should never be changed:

true or false?

65. Why are most database files stored on disk devices instead of other
storage media?

66. Your organization has decided to purchase RAID arrays to support
your DBMS. Which levels of RAID would you advise them to use and
why?

67. What advantages does a SAN have over SCSI devices?
68. Calculating the amount of storage required for a table is as simple as

adding up the number of bytes for the columns in a row and multiplying
the sum by the total number of rows: true or false?

69. Why is a two-phase COMMIT necessary when data is modified at two
locations within a single unit of work?

70. What is the biggest threat to efficient performance of a distributed
database system?

71. What is the difference between replication and propagation?
72. What is the difference between a data warehouse and a data mart?
73. Is it necessary to develop a backup and recovery plan for the data

warehouse, since it is a read-only environment?
74. Describe the star schema and why it is an effective design for data

warehouse databases.
75. What is the biggest DBA challenge when managing an Internet-

enabled database?
76. What is the difference between the four types of JDBC database

drivers?
77. What is metadata, and why is it important?
78. Name the three categories of performance tools, and briefly summarize

the typical capabilities they provide.
79. Describe the difference between system time and business time in a

temporal database system.
80. If you are asked by management to develop a cost justification for

DBA tools, how can you minimize the amount of work it takes to
produce such a justification?

A. Database Fundamentals

Most of the readers of this book should understand the basic concepts and
fundamentals of database technology. However, many folks who think they
understand the basics often do not have the knowledge and understanding
they believe they have. Therefore, this appendix serves as a very brief
introduction to the fundamentals of database management systems.

What Is a Database?
What is a database? The answer to this question may surprise some readers.
Oracle is not a database; neither is DB2 or SQL Server. Each of these is a
DBMS, or database management system. You can use Oracle, DB2, or SQL
Server to create a database, but none of these themselves are databases. Many
people, even skilled professionals, confuse the overall system—the DBMS—
with the creation of the system—databases.

So, what is a database? A database is a structured set of persistent data. A
phonebook is a database. However, within the world of IT, a database usually
is associated with software. A simple database might be a single file
containing many records, each of which contains the same set of fields where
each field is a certain data type and length. In short, a database is an
organized store of data where the data is accessible by named data elements.

A database is an organized store of data wherein the data is
accessible by named data elements.

A DBMS is a software package designed to create, store, and manage
databases. The DBMS software enables end users or application
programmers to share data. It provides a systematic method of creating,
updating, retrieving, and storing information in a database. DBMS products
are usually responsible for data integrity, data access control, automated
rollback, restart, and recovery.

You might think of a database as a file folder, and a DBMS as the file
cabinet holding the labeled folders. You implement and access database
instances using the capabilities of the DBMS. Your payroll application uses
the payroll database, which may be implemented using a DBMS such as

IMS, DB2, Oracle Database 12g, or SQL Server.
Why is this distinction important? If we do not use precise terms in the

workplace confusion can result, leading to over-budget projects, improperly
developed systems, and lost productivity. Therefore, precision is important to
us.

Why Use a DBMS?
The main advantage of using a DBMS is to impose a logical, structured
organization on the data. A DBMS delivers economy of scale for processing
large amounts of data because it is optimized for such operations.

A DBMS can be distinguished by the model of data upon which it is based.
A data model is a collection of concepts used to describe data. A data model
has two fundamental components: its structure, which is the way data is
stored, and its operations, which is the way that data can be manipulated. The
major DBMS products use four different data models:

1. Network (or CODASYL)
2. Hierarchical
3. Relational
4. Object oriented

There are four DBMS data models: hierarchical, network,
relational, and object oriented.

The network data model is structured as a collection of record types and
the relationships between these record types. All relationships are explicitly
specified and stored as part of the structure of the DBMS. Another common
name for the network model is CODASYL. CODASYL is named after the
Conference on Data Systems Languages, the committee that formulated the
model in the early 1970s. Data is manipulated using the location of a given
record and following links to related records. IDMS is an example of a
DBMS based on the network model.

The hierarchical data model arranges data into structural trees that store
data at lower levels subordinate to data stored at higher levels. A hierarchical
data model is based on the network model with the additional restriction that
access to a record can be accomplished in only one way. IMS is an example
of a DBMS based on the hierarchical model.

The relational data model consists of a collection of tables (more properly,
relations) wherein the columns define the relationship between tables. The
relational model is based on the mathematics of set theory. Contrary to
popular belief, the relational model is not named after “relationships,” but
after the relations of set theory. A relation is a set with no duplicate values.
Data can be manipulated in many ways, but the most common way is through
SQL. DB2, Oracle, and SQL Server are examples of DBMS products based
on the relational model.

The object-oriented (OO) data model consists of a collection of entities, or
objects, where each object includes the actions that can take place on that
object. In other words, an object encapsulates data and process. With OO
systems, data is typically manipulated using an OO programming language.
Progress Software’s ObjectStore and Intersystems’ Cache are examples of
DBMS products based on the OO model.

Each of these four data models is referred to as a data model for the sake of
simplicity. In reality, only the relational and network models have any true,
formal data model specification. Different models of data lead to different
logical and structural data organizations. The relational model is the most
popular data model because it is the most abstract and easiest to apply to data,
while providing powerful data manipulation and access capabilities.

Most commercial DBMS implementations today are
relational.

Advantages of Using a DBMS
Additionally, a DBMS provides a central store of data that can be accessed
by multiple users, from multiple locations. Data can be shared among
multiple applications, rather than having to be propagated and stored in new
files for every new application. Central storage and management of data
within the DBMS provides

Other Types of DBMS
Although the four data models discussed heretofore are the predominant
types of DBMS, there are other types of DBMS with varying degrees of
commercial acceptance.

A column-oriented DBMS, sometimes called a column store, is a

DBMS that stores its content by column rather than by row. This has
advantages for data warehouses where aggregates are computed over
large numbers of data items. Of course, a column-oriented DBMS is not
based on any formal data model and can be thought of as a special
physical implementation of a relational DBMS. Sybase IQ and
Greenplum are examples of column stores. The NoSQL database system
is another type of DBMS that is gaining market acceptance, usually in
Big Data applications. Most NoSQL DBMS products are implemented
as key-value data stores, where a piece of data is associated with a key.
The data is not rigidly structured and does not have to conform to a
schema as in a typical database design. NoSQL database systems are
popular with organizations that face different data challenges from those
that can be solved using traditional RDBMS solutions. Cassandra and
MongoDB are examples of NoSQL key-value database systems.

There are other DBMS implementations as well, such as the inverted
list structure of the original Adabas and even the dBase format
popularized by the PC DBMSs, dBase II and dBase III.

• Data abstraction and independence
• Data security
• A locking mechanism for concurrent access
• An efficient handler to balance the needs of multiple applications using

the same data
• The ability to swiftly recover from crashes and errors
• Robust data integrity capabilities
• Simple access using a standard API
• Uniform administration procedures for data

Levels of Data Abstraction

A DBMS can provide many views of a single database schema. A view
defines what data the user sees and how that user sees the data. The DBMS
provides a level of abstraction between the conceptual schema that defines
the logical structure of the database and the physical schema that describes
the files, indexes, and other physical mechanisms used by the database. Users
function at the conceptual level—by querying columns within rows of tables,

for example—instead of having to navigate through the many different types
of physical structures that store the data.

A DBMS makes it much easier to modify applications when business
requirements change. New categories of data can be added to the database
without disruption to the existing system.
Data Independence

A DBMS provides a layer of independence between the data and the
applications that use the data. In other words, applications are insulated from
how data is structured and stored. The DBMS provides two types of data
independence:

• Logical data independence—protection from changes to the logical
structure of data

• Physical data independence—protection from changes to the physical
structure of data

As long as the program uses the API (application programming interface)
to the database as provided by the DBMS, developers can avoid changing
programs because of database changes.

SQL Is an API
The primary API to relational databases is SQL. In general, most
application SQL statements need not change when database structures
change (e.g., a new column is added to a table).

Data Security

Data security prevents unauthorized users from viewing or updating the
database. The DBMS uses IDs and passwords to control which users are
allowed access to which portions of the database. For example, consider an
employee database containing all data about individual employees. Using the
DBMS security mechanisms, payroll personnel can be authorized to view
payroll data, whereas managers could be permitted to view only data related
to project history.
Concurrency Control

A DBMS can serve data to multiple, concurrently executing user programs.
This requires a locking mechanism to deliver concurrency control because the

actions of different programs running at the same time could conceivably
cause data inconsistency. For example, multiple bank ATM users might be
able to withdraw $100 each from a checking account containing only $150. A
DBMS ensures that such problems are avoided because the locking
mechanism isolates transactions competing for the same exact data.
Database Logging

The DBMS uses database logging to record “before” and “after” images of
database objects as they are modified. It is important to note that the database
log captures information about every data modification (except in
circumstances as determined by the DBA). The information on the database
logs can be used to undo and redo transactions. Database logging is handled
transparently by the DBMS—that is, it is done automatically.
Ensuring Atomicity and Durability

A DBMS can be used to assure the all-or-nothing quality of transactions. This
is referred to as atomicity, and it means that data integrity is maintained even
if the system crashes in the middle of a transaction. Furthermore, a DBMS
provides recoverability. After a system failure, data can be recovered to a
state that existed either immediately before the crash or at some other
requisite point in time.
Data Integrity

The DBMS provides mechanisms for defining rules that govern the type of
data that can be stored in specific fields or columns. Only data that conforms
to the business rules will ever be stored in the database. Furthermore, the
DBMS can be set up to manage relationships between different types of data
and to ensure that changes to related data elements are accurately
implemented.
Data Access

A DBMS provides a standard query language to enable users to interactively
interrogate the database and analyze its data. For relational databases, this
standard API is SQL, or Structured Query Language. However, SQL is not a
requirement for a DBMS to be relational. Furthermore, many DBMS
products ship with analytical tools and report writers to further simplify data
access.

Summary
This section on DBMS fundamentals is necessarily brief because the focus of
this book is on database administration, and most readers will find this
material to be familiar. If you require additional details on the basic
operations and qualities of DBMSs and databases, please refer to the
Bibliography for an extensive list of DBMS-related books. My favorites
include

• C. J. Date’s An Introduction to Database Systems, 8th ed., for an
academic and theoretical approach to the material

• Fabian Pascal’s two books, Practical Issues in Database Management
and Understanding Relational Databases, for an opinionated but
informed approach to the topics

• Joe Celko’s Data & Databases: Concepts in Practice, for a good
practical overview of the topic

• The latest editions of Pratt and Adamski’s The Concepts of Database
Management, or Rob and Coronel’s Database Systems: Design,
Implementation, and Management, both of which provide a good high-
level overview of DBMS concepts

A primary benefit of a DBMS is its ability to maintain and query large
amounts of data while assuring data integrity and consistency. It offers
transparent recovery from failures, concurrent access, and data independence.
In fact, most modern computer applications rely on DBMS and database
technology to manage data. Understanding the topic is of benefit to all IT
professionals.

B. The DBMS Vendors

There are many DBMS vendors from which to choose. However, there are
definite tiers in terms of popularity, support, and leadership in the DBMS
market. In general, the marketplace can be broken down into the following
groups:

• The Big Three—the three market leaders that constitute the greater part
of the DBMS installed base as well as the bulk of any new sales

• The second tier—large DBMS vendors with stable products, but
lagging behind the Big Three in terms of functionality and number of
users

• Other significant players—other DBMS vendors with viable,
enterprise-capable products

• Open source—DBMS products supported as open-source software (as
opposed to by a single vendor)

• Nonrelational—vendors that supply prerelational DBMS products to
support legacy applications

• NoSQL—nonrelational DBMS products for Big Data that are highly
scalable to support modern Web applications

• Object oriented—vendors of ODBMS products that are used in
conjunction with OO languages and development projects

• PC based—although many of the other vendors create PC versions of
their DBMS products, these companies or products focus exclusively
on the PC platform

The following sections present a bit more information on each of the
marketplace groups.

The Big Three
Oracle Corporation, IBM Corporation, and Microsoft are the leading DBMS
vendors, in that order. The installed base for Oracle is greater than that of any
other DBMS, and Oracle is probably used by more people than any other
DBMS. IBM’s DB2 is in second place and picking up steam. With DB2’s
near monopoly on the mainframe and its growing UNIX and Windows

installed base, IBM can claim to be used by almost as many users as Oracle.
In third place overall, but in first place on Windows machines, is Microsoft,
with Microsoft SQL Server. Microsoft SQL Server runs only on Windows
platforms.

Contact information:
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
www.oracle.com
IBM Corporation
New Orchard Road
Armonk, NY 10504
www.ibm.com
Microsoft
1 Microsoft Way
Redmond, WA 98052-6399
www.microsoft.com

The Second Tier
The second-tier DBMS providers category comprises companies that were
market leaders in the 1980s. Sybase was a leading innovator in database
technology, introducing such concepts as the client/server paradigm, stored
procedures, and more. Indeed, Microsoft SQL Server is based on Sybase
technology. Sybase was acquired by German packaged application vendor
SAP in 2010.

Teradata is another innovator in database technology that focuses its
business model primarily on data warehousing and analytics. Teradata was
incorporated in 1979 and was formerly a division of NCR Corporation, but it
became an independent entity with a spinoff from NCR in October 2007.

Informix is another former leader that fell on hard times with a misguided
development strategy. All of Informix’s DBMS assets were acquired by IBM
Corporation in the summer of 2001, and Informix continues to be supported
by IBM and used by many performance-minded organizations.

Contact information:
Sybase Inc. (an SAP Company)

http://www.oracle.com
http://www.ibm.com
http://www.microsoft.com

6475 Christie Avenue
Emeryville, CA 94608
www.sybase.com
Teradata Corporation
10000 Innovation Drive
Dayton, OH 45342
www.teradata.com

Other Significant Players
Besides the vendors listed previously, several additional vendors offer
relational products with a high degree of functionality and with a reasonable
number of installed users. Foremost among these is Ingres, currently
marketed by Actian Corporation. Ingres began its life as the first relational
DBMS implementation at the University of California, Berkeley. The Ingres
code was enhanced into a commercial product by Relational Technologies.
Relational Technologies became Ingres Corporation, which was purchased by
ASK Corporation, which was then purchased by Computer Associates (now
CA Technologies). Computer Associates eventually spun off Ingres as a
separate company, which open-sourced Ingres. That company renamed itself
Actian in 2011. Ingres still boasts a large number of users, particularly in
Europe.

Another significant player is Software AG’s Adabas and Tamino DBMS
products. Adabas has its roots as an inverted-list DBMS that was augmented
to become relational. Tamino is Software AG’s new XML-based DBMS.

Contact information:
Actian Corporation
500 Arguello Street, Suite 200
Redwood City, CA 94063
www.actian.com
Software AG
Uhlandstr. 12
64297 Darmstadt
Germany
www.softwareag.com

Open-Source DBMS Offerings

http://www.sybase.com
http://www.teradata.com
http://www.actian.com
http://www.softwareag.com

The rapid acceptance and media glare surrounding Linux has enlivened the
open-source community. The term open source refers to software that users
are free to run, copy, distribute, study, change, and improve. Often “open
source” is interpreted to mean free software. This is understandable, but the
open-source concept of free is closer to “liberty” than to “no charge.” Open-
source software adheres to the following beliefs:

• Users are free to run the program, for any purpose.
• Users are free to inspect the actual source code of the program to

determine how it works.
• Users are free to modify and adapt the software to their specific needs.
• Users are free to distribute copies to whomever.
• Users are free to release their code improvements to the public, so that

the whole community benefits.
There are two leading open-source DBMS products: PostgreSQL and

MySQL. In addition to becoming a commercial product, Ingres was enhanced
at Berkeley, eventually turning into a second-generation DBMS named
Postgres, and eventually a SQL version named PostgreSQL. There are
several PostgreSQL distributors, or it can be downloaded for free at
www.postgresql.org/.

MySQL is a true multiuser, multithreaded SQL database server. It is
available as a free download from www.mysql.com, but it is not technically
an open-source DBMS. Because you do not get access to the source code,
you cannot modify it. Additionally, you must pay for a license if you sell
MySQL, if you charge for administering a server, or if you include MySQL
as a component of another product.

Oracle Corporation acquired MySQL in 2009 but continues to support and
market it much as MySQL was before the acquisition.

Nonrelational DBMS Vendors
Prior to the commercial acceptance of relational technology in the early
1980s, the DBMS market was primarily mainframe based and was dominated
by two players: IBM and Cullinet. IBM’s IMS is a hierarchic DBMS that
organizes data into tree structures. Cullinet marketed IDMS, a CODASYL
DBMS that organized data into network structures. Cullinet was acquired by
Computer Associates in the late 1980s.

http://www.postgresql.org/
http://www.mysql.com

NoSQL DBMS Vendors
Another, more recent form of nonrelational DBMS is the NoSQL database
system. At a high level, NoSQL implies nonrelational, distributed, flexible,
and scalable. Many are also open source. NoSQL grew out of the perceived
need for “modern” database systems to support Web initiatives. Additionally,
some common attributes of NoSQL DBMSs include the lack of a schema,
simplicity of use, replication support, and an “eventually consistent”
capability (instead of the typical ACID transaction capability). It really does
not mean no SQL support. Indeed, today the “no” is more commonly defined
as “not only.”

There are a large number of NoSQL “database systems” available for use,
but the more popular ones include

• CouchDB—a document-oriented database that can be queried and
indexed in a MapReduce fashion using JavaScript. CouchDB also
offers incremental replication with bidirectional conflict detection and
resolution.

• MongoDB—a scalable, high-performance, open-source, document-
oriented database system.

• Hadoop and HBase—The Apache Hadoop project develops open-
source software for reliable, scalable, distributed computing. HBase is
the Hadoop database system. It supports random, real-time read/write
access to “Big Data.”

The Web site at http://nosql-database.org/ offers a nice rundown of the
commercially available NoSQL database systems available.

Object-Oriented DBMS Vendors
At one point in the late 1980s and early 1990s, it looked as if object-oriented
database management systems (ODBMS) were going to gain rapid
acceptance. For many reasons (difficult to query, no solid data model, etc.),
this technology was not widely adopted. Indeed, many of the ODBMS
vendors have repositioned their products as e-business solutions or database
components for object-oriented application developers. However, there are
niche pockets of ODBMS users.

The following vendors still offer ODBMS products and components:

http://nosql-database.org/

• Object Store from Progress Software at www.progress.com
• Ontos at www.ontos.com
• Poet at www.poet.com

PC-Based DBMS Vendors
Simpler to use than full-blown enterprise DBMS products, PC-based DBMS
products provide structured storage for PC-based data and applications. The
following vendors and products are the market leaders in the PC-based
DBMS market:

• dBase at www.dbase.com
• FileMaker at www.filemaker.com
• Lotus Approach at

www.ibm.com/software/lotus/products/smartsuite/approach.html
(included in Lotus SmartSuite)

• Microsoft Access at www.microsoft.com/office/access/
• Paradox at www.corel.com (included in the Professional edition of

WordPerfect Office)

http://www.progress.com
http://www.ontos.com
http://www.poet.com
http://www.dbase.com
http://www.filemaker.com
http://www.ibm.com/software/lotus/products/smartsuite/approach.html
http://www.microsoft.com/office/access/
http://www.corel.com

C. DBA Tool Vendors

In Chapter 23 we covered the wide variety of tools available to ease the
burden of database management and administration. Many of the world’s
largest independent software vendors (ISVs) supply DBA tools. This
appendix lists the major players.

The Major Vendors
Although there are many ISVs that manufacture and market DBA tools and
utilities, the four vendors that follow are the leading independent DBA tool
vendors. These vendors distinguish themselves because they offer tools that
work for more than a single DBMS and in more than one tool category.
When evaluating DBA tools for a heterogeneous shop with multiple DBMSs,
these are the first vendors you should consider.

BMC Software
2101 City West Blvd.
Houston, TX 77042
www.bmc.com
CA Technologies, Inc.
One CA Plaza
Islandia, NY 11749
www.ca.com
Embarcadero Technologies
100 California Street, 12th Floor
San Francisco, CA 94111
www.embarcadero.com/
Of course, all of the DBMS vendors themselves also market add-on DBA

tools for their respective DBMS products. Refer to Appendix B for a listing
of the major DBMS vendors and contact information for each.

Other DBA Tool Vendors
In addition to the major DBA tool vendors mentioned in the preceding

section, each of the following vendors markets add-on DBA tools. In contrast
to the vendors listed previously, these vendors are likely to specialize in

http://www.bmc.com
http://www.ca.com
http://www.embarcadero.com/

certain niche areas. For example, some may market only performance
management tools, and others may offer tools that work only on Microsoft
SQL Server.

The Web sites listed for these vendors provide additional information on
the type of tools offered.

• Allen Systems Group: www.asg.com/
• Application Security: www.appsecinc.com/
• Aquafold: www.aquafold.com/
• Bradmark Technologies: www.bradmark.com/
• Bunker Hill Corporation: www.bunkerhill.com/
• Candle Corporation: www.candle.com
• CDB Software: www.cdbsoftware.com
• Cogito: www.cogito.co.uk/
• Compuware Corporation: www.compuware.com
• Confio Software: www.confio.com/
• DataBee: www.databee.com/
• DBE Software: www.dbesoftware.com/
• DBI Software: www.dbisoftware.com/index.php
• dbMaestro: www.dbmaestro.com/
• Hit Software: www.hit.com
• Idera: www.idera.com/Content/Home.aspx
• InfoTel Corporation: www.infotelcorp.com
• NetIQ: www.netiq.com
• Quest Software: www.quest.com (purchased by Dell in 2012)
• Red Gate Software: www.red-gate.com
• Relational Architects: www.relarc.com
• Responsive Systems: www.responsivesystems.com
• Rocket Software: www.rocketsoft.com
• SEGUS Inc.: www.segus.com
• Softbase Systems Inc.: www.softbase.com
• SoftwareOnZ LLC: www.softwareonz.com

http://www.asg.com/
http://www.appsecinc.com/
http://www.aquafold.com/
http://www.bradmark.com/
http://www.bunkerhill.com/
http://www.candle.com
http://www.cdbsoftware.com
http://www.cogito.co.uk/
http://www.compuware.com
http://www.confio.com/
http://www.databee.com/
http://www.dbesoftware.com/
http://www.dbisoftware.com/index.php
http://www.dbmaestro.com/
http://www.hit.com
http://www.idera.com/Content/Home.aspx
http://www.infotelcorp.com
http://www.netiq.com
http://www.quest.com
http://www.red-gate.com
http://www.relarc.com
http://www.responsivesystems.com
http://www.rocketsoft.com
http://www.segus.com
http://www.softbase.com
http://www.softwareonz.com

• White Sands Technology, Inc.: www.whitesands.com
These are not the only vendors marketing add-on DBA tools, but they are

some of the bigger and more successful ISVs. Additional tool categories and
related ISVs are listed in the following sections.

Data Modeling Tool Vendors
Computer Associates International
www.ca.com
Product: ERwin
Datanamic
www.datanamic.com
Product: DeZign for Databases
Embarcadero Technologies
www.embarcadero.com
Product: ER/Studio
Grandite
www.silverrun.com
Product: SILVERRUN
IBM Corporation
www.ibm.com
Product(s): Rational System Architect, InfoSphere Data Architect
Microsoft Corporation
www.microsoft.com
Product: Visio Enterprise
ModelRight
www.modelright.com
Product: ModelRight
Oracle Corporation
www.oracle.com
Product: Oracle Designer
Powersoft (Open Tools Division of Sybase)
www.sybase.com/products/modelingdevelopment/powerdesigner
Product: Power Designer
Visible Systems

http://www.whitesands.com
http://www.ca.com
http://www.datanamic.com
http://www.embarcadero.com
http://www.silverrun.com
http://www.ibm.com
http://www.microsoft.com
http://www.modelright.com
http://www.oracle.com
http://www.sybase.com/products/modelingdevelopment/powerdesigner

www.visible.com/
Product: Visible Analyst, Visible Advantage

Repository Vendors
Adaptive Ltd.
www.adaptive.com/
Product: Adaptive Information Manager
Allen Systems Group
www.asg.com
Product: ASG-Rochade, ASG-Manager, ASG-Vista
CA Technologies, Inc.
www.ca.com
Product: CA Repository
IBM Corporation
www.ibm.com
Product: ClearCase

Data Movement and Business Intelligence Vendors
The following companies offer data movement and ETL tools:

• CoSort/IRI: www.cosort.com/
• Informatica: www.informatica.com
• Information Builders: www.informationbuilders.com
• Serena: www.serena.com/
• SQData: www.sqdata.com
• Treehouse Software: www.treehouse.com
• Vision Solutions: www.visionsolutions.com/

The following companies offer business intelligence and OLAP tools:
• Actuate: www.actuate.com
• Cardett Associates: www.cardett.co.nz/
• Computer Associates: www.ca.com
• IBM Corporation (Cognos): www.ibm.com
• Oracle Corporation (Hyperion): www.oracle.com

http://www.visible.com/
http://www.adaptive.com/
http://www.asg.com
http://www.ca.com
http://www.ibm.com
http://www.cosort.com/
http://www.informatica.com
http://www.informationbuilders.com
http://www.serena.com/
http://www.sqdata.com
http://www.treehouse.com
http://www.visionsolutions.com/
http://www.actuate.com
http://www.cardett.co.nz/
http://www.ca.com
http://www.ibm.com
http://www.oracle.com

• SAP (Business Objects): www.sap.com, www.sap.de
• SAS Institute: www.sas.com
• Visual Insights: www.visualinsights.com/

Once again, all of the major DBMS vendors offer add-on ETL and
business intelligence tools for their respective DBMS products (and
frequently for heterogeneous ETL and BI, too).

http://www.sap.com
http://www.sap.de
http://www.sas.com
http://www.visualinsights.com/

D. DBA Web Resources

DBAs are not alone in the Internet-connected world. DBAs have many online
resources at their disposal on the Web. By virtue of being Internet connected,
DBAs have access to the vast knowledge and experience of their peers.
However, to take advantage of these online resources, the DBA has to know
that the resources exist, how to gain access to them, and where to find them.
This appendix will discuss several of the Internet resources available to
DBAs. DBAs who do not take advantage of the Internet resources at their
disposal are doing themselves a disservice.

Usenet Newsgroups
When discussing the Internet, many folks limit themselves to the World Wide
Web. However, there are many components to the Internet. One often-
overlooked resource is the Usenet newsgroup, which can be a very fertile
source of expert information. Usenet, an abbreviation for User Network, is a
large collection of discussion groups, called newsgroups. Each newsgroup is
a collection of postings pertaining to a single, predetermined topic.
Newsgroup names usually reflect their focus. For example,
comp.databases.ibm-db2 contains discussions about the DB2 family of
products.

Using newsreader software, any Internet user can access a newsgroup.
There are a number of options for newsreader software that can be
downloaded and used free of charge. Consider reviewing the options
available at www.newsgroupreviews.com/.

There are many newsgroups that focus discussion on database and
database-related issues. Table D.1 shows some of the most pertinent
newsgroups of interest to the DBA.

Table D.1. Database-Related Usenet Newsgroups of Interest to DBAs

http://www.newsgroupreviews.com/

Of course, thousands of other newsgroups exist. You can use your
newsreader software to investigate the newsgroups available to you and to
gauge the quality of their discussions.

Mailing Lists
Another useful Internet resource for DBAs is the mailing list. Mailing lists
are a kind of community bulletin board. You can think of mailing lists as
somewhat equivalent to a mass mailing. However, mailing lists are not spam
because users must specifically request to participate before they will receive
any mail. This is known as opting in.

There are numerous mailing lists available on the Internet, and they operate
by use of a list server. A list server is a program that automates the mailing
list subscription requests and messages. The two most common list servers
are Listserv and Majordomo. Listserv is also a common synonym for mailing
list, but it is actually the name of a particular list server program.

Simply by subscribing to a mailing list, you can get information sent
directly to your e-mail in-box from the list server. The information that you
will receive varies from news releases, to announcements, to questions, to
answers. This information is very similar to the information contained in a
newsgroup forum, except that it comes directly to you via e-mail. Users can

also easily respond to mailing list messages, enabling communication with
every subscribed user. Responses are sent back to the list server as e-mail,
and the list server sends the response out to all other members of the mailing
list.

To subscribe to a mailing list, simply send an e-mail to the appropriate
address requesting a subscription. Several Web sites, including the following,
catalog the available Internet mailing lists:

• www.lsoft.com/lists/listref.html
• www.listtool.com

Of course, none of these sites track every single mailing list available to
you. Vendors, consultants, Web portals, and user groups also support mailing
lists of various types. The only way to be sure you know about all the useful
mailing lists out there is to become an actively engaged member of the online
community. Table D.2 provides details on a few popular database-related
mailing lists for DBAs.

Table D.2. Database-Related Mailing Lists of Interest to DBAs

Although mailing lists are not as popular as they once were, some are still
very active and vital resources for database information.

Web Sites, Blogs, and Portals
Of course, the Web is also a very fertile source of database- and DBA-related
information. However, tracking things down on the Web can sometimes be
difficult—especially if you do not know where to look. Several good sources
of DBMS information can be found by reviewing the Web sites of DBMS
vendors, DBA tool vendors, magazines, and consultants

Vendor Web Sites

http://www.lsoft.com/lists/listref.html
http://www.listtool.com

One of the best DBA resources is the vendor Web site for the DBMS
software you use. On such sites you can find up-to-date news, information on
release schedules and bug fixes, downloadable manuals, and technical
support. Be sure to bookmark the site for your DBMS vendor and visit
regularly to keep tabs on what’s going on with your favorite database
management systems.

The Web sites for the major DBMS vendors are
• IBM DB2 at www.ibm.com/software/data/db2/
• Informix at www.ibm.com/software/data/informix/
• Microsoft SQL Server at www.microsoft.com/sql/default.asp
• Oracle at www.oracle.com/us/products/database/index.html
• Sybase at www.sybase.com

Another useful resource for DBAs can be found on DBA tool vendor Web
sites. DBA tool vendors employ many DBMS experts and former DBAs who
are willing to share tips, techniques, and scripts in order to promote their
company and its products. Appendix C lists several of the most popular third-
party tool vendors along with their Web address and contact information.

Magazine Web Sites
Many useful database and DBA-related articles are published every week in
technical magazines of every sort. Several magazines focus almost
exclusively on database- and DBA-related issues. Even better, many of these
publications are provided free of charge, in return for filling out a
subscription request with company and demographic information.

Additionally, most print magazines also host Web sites that offer many, if
not all, of their articles online. Some of this content is available to subscribers
only, but many periodicals offer some content to all browsers. Some of the
better magazine Web sites out there include

• Oracle Magazine: www.oracle.com/oramag/index.html
• IBM Data Management magazine:

www.ibm.com/developerworks/data/dmmag/
• Database Trends and Applications: www.dbta.com
• Information Management: www.information-management.com/
• SQL Server Pro magazine: www.sqlmag.com

http://www.ibm.com/software/data/db2/
http://www.ibm.com/software/data/informix/
http://www.microsoft.com/sql/default.asp
http://www.oracle.com/us/products/database/index.html
http://www.sybase.com
http://www.oracle.com/oramag/index.html
http://www.ibm.com/developerworks/data/dmmag/
http://www.dbta.com
http://www.information-management.com/
http://www.sqlmag.com

• Teradata Magazine: www.teradatamagazine.com/

Consultant Web Sites
There is a boatload of consultants who specialize in DBMS technology.
However, a few consultants have achieved guru status because they are
willing to share their knowledge and experience at conferences and events,
and by writing articles. Many of these premier consultants have set up
content-rich Web sites containing numerous documents, presentations, and
tips for anyone visiting the site. The consultants do this to promote their
business and gain leads for future business.

Some of the leading consultant Web sites containing interesting and useful
information for DBAs include

• Yevich, Lawson & Associates, focusing primarily on DB2:
www.ylassoc.com

• TUSC, focusing on Oracle: www.tusc.com
• DBA Direct, focusing on database administration: www.dbadirect.com
• Fabian Pascal’s site, devoted to debunking erroneous beliefs about

relational and other database technologies: www.dbdebunk.com
• The Pythian Group, focusing on DBA and consulting services:

www.pythian.com/
And, of course, you can check out the author’s Web site at

www.craigsmullins.com for an exhaustive online catalog of his published
writing and more.

Blogs
Another fertile source of database information on the Web is the blog. A blog
is a particular type of Web site (or a portion of a Web site) that is frequently
updated and less formal than the typical technology Web site or article.

The term blog is a blending of the phrase Web log. Blogs typically are
maintained by a single individual with regular entries of commentary,
descriptions of events, and other material. Entries, known as blog postings,
usually are displayed in reverse chronological order. Most blogs are also
interactive, containing sections where visitors can leave comments. For some
blogs, the comments section can be more active than the content area. The
more comments, the more fun and informative the blog usually will be.

http://www.teradatamagazine.com/
http://www.ylassoc.com
http://www.tusc.com
http://www.dbadirect.com
http://www.dbdebunk.com
http://www.pythian.com/
http://www.craigsmullins.com

According to Wikipedia, as of February 2011, there were over 156 million
blogs in existence. Some of the more entertaining and informative blogs that
cover database- and DBA-related material include

• DB2 Portal Blog: http://db2portal.blogspot.com
• Getting the Most out of DB2 for z/OS:

http://it.toolbox.com/blogs/db2zos
• An Expert’s Guide to DB2 Technology:

http://it.toolbox.com/blogs/db2luw
• Oracle Scratchpad: http://jonathanlewis.wordpress.com/2011/12/29/i-

wish-4/
• An Expert’s Guide to Oracle Technology:

http://it.toolbox.com/blogs/oracle-guide
• Richard Foote’s Oracle Blog: http://richardfoote.wordpress.com/
• SQL Is Your Friend: http://it.toolbox.com/blogs/sqlisyourfriend
• SQL Marklar: www.networkworld.com/community/mccown
• SQL Rockstar: http://thomaslarock.com/
• Data and Technology Today:

http://datatechnologytoday.wordpress.com/
• Obsessive-Compulsive Data Quality: www.ocdqblog.com/
• Data Governance: http://datagovernanceblog.com/

Seek out blog aggregation Web sites for help in finding and keeping up-to-
date on specific blogs. For example, the best source for finding DB2 blogs is
Planet DB2, a blog aggregator service at www.planetdb2.com.

And finally, consider bookmarking Pythian’s Log Buffer, a Carnival of the
Vanities blog at www.pythian.com/news/. A carnival blog can be thought of
as a blog of blogs. Log Buffer, in particular, offers an interesting way to keep
up-to-date on what is being said in the blogosphere regarding database
management. It can be useful if you want to quickly track a whole bunch of
different database blogs. According to the Pythian Group, Log Buffer “. . . is
the place DBAs and others interested in databases come to read and write the
news of what their colleagues around the world are working on: how they’re
solving problems, using their skills, and what they’re thinking about.”

Database Portals

http://db2portal.blogspot.com
http://it.toolbox.com/blogs/db2zos
http://it.toolbox.com/blogs/db2luw
http://jonathanlewis.wordpress.com/2011/12/29/i-wish-4/
http://it.toolbox.com/blogs/oracle-guide
http://richardfoote.wordpress.com/
http://it.toolbox.com/blogs/sqlisyourfriend
http://www.networkworld.com/community/mccown
http://thomaslarock.com/
http://datatechnologytoday.wordpress.com/
http://www.ocdqblog.com/
http://datagovernanceblog.com/
http://www.planetdb2.com
http://www.pythian.com/news/

There are many Web portals that offer a convenient collection of database-
and DBA-related information. A portal typically provides a vast amount of
information on a single topic, as well as links to related information, a search
engine, customization options, and the ability for users to be notified by e-
mail when relevant content is posted. The following Web sites function as
portals for database professionals.

The Database Site (www.thedatabasesite.com) is a source of useful
information about database management, administration, and development
issues and solutions. The site is a combination portal and Web-based
magazine with regular new content and links to vital database-related
information and sites.

TechTarget publishes SearchOracle (www.searchoracle.com) and
SearchSQLServer (http://searchsqlserver.techtarget.com), as well as their
sister site SearchDataManagement
(http://searchdatamanagement.techtarget.com). These sites are portals
containing loads of useful information, including tips, articles, discussion
boards, “ask the expert” sections, and more.

The SQL Server Worldwide User Group (www.sswug.org/) is another very
helpful Web portal for DBAs. The name seems to indicate that the portal
specializes in SQL Server, and that is the predominant subject area of
SSWUG. However, the portal also covers a very broad scope of database-
related subjects, including DB2, Oracle, XML, security, and others.

The Data Administration Newsletter (www.tdan.com) is another
combination portal/magazine site, which focuses on data administration and
data architecture issues.

There are numerous other portals that provide useful information for
DBAs. Some of the best focus on a single DBMS technology, whereas others
offer heterogeneous information.

Other Web Sites
Many other Web sites may prove useful or interesting to DBAs. One of the
best things about the Internet is its ability to provide a forum for anyone with
information to share. New and intriguing sites are popping up every day.
Let’s take a look at some of the best Web sites out there for DBAs.

Providing a very useful service for DBAs is DBAjobs.com
(www.DBAjobs.com). This site’s mission is “to advance the careers of all

http://www.thedatabasesite.com
http://www.searchoracle.com
http://searchsqlserver.techtarget.com
http://searchdatamanagement.techtarget.com
http://www.sswug.org/
http://www.tdan.com
http://www.DBAjobs.com

database professionals and to recruit the best database talent for its clients.”
Be sure to visit this site for access to many database-related jobs as well as
for assistance in preparing your résumé, interviewing tips, salary guidelines,
and database news.

Sites hosting information on industry standards can be quite helpful, too.
For example, ANSI (American National Standards Institute), ISO
(International Standards Organization), NIST (National Institute of Standards
and Technology), and SEI (Software Engineering Institute) all provide Web
sites:

• ANSI: www.ansi.org
• ISO: www.iso.ch
• NIST: www.nist.gov
• SEI: www.sei.cmu.edu/

Perhaps closer to the technical information required by a DBA is the SQL
standard Web site at www.jcc.com/sql.htm. This site purports to be a central
source of information about SQL standards. It contains links to various other
sites that document the SQL standard.

DAMA, the Data Management Association, is a coalition of professionals
dedicated to the advancement of data resource management. The DAMA
Web site (www.dama.org) documents the conferences and meetings
sponsored by DAMA, and also offers links, resources, newsletters, and
publications on data resource management.

User groups have been founded for each of the major DBMS vendors.
These groups sponsor annual international conferences and promote the
sharing of information by database professionals. The Web sites for these
groups offer useful information on conference locations and dates, as well as
articles, presentations, and tips:

• International DB2 User Group: www.idug.org
• International Oracle Users Group: www.ioug.org/
• Professional Association for SQL Server: www.sqlpass.org
• International Informix Users Group: www.iiug.org/
• International Sybase User Group: www.isug.com/

There are literally thousands of other Web sites that might be useful to you
as you embark on your career as a DBA. Here are a few of the ones I have

http://www.ansi.org
http://www.iso.ch
http://www.nist.gov
http://www.sei.cmu.edu/
http://www.jcc.com/sql.htm
http://www.dama.org
http://www.idug.org
http://www.ioug.org/
http://www.sqlpass.org
http://www.iiug.org/
http://www.isug.com/

found to be worthwhile:
• Agile Modling: www.agilemodeling.com/
• Business Intelligence Network: www.b-eye-network.com/
• The Data Warehousing Information Center: www.dwinfocenter.org/
• The Data Warehousing Institute: www.tdwi.org/
• Object Management Group: www.omg.org
• The OLAP Council: www.olapcouncil.org/
• The Open Group: www3.opengroup.org/
• Storage Networking Industry Association: www.snia.org
• The Transaction Processing Council: www.tpc.org/
• The XML portal: www.xml.com
• Web Farming site (data warehouse): www.webfarming.com

All of these sites are very useful for obtaining up-to-date information about
DBMS releases and versions, management tool offerings, and the like, but
bear in mind that the information on this type of site can be very biased. For
information that is more likely to be unbiased, you should favor the Web
portals over the vendor and consultant sites.

http://www.agilemodeling.com/
http://www.b-eye-network.com/
http://www.dwinfocenter.org/
http://www.tdwi.org/
http://www.omg.org
http://www.olapcouncil.org/
http://www3.opengroup.org/
http://www.snia.org
http://www.tpc.org/
http://www.xml.com
http://www.webfarming.com

E. Sample DBA Job Posting

This appendix provides an example job posting for a database administrator.
It can be used as a template for organizations looking to post a DBA job
opening or by DBAs interested in the types of job responsibilities
organizations look for when hiring.

Job Posting
Database Administrator (DBA)
Assists in the development of data models (perhaps in conjunction with a
data architect, perhaps solo) for new projects within IT. Has primary
responsibility for the definition, creation, and maintenance of enterprise
databases and database structures within the organizations. Analyzes, tests,
and implements physical database design supporting various business
applications (including base definition, structure, documentation, long-range
requirements, operational guidelines). Ensures data recovery, maintenance,
data integrity, and space requirements for physical databases are met through
formulations and monitoring of policies, procedures, and standards relating to
database management. Provides a high degree of coordination among user,
technical, application, and corporate entities to ensure effective data
management as a corporate enterprise. Above all, ensures solutions meet
business objectives and establishes and maintains a high level of user trust
and confidence in IT’s knowledge of and concern for users’ business needs.
Has a willingness to work with customers of varying levels of technical
expertise in a high-pressure, complex environment.
Responsibilities

• Provide first-level applications support: Resolve problems and answer
questions related to the RDBMS and platform environment (e.g.,
UNIX, Windows, Linux, z/OS); contact vendor support when
necessary; facilitate application development and client problem
resolution with optimum speed and efficiency.

• RDBMS performance monitoring and tuning: Closely monitor
performance; identify problems and implement solutions; ensure the
database is running at optimum speed and efficiency.

• Maintain database backup/recovery environment: Assure that data
recovery time objectives are established and met; verify implementation
of correct backup strategy; develop recovery procedures; support
recovery from loss of data caused by user or system error; respond
quickly to refresh data.

• Install and upgrade RDBMS and related products: Keep RDBMS at
current release and maintenance levels; install supporting products;
provide current, stable production and development environments.

• Reorganize database structures as needed: Automate procedures at
regular intervals; use tools to reorganize or defragment database
tablespaces, tables, and indexes; provide an efficient database
environment to maximize productivity and improve performance.

• Perform application refreshes on request: Refresh data from one
environment to another at the request of the application development
staff; execute necessary tasks to accomplish this, including export,
drop, create, and import; build and schedule a script to accomplish
refreshes to minimize impact; provide application development staff
optimal development environment with current data.

• Guide and oversee the database design process as needed: Research and
recommend optimal design criteria; publish standards and work with
development staff; standardize environment and improve efficiency.

• Review and implement all changes to database structures, while
ensuring the integrity of the data and maintaining data availability as
required by service-level agreements.

• Capacity planning and reporting: Monitor file system space, database
allocation, etc.; verify efficient use of disk storage; reclaim unused
space; optimize space allocation and avoid out-of-space conditions.

• Create, develop, and review the physical model created from the logical
model, ensuring the detailed physical design of data structures and
databases complies with standards, guidelines, and procedures
recommended for all aspects of data modeling, database design, and
maintenance; ensure proper data modeling and design paradigms are
applied.

• Provide the appropriate tools, procedures, and facilities for creating and
maintaining the entity data enterprise model.

• Be capable of producing entity-relationship diagrams; data flow
diagrams; database normalization schemata; logical-to-physical
database mapping; DDL and database commands.

• Manage the implementation and use of the enterprise data dictionary.
• Lead design reviews for database designs, application code, and pre-

and post-implementation capacity meetings; estimate sizes of new
databases.

• Work closely with systems programmers and systems administrators to
ensure that the database system is operating in accordance with
required system usage; provide assistance and guidance in setting
appropriate system parameters.

• Develop rules, procedures, and standards for the access and
maintenance of shared data resources.

• Review overall physical database structures for data integrity,
performance quality, recoverability, maintenance, and space
requirement considerations.

• Communicate complex technical information in a concise and articulate
manner.

• Participate in the evaluation and recommendation of DBA tools and
new DBMS technologies.

• Serve as business liaison to database vendors.
• Be responsible for the integrity of production test and QA database

environments.
• Perform impact analyses, research products, configure software, and

establish standards and procedures that support the company’s database
environment needs.

• Be responsible for application-oriented database administration and
technical support for the various development, training, testing, and
production relational database environments; focus on application-
specific database issues to ensure optimal application performance and
integrity.

• Develop utilities for monitoring and evaluating data quality.
• Assist in the definition and development of database documentation

and standards.

• Conduct application transaction volume and traffic analysis, and
interpret impact on database and network performance.

• Development projects: Interact with analysts and developers,
understand system requirements from conceptual models, analyze
transactions and data volumes, and design the physical database.

Skills and Knowledge

• Thorough understanding of the relational database model and solid
theoretical knowledge of relational database techniques; skilled in
ability to see the big picture and conceptualize and document creative
solutions

• Experience in designing, modeling, developing, and supporting large
RDBMS systems

• Extensive experience in logical and physical database design, hands-on
data modeling techniques, and development methodology; physical
schema design of tablespaces, rollback segments, and data files

• Experience in the design of data extract, data migration, and data
queuing facilities

• Proficiency in the concepts and practice of database normalization
techniques

• Strong working knowledge of state-of-the-art database
concepts/design/deployment, recovery techniques, performance
monitoring and tuning, Structured Query Language, relational database
design techniques, JCL

• Knowledge of server-side development issues surrounding triggers,
stored procedures, and packages

• Strong customer focus and management of client expectations; ability
to establish and maintain a high level of user trust and confidence in
IT’s knowledge of and concern for users’ business needs

• Excellent oral and written communications skills
• Ability to present and explain technical information to diverse types of

audiences (management, users, vendors, technical staff) in a way that
establishes rapport, persuades others, and gains understanding

• Ability to write clear proposals and technical documents
• Strong interpersonal skills at all levels of management and ability to

motivate employees/teams to apply skills and techniques to solve
dynamic problems; excellent teamwork skills

• Solid project management skills, effectively managing multiple small
to large projects in a cross-functional environment

• Ability to weigh various suggested technical solutions against the
original business needs and choose the most cost-effective solution

• Ability to work with long-established senior staff, provide guidance,
and assign and follow up on tasks

• Proficiency in several RDBMS-specific middleware tools and utilities
to support such activities as monitoring, database migration, DDL
management, and replication

• Experience with cross-platform networking in a TCP/IP environment
• Extensive knowledge of SQL, including programming and ways to

optimize SQL code
• Solid programming knowledge of at least one 3GL/4GL/OO4GL

language (e.g., C/C++, Perl, UNIX shell, Visual Basic)
• Knowledge of Web-enabled GUIs is a plus (e.g., Oracle JDeveloper

and WebSphere Studio)
Experience

• Bachelor’s degree in computer science, engineering, or related
discipline; master’s degree is desirable; equivalent experience
acceptable

• 3+ years in-depth experience in the design, administration,
programming, and support of RDBMSs (e.g., Oracle, SQL Server,
DB2) in one or more computing environments (e.g., UNIX, z/OS,
Windows, Linux, Web)

• Ability to handle basic systems administration tasks to fulfill backup
role if needed

• Demonstrated experience working well with customers of varying
levels of technical expertise in high-pressure situations and complex
environments

• Highly desirable that individual has earned certification as a developer
or DBA, for example, Oracle DBA Certified Master (OCM), Oracle
DBA Certified Professional (OCP), Microsoft Certified Database

Administrator (MCDBA), Certified MySQL Professional (MySQL-
Prof), IBM DB2 Universal Database Certified Solutions Expert (DB2),
etc.

Working Relationships

• Has close working relationship with systems team and peers in other
areas of IT

• Works closely with senior systems programmer, RDBMS and systems
administrators

• Has contact with application users, primarily in problem resolution
• Has frequent interaction with application development staff as

facilitator and client problem resolver; works collaboratively on such
activities as performance problems, hardware/software upgrades,
application program design reviews, new application setup and
implementation, application workload growth prediction and
measurement, etc.

• Is key participant in high-level technical strategy meetings, major
upgrade decisions, capacity planning data collections, performance
reporting, new application designing, etc.

• Has close working relationships with peers at external organizations

Bibliography

The books listed in this bibliography can be used as guides to further
education and research on the topics of database management, database
administration, and other data-related technologies.

Database Management and Database Systems
Abiteboul, Serge, et al. Foundations of Databases. Reading, MA: Addison-

Wesley (1995). ISBN 0-201-53771-0.
Ambler, Scott W. Agile Database Techniques: Effective Strategies for the

Agile Software Developer. New York, NY: John Wiley & Sons (2003).
ISBN 0-471-20283-5.

Ambler, Scott W., and Pramod J. Sadalage. Refactoring Databases:
Evolutionary Database Design. Boston, MA: Addison-Wesley (2006).
ISBN 0-321-29353-3.

Atre, Shaku. Database: Structured Techniques for Design, Performance,
and Management. 2nd ed. New York, NY: John Wiley & Sons (1988).
ISBN 0-471-85251-1.

Ault, Mike, et al. Database Benchmarking: Practical Methods for Oracle
and SQL Server. Kittrell, NC: Rampant Techpress (2006). ISBN 0-
9776715-3-4.

Bell, David, and Jane Grimson. Distributed Database Systems. Wokingham,
England: Addison-Wesley (1992). ISBN 0-201-54400-8.

Blaha, Michael R. A Manager’s Guide to Database Technology. Upper
Saddle River, NJ: Prentice Hall (2001). ISBN 0-13-030418-2.

Bobak, Angelo R. Distributed and Multi-Database Systems. New York, NY:
Bantam Intertext (1993). ISBN 0-553-09156-5.

Bontempo, Charles J., and Cynthia Maro Saracco. Database Management
Principles and Products. Upper Saddle River, NJ: Prentice Hall (1995).
ISBN 0-13-380189-6.

Bradley, James. Introduction to Database Management in Business. New
York, NY: Holt, Rinehart, and Winston (1983). ISBN 0-03-061693-X.

Brathwaite, Kenmore S. The Data Base Environment: Concepts and
Applications. New York, NY: Van Nostrand Reinhold (1990). ISBN 0-
442-00300-5.

Brathwaite, Kenneth S. Systems Design in a Database Environment. New
York, NY: McGraw-Hill (1989). ISBN 0-07-007250-7.

Burleson, Donald K. Managing Distributed Databases. New York, NY:
John Wiley & Sons (1994). ISBN 0-471-08623-1.

Castano, Silvana, et al. Database Security. Wokingham, England: Addison-
Wesley (1994). ISBN 0-201-59375-0.

Celko, Joe. Data & Databases: Concepts in Practice. San Francisco, CA:
Morgan Kaufmann (1999). ISBN 1-55860-432-4.

Chisholm, Malcolm. Managing Reference Data in Enterprise Databases.
San Francisco, CA: Morgan Kaufmann (2001). ISBN 1-55860-697-1.

Chorafas, Dimitris. Handbook of Database Management and Distributed
Relational Databases. Blue Ridge Summit, PA: Tab Books (1989). ISBN
0-8306-3253-0.

Chorafas, Dimitris N., and Heinrich Steinmann. Solutions for Networked
Databases. San Diego, CA: Academic Press (1993). ISBN 0-12-174060-
9.

Codd, E. F. The Relational Model for Database Management Version 2.
Reading, MA: Addison-Wesley (1990). ISBN 0-201-14192-2.

Connolly, Thomas, and Carolyn Begg. Database Systems: A Practical
Approach to Design, Implementation, and Management. 4th ed. Harlow,
England: Addison-Wesley (2004). ISBN 978-0-321-29401-2.

———. Database Systems: A Practical Approach to Design,
Implementation, and Management. 2nd ed. Harlow, England: Addison-
Wesley (1998). ISBN 0-201-34287-1.

Courtney, James F., and David B. Paradice. Database Systems for
Management. 2nd ed. Homewood, IL: Irwin (1992). ISBN 0-256-08229-
4.

Date, C. J. An Introduction to Database Systems. 8th ed. Boston, MA:
Addison-Wesley (2004). ISBN 0-321-19784-4.

———. An Introduction to Database Systems, Volume II. Reading, MA:

Addison-Wesley (1983, 1985). ISBN 0-201-14474-3.
———. The Database Relational Model. Boston, MA: Addison-Wesley

(2001). ISBN 0-201-61294-1.
Date, C. J., and Hugh Darwen. Foundation for Object/Relational Databases:

The Third Manifesto. Reading, MA: Addison-Wesley (1998). ISBN 0-
201-30978-5.

Date, C. J., et al. Temporal Data and the Relational Model. San Francisco,
CA: Morgan Kaufmann (2003). ISBN 1-55860-855-9.

Delobel, Claude, et al. Databases: From Relational to Object-Oriented
Systems. London, England: International Thomson Computer Press
(1995). ISBN 1-850-32124-8.

Dittrich, Klaus R., and Andreas Geppert, eds. Component Database Systems.
San Francisco, CA: Morgan Kaufmann (2001). ISBN 1-55860-642-4.

Dunham, Jeff. Database Performance Tuning Handbook. New York, NY:
McGraw-Hill (1998). ISBN 0-07-018244-2.

Egan, David, et al. DBA’s Guide to Databases on Linux. Rockland, MA:
Syngress Media (2000). ISBN 1-928994-04-0.

Feiler, Jesse. Database-Driven Web Sites. San Francisco, CA: Morgan
Kaufmann (1999). ISBN 0-12-251336-3.

Fortier, Paul J. Database Systems Handbook. New York, NY: McGraw-Hill
(1997). ISBN 0-07-021626-6.

Gillenson, Mark L. Database Step-by-Step. 2nd ed. New York, NY: John
Wiley & Sons (1990). ISBN 0-471-61759-8.

Gilula, Mikhail M. The Set Model for Database and Information Systems.
Reading, MA: ACM Press/Addison-Wesley (1994). ISBN 0-201-59379-3.

Goldstein, Robert C. Database Technology and Management. New York,
NY: John Wiley & Sons (1985). ISBN 0-471-88737-4.

Goodson, John, and Robert A. Steward. The Data Access Handbook. Upper
Saddle River, NJ: Prentice Hall (2009). ISBN 0-13-714393-1.

Grant, John. Logical Introduction to Databases. Orlando, FL: Harcourt
Brace Jovanovich (1987). ISBN 0-15-551175-0.

Hackathorn, Richard. Enterprise Database Connectivity. New York, NY:
John Wiley & Sons (1993). ISBN 0-471-57802-9.

House, William C., ed. Database Management. New York, NY: Petrocelli
Books (1974). ISBN 0-88405-051-3.

Jackson, Glenn A. Relational Database Design with Microcomputer
Applications. Englewood Cliffs, NJ: Prentice Hall (1988). ISBN 0-13-
771841-1.

Johnson, James L. Database: Models, Languages, Design. New York, NY:
Oxford University Press (1997). ISBN 0-19-510783-7.

Kim, Won. Modern Database Systems. Reading, MA: ACM Press/Addison-
Wesley (1995). ISBN 0-201-59098-0.

Korth, Henry F., and Abraham Silberschatz. Database System Concepts.
New York, NY: McGraw-Hill (1986). ISBN 0-07-044752-7.

Larson, James A. Database Directions. Upper Saddle River, NJ: Prentice
Hall (1995). ISBN 0-13-290867-0.

Lewis, Philip M., Arthur Bernstein, and Michael Kifer. Databases and
Transaction Processing. Boston, MA: Addison-Wesley (2002). ISBN 0-
201-70872-8.

Loucopoulos, Pericles, and Roberto Zicari, eds. Conceptual Modeling,
Databases, and CASE. New York, NY: John Wiley & Sons (1992). ISBN
0-471-55462-6.

Martin, James. Computer Database Organization. Englewood Cliffs, NJ:
Prentice Hall (1975). ISBN 0-13-165506-X.

———. Managing the Database Environment. Englewood Cliffs, NJ:
Prentice Hall (1983). ISBN 0-13-550582-8.

Mattison, Robert M. Understanding Database Management Systems. New
York, NY: McGraw-Hill (1993). ISBN 0-07-040973-0.

McFadden, Fred R., Jeffrey A. Hoffer, and Mary B. Prescott. Modern
Database Management. 5th ed. Reading, MA: Addison-Wesley (1999).
ISBN 0-8053-6054-9.

Mittra, Sitansu S. Database Performance Tuning and Optimization. New
York, NY: Springer-Verlag (2003). ISBN 0-387-95393-0.

O’Neil, Patrick. Database Principles, Programming, Performance. San
Francisco, CA: Morgan Kaufmann (1994). ISBN 1-55860-219-4.

Papadimitriou, Christos. The Theory of Database Concurrency Control.

Rockville, MD: Computer Science Press (1986). ISBN 0-88175-027-1.
Parsaye, Kamran, et al. Intelligent Databases. New York, NY: John Wiley

& Sons (1989). ISBN 0-471-50345-2.
Pascal, Fabian. Practical Issues in Database Management. Reading, MA:

Addison-Wesley (2000). ISBN 0-201-48555-9.
———. Understanding Relational Databases. New York, NY: John Wiley

& Sons (1993). ISBN 0-471-58538-6.
Piattini, Mario, and Oscar Diaz, eds. Advanced Database Technology and

Design. Boston, MA: Artech House (2000). ISBN 0-89006-395-8.
Podcameni, Silvio, Manfred Mittelmeir, and Michele Chilanti. Distributed

Relational Database: Cross-Platform Connectivity and Applications. 3rd
ed. Upper Saddle River, NJ: Prentice Hall (1996). ISBN 0-13-570797-8.

Pratt, Philip J., and Joseph J. Adamski. The Concepts of Database
Management. 2nd ed. Cambridge, MA: International Thomson Publishing
(1997). ISBN 0-7600-4925-4.

———. Database Systems Management and Design. 2nd ed. Boston, MA:
Boyd & Fraser (1991). ISBN 0-87835-579-0.

Purba, Sanjiv, ed. Data Management Handbook. 3rd ed. Boca Raton, FL:
Auerbach (2000). ISBN 0-8493-9832-0.

———. Handbook of Data Management 1999. Boca Raton, FL: Auerbach
(1999). ISBN 0-8493-9976-9.

———. High-Performance Web Databases. Boca Raton, FL: Auerbach
(2000). ISBN 0-8493-0882-8.

Riccardi, Greg. Principles of Database Systems with Internet and Java
Applications. Boston, MA: Addison-Wesley (2001). ISBN 0-201-61247-
X.

Rob, Peter, and Carlos Coronel. Database Systems: Design, Implementation,
and Management. 10th ed. Cambridge, MA: Thomson Learning (2012).
ISBN 978-1-111-96960-8.

Rothstein, Michael F., and Burt Rosner. The Professional’s Guide to
Database Systems Project Management. New York, NY: John Wiley &
Sons (1990). ISBN 0-471-62130-7.

Ryan, Nick, and Dan Smith. Database Systems Engineering. London,

England: International Thomson Computer Press (1995). ISBN 1-85032-
115-9.

Salemi, Joe. Guide to Client/Server Databases. Emeryville, CA: ZD Press
(1993). ISBN 1-56276-070-X.

Saracco, Cynthia Maro. Universal Database Management: A Guide to
Object/Relational Technology. San Francisco, CA: Morgan Kaufmann
(1998). ISBN 1-55860-519-3.

Schur, Stephen G. The Database Factory. New York, NY: John Wiley &
Sons (1994). ISBN 0-471-55844-3.

Shasha, Dennis A. Database Tuning: A Principled Approach. Englewood
Cliffs, NJ: Prentice Hall (1992). ISBN 0-13-205246-6.

Shepherd, John C. Database Management: Theory and Applications.
Homewood, IL: Irwin (1990). ISBN 0-256-07829-7.

Simon, Alan R. Strategic Database Technology. San Francisco, CA: Morgan
Kaufmann (1995). ISBN 1-55860-264-X.

Stonebraker, Michael, ed. Readings in Database Systems. San Mateo, CA:
Morgan Kaufmann (1988). ISBN 0-934613-65-6.

Stonebraker, Michael, and Paul Brown. Object-Relational DBMSs: Tracking
the Next Great Wave. 2nd ed. San Francisco, CA: Morgan Kaufmann
(1999). ISBN 1-55860-452-9.

Sweet, Frank. Consultant’s Handbook of Database Design. Jacksonville,
FL: Boxes & Arrows (1988). ISBN 0-939479-03-6.

Thuraisingham, Bhavani M. Data Management Systems: Evolution &
Interoperation. Boca Raton, FL: CRC Press (1997). ISBN 0-8493-9493-7.

Ullman, Jeffrey D., and Jennifer Widom. A First Course in Database
Systems. Upper Saddle River, NJ: Prentice Hall (1997). ISBN 0-13-
861337-0.

Widom, Jennifer, and Stefano Ceri, eds. Active Database Systems: Triggers
and Rules for Advanced Database Processing. San Francisco, CA:
Morgan Kaufmann (1996). ISBN 1-55860-304-2.

Yang, Chao-Chih. Relational Databases. Englewood Cliffs, NJ: Prentice
Hall (1986). ISBN 0-13-771858-6.

Zaniolo, Carlo, et al. Advanced Database Systems. San Francisco, CA:

Morgan Kaufmann (1997). ISBN 1-55860-443-X.

Data Administration, Data Modeling, and Database
Design
Allen, Sharon, and Evan Terry. Beginning Relational Data Modeling. 2nd

ed. Berkeley, CA: Apress (2005). ISBN 1-59059-463-0.
Ambler, Scott W. Agile Modeling. New York, NY: John Wiley & Sons

(2002). ISBN 0-471-20282-7.
Baca, Murtha, ed. Introduction to Metadata, Version 3. Los Angeles, CA:

Getty Publications (2008). ISBN 978-0-89236-896-9.
Batini, Carlo, et al. Conceptual Database Design: An Entity-Relationship

Approach. Redwood City, CA: Benjamin Cummings (1992). ISBN 0-
8053-0244-1.

Bruce, Thomas A. Designing Quality Databases with IDEF1X Information
Models. New York, NY: Dorset House (1991). ISBN 0-932633-18-8.

Carlis, John, and Joseph Maguire. Mastering Data Modeling: A User-Driven
Approach. Boston, MA: Addison-Wesley (2001). ISBN 0-201-70045-X.

Chmura, Alan, and J. Mark Heumann. Logical Data Modeling: What It Is
and How to Do It. New York, NY: Springer Science + Business Media
(2005). ISBN 0-387-22950-7.

Chrucher, Clare. Beginning Database Design: From Novice to Professional.
New York, NY: Apress (2007). ISBN 978-1-59059-769-9.

Codd, E. F. “Further Normalization of the Database Relational Model.” In
Data Base Systems. Courant Computer Science Symposia Series, Vol. 6.
Englewood Cliffs, NJ: Prentice Hall (1972).

Durell, William R. Data Administration: A Practical Guide to Successful
Data Management. New York, NY: McGraw-Hill (1985). ISBN 0-07-
018391-0.

———. The Complete Guide to Data Modeling. Princeton, NJ: Data
Administration, Inc. (1993). No ISBN.

English, Larry. Improving Data Warehouse and Business Information
Quality. New York, NY: John Wiley & Sons (1999). ISBN 0-471-25383-
9.

Fleming, Candace, and Barbara von Halle. Handbook of Relational
Database Design. Reading, MA: Addison-Wesley (1989). ISBN 0-201-
11434-8.

Halpin, Terry, and Tony Morgan. Information Modeling and Relational
Databases. 2nd ed. Burlington, MA: Morgan Kaufmann (2008). ISBN
978-0-12-373568-3.

Harrington, Jan L. Relational Database Design: Clearly Explained. 2nd ed.
San Francisco, CA: Morgan Kaufmann (2002). ISBN 1-55860-820-6.

Hay, David C. Data Model Patterns. New York, NY: Dorset House (1996).
ISBN 0-932633-29-3.

Hernandez, Michael J. Database Design for Mere Mortals. 2nd ed. Boston,
MA: Addison-Wesley (2003). ISBN 0-201-75284-0.

Hoberman, Steve. Data Modeling Made Simple. Bradley Beach, NJ:
Technics Publications (2005). ISBN 0-9771400-0-8.

Hogan, Rex. A Practical Guide to Database Design. Englewood Cliffs, NJ:
Prentice Hall (1990). ISBN 0-13-690967-1.

Inmon, W. H. Data Architecture: The Information Paradigm. Wellesley,
MA: QED Information Sciences (1989). ISBN 0-89435-268-7.

Kliewer, Bradley D. Database Modeling in the PC Environment. New York,
NY: Bantam Books (1992). ISBN 0-553-08952-8.

Lahdenmaki, Tapio, and Michael Leach. Relational Database Index Design
and the Optimizers. Hoboken, NJ: John Wiley & Sons (2005). ISBN 0-
471-71999-4.

Lefkovits, Henry C. IBM’s Repository Manager/MVS. Wellesley, MA: QED
Information Sciences (1991). ISBN 0-89435-349-7.

Lightstone, Sam, et al. Physical Database Design. San Francisco, CA:
Morgan Kaufmann (2007). ISBN 978-0-12-369389-1.

Marco, David. Building and Managing the Meta Data Repository. New
York, NY: John Wiley & Sons (2000). ISBN 0-471-35523-2.

Marco, David, and Michael Jennings. Universal Meta Data Models. New
York, NY: John Wiley & Sons (2004). ISBN 0-471-08177-9.

Modell, Martin E. Data Analysis, Data Modeling, and Classification. New
York, NY: McGraw-Hill (1992). ISBN 0-07-042634-1.

Mosley, Mark, et al. The DAMA Guide to the Data Management Body of
Knowledge. Bradley Beach, NJ: Technics Publications (2009). ISBN 978-
0-9771400-8-4.

Muller, Robert J. Database Design for Smarties: Using UML for Data
Modeling. San Francisco, CA: Morgan Kaufmann (1999). ISBN 1-55860-
515-0.

Perkinson, Richard C. Data Analysis: The Key to Database Design.
Wellesley, MA: QED Information Sciences (1984). ISBN 0-89435-105-2.

Pilone, Dan, with Neil Pilman. UML 2.0 in a Nutshell. Sebastopol, CA:
O’Reilly (2005). ISBN 0-596-00795-7.

Riordan, Rebecca M. Designing Effective Database Systems. Boston, MA:
Addison-Wesley (2003). ISBN 0-321-29093-3.

Rishe, Naphtali. Database Design: The Semantic Modeling Approach. New
York, NY: McGraw-Hill (1992). ISBN 0-07-052955-8.

Ross, Ronald G. Entity Modeling: Techniques and Application. Boston, MA:
Database Research Group (1988). ISBN 0-941049-00-0.

Sanders, G. Lawrence. Data Modeling. Danvers, MA: Boyd & Fraser
Publishing Company (1995). ISBN 0-87709-066-1.

Schmidt, Bob. Data Modeling for Information Professionals. Upper Saddle
River, NJ: Prentice Hall (1999). ISBN 0-13-080450-9.

Silverston, Len, et al. The Data Model Resource Book. New York, NY: John
Wiley & Sons (2002). ISBN 0-471-15264-8.

Simsion, Graeme C., and Graham C. Witt. Data Modeling Essentials. 3rd
ed. San Francisco, CA: Morgan Kaufmann (2005). ISBN 0-12-644551-6.

Stephens, Ryan K., and Ronald R. Plew. Database Design. Indianapolis, IN:
SAMS Publishing (2001). ISBN 0-672-31758-3.

Tannenbaum, Adrienne. Implementing a Corporate Repository: The Model
Meets Reality. New York, NY: Wiley Professional Computing (1994).
ISBN 0-471-58537-8.

———. Metadata Solutions. Boston, MA: Addison-Wesley (2002). ISBN 0-
201-71976-2.

Teory, Toby, et al. Database Design: Know It All. San Francisco, CA:
Morgan Kaufmann (2002). ISBN 978-0-12-374630-6.

Weilkiens, Tim, and Bernd Oestereich. UML 2 Certification Guide. San
Francisco, CA: Morgan Kaufmann (2007). ISBN 978-0-12-373585-0.

Wertz, Charles K. The Data Dictionary: Concepts and Uses. Wellesley,
MA: QED Information Sciences (1986). ISBN 0-89435-180-X.

Wurman, Richard Saul. Information Anxiety. New York, NY: Doubleday
(1989). ISBN 0-385-24394-4.

Database Security, Protection, and Compliance
Afyouni, Hassan A. Database Security and Auditing: Protecting Data

Integrity and Accessibility. Boston, MA: Thomson (2006). ISBN 0-619-
21559-3.

Anand, Sanjay. Sarbanes-Oxley Guide for Finance and Information
Technology Professionals. 2nd ed. Hoboken, NJ: John Wiley & Sons
(2006). ISBN 0-471-78533-9.

Ben Natan, Ron. Implementing Database Security and Auditing. Oxford,
UK: Elsevier Digital Press (2005). ISBN 978-1-55558-334-7.

Castano, Silvana, Mariagrazia Fugini, Giancarlo Martella, and Pierangela
Samarati. Database Security. Wokingham, England: Addison-
Wesley/ACM Press (1995). ISBN 0-201-59375-0.

Clarke, Justin. SQL Injection Attacks and Defense. Burlington, MA:
Syngress (2009). ISBN 978-1-59749-424-3.

Cougias, Dorian J., et al. Say What You Do: Building a Framework of IT
Controls, Policies, Standards, and Procedures. Lecanto, FL: Schaser-
Vartan (2007). ISBN 978-0-9729039-6-7.

Denning, Dorothy E. Cryptography and Data Security. Reading, MA:
Addison-Wesley (1983). ISBN 0-201-10150-5.

Fowler, Kevvie. SQL Server Forensic Analysis. Boston, MA: Addison-
Wesley (2009). ISBN 978-0-321-54436-0.

Ingram, Aaron, and Josh Shaul. Practical Oracle Security. Rockland, MA:
Syngress (2007). ISBN 978-1-59749-198-3.

IT Governance Institute. CobiT 4.0: Control Objectives, Management
Guidelines, Maturity Models. Rolling Meadows, IL: IT Governance
Institute (2005). ISBN 1-933284-37-4.

Kenan, Kevin. Cryptography in the Database: The Last Line of Defense.
Boston, MA: Symantec Press/Addison-Wesley (2006). ISBN 0-321-
32073-5.

Litchfield, David, et al. The Database Hacker’s Handbook: Defending
Database Servers. Indianapolis, IN: John Wiley & Sons (2005). ISBN 0-
7645-7801-4.

Mack, Mary, and Matt Deniston. A Process of Illumination: The Practical
Guide to Electronic Discovery. Portland, OR: Discovery Center of
Excellence (2004). ISBN 0-9725542-1-1.

Olson, Jack E. Database Archiving: How to Keep Lots of Data for a Very
Long Time. Burlington, MA: Morgan Kaufmann (2009). ISBN 978-0-12-
374720-4.

———. Data Quality: The Accuracy Dimension. San Francisco, CA:
Morgan Kaufmann (2003). ISBN 1-55860-891-5.

Oram, Andy, and John Viega. Beautiful Security. Sebastopol, CA: O’Reilly
(2009). ISBN 978-0-596-52748-8.

Ottman, John B., Jr. Save the Database, Save the World! New York, NY:
Sumo Press (2010). ISBN 978-1-4583-6368-8.

Perry, William E. Control in a Data Base Environment. Wellesley, MA:
QED Information Sciences (1980). ISBN 0-89435-042-0.

Redman, Thomas C. Data Quality: Management and Technology. New
York, NY: Bantam (1992). ISBN 0-553-09149-2.

———. Data Quality: The Field Guide. Boston, MA: Digital Press (2001).
ISBN 1-55558-251-6.

Reynolds, George W. Ethics in Information Technology. 3rd ed. Boston,
MA: Course Technology (2010). ISBN 978-0-538-74622-9

Schuler, Karen, et al. E-discovery: Creating and Managing an
Enterprisewide Program. Burlington, MA: Syngress (2009). ISBN 978-1-
59749-296-6.

Thomas, Gwen. Alpha Males and Data Disasters: The Case for Governance.
Orlando, FL: Brass Cannon Press (2006). ISBN 978-0-0786579-0-1.

Thuraisingham, Bhavani. Database and Applications Security: Integrating
Information Security and Data Management. Boca Raton, FL: Auerbach

(2005). ISBN 0-8493-2224-3.
Weill, Peter, and Jeanne W. Ross. IT Governance: How Top Performers

Manage IT Decision Rights for Superior Results. Boston, MA: Harvard
Business School Press (2004). ISBN 1-59139-253-5.

Wright, Craig, et al. The IT Regulatory and Standards Compliance
Handbook: How to Survive an Information Systems Audit and
Assessments. Burlington, MA: Syngress (2008). ISBN 978-1-59749-266-
9.

Data Warehousing
Adamson, Christopher. Star Schema: The Complete Reference. New York,

NY: McGraw-Hill (2010). ISBN 978-0-07-174432-4.
Adelman, Sid, et al. Impossible Data Warehouse Solutions: Solutions from

the Experts. Boston, MA: Addison-Wesley (2003). ISBN 0-201-76033-9.
Barquin, Ramon, and Herb Edelstein, eds. Planning and Designing the Data

Warehouse. Upper Saddle River, NJ: Prentice Hall (1997). ISBN 0-13-
255746-0.

Devlin, Barry. Data Warehouse from Architecture to Implementation.
Reading, MA: Addison-Wesley (1997). ISBN 0-201-96245-2.

Hackney, Douglas. Understanding and Implementing Successful Data
Marts. Reading, MA: Addison-Wesley (1997). ISBN 0-201-18380-3.

Inmon, W. H. Building the Data Warehouse. 2nd ed. New York, NY: John
Wiley & Sons (1996). ISBN 0-471-14161-5.

Inmon, W. H., and Richard Hackathorn. Using the Data Warehouse. New
York, NY: John Wiley & Sons (1994). ISBN 0-471-05966-8.

Inmon, W. H., Claudia Imhoff, et al. Building the Operational Data Store.
New York, NY: John Wiley & Sons (1996). ISBN 0-471-12822-8.

Inmon, W. H., John A. Zachman, et al. Data Stores, Data Warehousing and
the Zachman Framework. New York, NY: McGraw-Hill (1997). ISBN 0-
07-031429-2.

Kelly, Sean. Data Warehousing in Action. New York, NY: John Wiley &
Sons (1997). ISBN 0-471-96640-1.

Kimball, Ralph. The Data Warehouse Toolkit: The Complete Guide to

Dimensional Modeling. 2nd ed. New York, NY: John Wiley & Sons
(2002). ISBN 0-471-20024-7.

Lewis, William J. Data Warehousing and E-Commerce. Upper Saddle
River, NJ: Prentice Hall (2001). ISBN 0-13-091154-2.

Poe, Vidette. Building a Data Warehouse for Decision Support. Upper
Saddle River, NJ: Prentice Hall (1996). ISBN 0-13-371121-8.

Turban, Efraim. Decision Support and Expert Systems. Englewood Cliffs,
NJ: Prentice Hall (1995). ISBN 0-02-421701-8.

Witten, Ian H., and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques. San Francisco, CA: Morgan Kaufmann (2005).
ISBN 0-12-088407-0.

SQL
Beighley, Lynn. Head First SQL. Sebastopol, CA: O’Reilly (2007). ISBN

978-0-596-52684-9.
Bhamidipati, Kishore. SQL Programmer’s Reference. Berkeley, CA:

Osborne/McGraw-Hill (1998). ISBN 0-07-882460-5.
Celko, Joe. Data, Measurements and Standards in SQL. San Francisco, CA:

Morgan Kaufmann (2010). ISBN 978-0-12-374722-8.
———. SQL for Smarties: Advanced SQL Programming. 4th ed. San

Francisco, CA: Morgan Kaufmann (2011). ISBN 978-0-12-382022-8.
———. SQL Programming Style. San Francisco, CA: Morgan Kaufmann

(2005). ISBN 0-12-088797-5.
———. Thinking in Sets: Auxiliary, Temporal, and Virtual Tables in SQL.

San Francisco, CA: Morgan Kaufmann (2008). ISBN 978-0-12-374137-0.
Cumming, Andrew, and Gordon Russell. SQL Hacks: Tips & Tools for

Digging into Your Data. Sebastopol, CA: O’Reilly (2007). ISBN 978-0-
596-52799-0.

Date, C. J., with Hugh Darwen. A Guide to the SQL Standard. 4th ed.
Reading, MA: Addison-Wesley (1997). ISBN 0-201-96426-0.

Donahoo, Michael J., and Gregory D. Speegle. SQL: Practical Guide for
Developers. San Francisco, CA: Morgan Kaufmann (2005). ISBN 978-0-
12-220531-6.

Faroult, Stephane. The Art of SQL. Sebastopol, CA: O’Reilly (2006). ISBN
0-596-00894-5.

Groff, James R., and Paul N. Weinberg. LAN Times Guide to SQL. Berkeley,
CA: Osborne/McGraw-Hill (1994). ISBN 0-07-882026-X.

Gulutzan, Peter, and Trudy Pelzer. SQL-99 Complete, Really. Lawrence, KS:
R&D Books (1999). ISBN 0-87930-568-1.

———. SQL Performance Tuning. Boston, MA: Addison-Wesley (2003).
ISBN 0-201-79169-2.

Harrington, Jan L. SQL Clearly Explained. 3rd ed. Burlington, MA: Morgan
Kaufmann (2010). ISBN 978-0-12-375607-8.

Houlette, Forrest. Troubleshooting SQL. Berkeley, CA: Osborne/McGraw-
Hill (2001). ISBN 0-07-213489-5.

Kline, Kevin. SQL in a Nutshell. 3rd ed. Sebastopol, CA: O’Reilly (2009).
ISBN 978-0-596-51884-4.

Limeback, Rudy. Simply SQL: The Fun and Easy Way to Learn Best
Practice SQL. Collingwood, VIC, Australia: Sitepoint (2008). ISBN 978-
0-9804552-5-0.

Melton, Jim. Advanced SQL 1999: Understanding Object-Relational and
Other Advanced Features. San Francisco, CA: Morgan Kaufmann (2003).
ISBN 1-55860-677-7.

———. Understanding SQL’s Stored Procedures: A Complete Guide to
SQL/PSM. San Francisco, CA: Morgan Kaufmann (1998). ISBN 1-55860-
461-8.

Molinaro, Anthony. SQL Cookbook. Sebastopol, CA: O’Reilly (2006). ISBN
978-0-596-00976-2.

Tow, Dan. SQL Tuning. Sebastopol, CA: O’Reilly (2004). ISBN 0-596-
00573-3.

Object Orientation and Database Management
Barry, Douglas K. The Object Database Handbook. New York, NY: John

Wiley & Sons (1996). ISBN 0-471-14718-4.
Brathwaite, Kenmore S. Object-Oriented Database Design: Concepts and

Application. San Diego, CA: Academic Press (1993). ISBN 0-12-125882-

3.
Cattell, R. G. G. Object Data Management. Reading, MA: Addison-Wesley

(1992). ISBN 0-201-53092-9.
Hughes, John G. Object-Oriented Databases. New York, NY: Prentice Hall

(1991). ISBN 0-13-629882-6.
Kim, Wom. Introduction to Object-Oriented Databases. Cambridge, MA:

MIT Press (1990). ISBN 0-262-11124-1.
Kroha, Petr. Objects and Databases. London, England: McGraw-Hill

(1993). ISBN 0-07-707790-3.
Loomis, Mary. Object Databases: The Essentials. Reading, MA: Addison-

Wesley (1995). ISBN 0-201-56341-X.
Taylor, David A. Object-Oriented Technology: A Manager’s Guide.

Reading, MA: Addison-Wesley (1990). ISBN 0-201-56358-4.

Operating Systems
Bruzzese, J. Peter, Ronald Barrett, and Wayne Dipchan. Windows Server

2008: How To. Indianapolis, IN: SAMS (2010). ISBN 978-0-672-33075-
9.

Hassell, Jonathan. Learning Windows Server 2003. 2nd ed. Sepastopol, CA:
O’Reilly (2006). ISBN 0-596-10123-6.

Johnson, Robert H. MVS Concepts and Facilities. New York, NY: McGraw-
Hill (1989). ISBN 0-07-032673-8.

Nemeth, Evi, et al. UNIX and Linux System Administration Handbook. 4th
ed. Upper Saddle River, NJ: Prentice Hall (2010). ISBN 978-0-13-
148005-6.

Reiss, Levi, and Joseph Radin. Unix System Administration Guide. Berkeley,
CA: Osborne/McGraw-Hill (1993). ISBN 0-07-881951-2.

Samson, Steven L. MVS Performance Management. New York, NY:
McGraw-Hill (1997). ISBN 0-07-057700-5.

Young, John. Exploring IBM’s New Age Mainframes. 5th ed. Gulf Breeze,
FL: Maximum Press (1998). ISBN 978-1885068156.

Related Topics

Abiteboul, Serge, et al. Data on the Web: From Relations to Semistructured
Data and XML. San Francisco, CA: Morgan Kaufmann (2000). ISBN 1-
55860-622-X.

Allspaw, John. The Art of Capacity Planning. Sebastopol, CA: O’Reilly
(2008). ISBN 978-0-596-51857-8.

Anagol-Subbarao, Anjali. J2EE Web Services on BEA WebLogic. Upper
Saddle River, NJ: Prentice Hall (2005). ISBN 0-13-143072-6.

Applequist, Daniel K. XML and SQL: Developing Web Applications.
Boston, MA: Addison-Wesley (2002). ISBN 0-201-65796-1.

Barcia, Roland, et al. Persistence in the Enterprise: A Guide to Persistence
Technologies. Upper Saddle River, NJ: IBM Press (2008). ISBN 978-0-
13-158756-4.

Bell, Judy Kay. Disaster Survival Planning: A Practical Guide for
Businesses. Port Hueneme, CA: Disaster Survival Planning, Inc. (1991).
ISBN 0-9630580-2-9.

Bernstein, Philip A., and Eric Newcomer. Principles of Transaction
Processing. San Francisco, CA: Morgan Kaufmann (1997). ISBN 1-
55860-415-4.

Ceri, Stefano, et al. Designing Data-Intensive Web Applications. San
Francisco, CA: Morgan Kaufmann (2003). ISBN 1-55860-190-2.

Chantico Publishing Company, Inc. Disaster Recovery Handbook. Blue
Ridge Summit, PA: Tab Professional & Reference Books (1991). ISBN 0-
8306-7663-5.

de Guise, Preston. Enterprise Systems Backup and Recovery: A Corporate
Insurance Policy. Boca Raton, FL: Auerbach/CRC Press (2009). ISBN
978-1-4200-7639-4.

DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and
Teams. New York, NY: Dorset House (1987). ISBN 0-932633-05-6.

Dix, Paul. Service-Oriented Design with Ruby and Rails. Boston, MA:
Addison-Wesley (2010). ISBN 978-0-321-65936-1.

Eddy, Sandra E. XML in Plain English. Foster City, CA: M&T Books
(1998). ISBN 0-7645-7006-4.

EMC Education Services. Information Storage and Management: Storing,

Managing, and Protecting Digital Information. Indianapolis, IN: Wiley
Publishing (2009). ISBN 978-0-470-29421-5.

Freedman, Daniel P., and Gerald M. Weinberg. Handbook of Walkthroughs,
Inspections, and Technical Reviews. New York, NY: Dorset House
(1990). ISBN 0-932633-19-6.

Fronckowiak, John W. Teach Yourself OLE DB and ADO in 21 Days.
Indianapolis, IN: SAMS Publishing (1997). ISBN 0-672-31083-X.

Gagliardi, Gary. Client/Server Computing. Englewood Cliffs, NJ: Prentice
Hall (1994). ISBN 0-13-290784-4.

Gane, Chris, and Trish Sarson. Structured Systems Analysis: Tools &
Techniques. St. Louis, MO: IST Data Books (1980). ISBN 0-930196-00-
7.

Geiger, Kyle. Inside ODBC. Redmond, WA: Microsoft Press (1995). ISBN
1-55615-815-7.

Ginac, Frank P. Creating High Performance Software Development Teams.
Upper Saddle River, NJ: Prentice Hall (2000). ISBN 0-13-085083-7.

Gunther, Neil J. The Practical Performance Analyst. Lincoln, NE: Authors
Choice Press (2000). ISBN 0-595-12674-X.

Gray, Jim, and Andreas Reuter. Transaction Processing: Concepts and
Techniques. San Francisco, CA: Morgan Kaufmann (1993). ISBN 1-
55860-190-2.

Jennings, Roger. Database Developer’s Guide with Visual Basic 6.
Indianapolis, IN: SAMS Publishing (1999). ISBN 0-672-31063-5.

Jepson, Brian. Java Database Programming. New York, NY: John Wiley &
Sons (1997). ISBN 0-471-16518-2.

Johnston, Tom, and Randall Weiss. Managing Time in Relational
Databases. Burlington, MA: Morgan Kaufmann (2010). ISBN 978-0-12-
375041-9.

Kaute, Pierre Henri, Tobin Harris, Christian Bauer, and Gavin King.
NHibernate in Action. Greenwich, CT: Manning Publications (2009).
ISBN 978-1-932394-92-4.

Khoshafian, Setrag, et al. A Guide to Developing Client/Server SQL
Applications. San Mateo, CA: Morgan Kaufmann (1992). ISBN 1-55860-

147-3.
Koch, Richard. The 80/20 Principle. New York, NY: Currency/Doubleday

(1998). ISBN 0-385-49170-0.
Limoncelli, Thomas A., et al. The Practice of System and Network

Administration. Boston, MA: Addison-Wesley (2007). ISBN 978-0-321-
49266-1.

Loosley, Chris, and Frank Douglas. High Performance Client/Server. New
York, NY: John Wiley & Sons (1998). ISBN 0-471-16269-8.

Marguerie, Fabrice, Steve Eichert, and Jim Wooley. LINQ in Action.
Greenwich, CT: Manning Publications (2008). ISBN 978-1-933988-16-0.

McClain, Gary. OLTP Handbook. New York, NY: McGraw-Hill (1993).
ISBN 0-07-044985-6.

O’Donnell, Glenn, and Carlos Casanova. The CMDB Imperative: How to
Realize the Dream and Avoid the Nightmare. Upper Saddle River, NJ:
Prentice Hall (2009). ISBN 978-0-13-700837-7.

O’Reilly Media. Big Data Now. Sebastopol, CA: O’Reilly (2001). ISBN
978-1-449-31518-4.

Orfali, Robert, Dan Harkey, and Jeri Edwards. Essential Client/Server
Survival Guide. New York, NY: Van Nostrand Reinhold (1994). ISBN 0-
442-01941-6.

Patrick, Tim. ADO.NET 4: Step by Step. Sebastopol, CA: Microsoft Press
(2010). ISBN 978-0-7356-3888-4.

Photopoulos, Constantine. Managing Catastrophic Loss of Senstive Data.
Burlington, MA: Syngress (2008). ISBN 978-1-59749-239-3.

Piedad, Floyd, and Michael Hawkins. High Availability: Design, Techniques
and Processes. Upper Saddle River, NJ: Prentice Hall (2001). ISBN 0-13-
096288-0.

Poelker, Christopher, and Alex Nikitin. Storage Area Networks for
Dummies. Indianapolis, IN: Wiley Publishing (2003). ISBN 0-7645-2480-
1.

Preston, W. Curtis. Backup & Recovery. Sebastopol, CA: O’Reilly (2007).
ISBN 978-0-596-10246-3.

Pugh, Eric, and Joseph D. Gradecki. Professional Hibernate. Indianapolis,

IN: Wrox (2004). ISBN 0-7645-7677-1.
Reese, George. Java Database Best Practices. Sebastopol, CA: O’Reilly

(2003). ISBN 0-596-00522-9.
Rinehart, Martin. Java Database Development. Berkeley, CA: McGraw-Hill

(1998). ISBN 0-07-882356-0.
Scalzo, Bert, and Dan Hotka. TOAD Handbook. 2nd ed. Indianapolis, IN:

SAMS/Developer’s Library (2009). ISBN 978-0-321-64910-2.
Sceppa, David. Programming Microsoft ADO.NET. Sebastopol, CA:

Microsoft Press (2012). ISBN 978-0-7356-4801-2.
Sheldon, Tom, ed. LAN Times Guide to Interoperability. Berkeley, CA:

McGraw-Hill (1994). ISBN 0-07-882043-X.
Strauss, Melvin J. Computer Capacity: A Production Control Approach.

New York, NY: Van Nostrand Reinhold (1981). ISBN 0-442-26243-4.
Sturm, Rick, Wayne Morris, and Mary Jander. Foundations of Service Level

Management. Indianapolis, IN: SAMS Publishing (2000). ISBN 0-672-
31743-5.

SunGard Recovery Services, Inc. Action Plan for Disaster (1995).
Taylor, Ed. Demystifying SNA. Plano, TX: Wordware (1993). ISBN 1-

55622-404-4.
———. Demystifying TCP/IP. Plano, TX: Wordware (1993). ISBN 1-

55622-400-1.
Terplan, Kornel, and Jill Huntington-Lee. Applications for Distributed

Systems and Network Management. New York, NY: Van Nostrand
Reinhold (1995). ISBN 0-442-01873-8.

Thornburgh, Ralph H., and Barry J. Shoenborn. Storage Area Networks.
Upper Saddle River, NJ: Prentice Hall (2000). ISBN 0-13-027959-5.

Toigo, Jon William. Disaster Recovery Planning. 2nd ed. Upper Saddle
River, NJ: Prentice Hall (2000). ISBN 0-13-084506-X.

———. The Holy Grail of Data Storage Management. Upper Saddle River,
NJ: Prentice Hall (2000). ISBN 0-13-013055-9.

———. The Holy Grail of Network Storage Management. Upper Saddle
River, NJ: Prentice Hall (2004). ISBN 0-13-148968-2.

Walmsley, Priscilla. XQuery. Sebastopol, CA: O’Reilly (2007). ISBN 978-0-
596-00634-1.

DB2
Bond, Rebecca, et al. Understanding DB2 9 Security. Indianapolis, IN: IBM

Press (2007). ISBN 0-13-134590-7.
Bruni, Paulo, et al. Disaster Recovery with DB2 UDB for z/OS. Armonk,

NY: IBM Redbook (2004). ISBN 0-7384-9092-X.
Chen, Whei-Jen, et al. High Availability and Disaster Recovery Options for

DB2 on Linux, UNIX, and Windows. Armonk, NY: IBM Redbook (2009).
ISBN 0-7384-3138-9.

Chong, Raul, et al. Understanding DB2: Learning Visually with Examples.
Indianapolis, IN: IBM Press (2005). ISBN 0-13-185916-1.

Eaton, Chris. High Availability Guide for DB2. Upper Saddle River, NJ:
Prentice Hall (2004). ISBN 978-0-7686-8220-5.

Garvin, Curtis, and Steve Eckols. DB2 for the COBOL Programmer Part 1.
2nd ed. Fresno, CA: Mike Murach & Associates (1999). ISBN 1-890774-
16-2.

Garvin, Curtis, and Anne Prince. DB2 for the COBOL Programmer Part 2.
2nd ed. Fresno, CA: Mike Murach & Associates (1999). ISBN 1-890774-
03-0.

Gu, Lijun, et al. DB2 UDB Backup and Recovery with ESS Copy Services.
San Jose, CA: IBM (2002). ISBN 0-7384-2514-1.

Mullins, Craig S. DB2 Developer’s Guide. 6th ed. Boston, MA: IBM Press
(2012). ISBN 978-0-13-283642-5.

IMS
Geller, Joseph R. IMS Administration, Programming, and Database Design.

New York, NY: John Wiley & Sons (1989). ISBN 0-471-62185-4.
Hogan, Rex. Diagnostic Techniques for IMS Databases. Wellesley, MA:

QED Information Sciences (1986). ISBN 0-89435-174-5.
Hubbard, George U. IMS (DL/1) Database Organization and Performance.

New York, NY: Van Nostrand Reinhold (1986). ISBN 0-442-23583-6.

Lyon, Lockwood. The IMS/VS Expert’s Guide. New York, NY: Van
Nostrand Reinhold (1990). ISBN 0-442-23977-7.

Meltz, Dean, et al. An Introduction to IMS. Upper Saddle River, NJ: IBM
Press/Pearson (2005). ISBN 0-13-185671-5.

MySQL
Beighley, Lynn, and Michael Morrison. Head First PHP & MySQL.

Sebastopol, CA: O’Reilly (2009). ISBN 978-0-596-00630-3.
Bell, Charles, et al. MySQL High Availability. Sebastopol, CA: O’Reilly

(2010). ISBN 978-0-596-80730-6.
Cabral, Sheeri K., and Keith Murphy. MySQL Administrator’s Bible.

Indianapolis, IN: John Wiley & Sons (2009). ISBN 978-0-470-41691-4.
MySQL AB. MySQL Administrator’s Guide and Language Reference. 2nd

ed. Indianapolis, IN: MySQL Press (2006). ISBN 0-672-32870-4.
Reese, George, et al. Managing & Using MySQL. 2nd ed. Sebastopol, CA:

O’Reilly (2002). ISBN 0-596-00211-4.
Schwartz, Baron, et al. High Performance MySQL. 2nd ed. Sebastopol, CA:

O’Reilly (2008). ISBN 978-0-596-10171-8.
Smirnova, Sveta. MySQL Troubleshooting. Sebastopol, CA: O’Reilly

(2012). ISBN 978-1-449-31200-8.
Williams, Hugh E., and David Lane. Web Database Applications with PHP

and MySQL. 2nd ed. Sebastopol, CA: O’Reilly (2004). ISBN 0-596-
00543-1.

Yank, Kevin. Build Your Own Database Driven Web Site Using PHP and
MySQL. 3rd ed. Collingwood, VIC, Australia: SitePoint (2004). ISBN 0-
9752402-1-8.

Oracle
Bach, Martin, and Steve Shaw. Pro Oracle Database 11g RAX on Linux.

New York, NY: Apress (2010). ISBN 978-1-4302-2959-9.
Bales, Donald. Java Programming with Oracle JDBC. Sebastopol, CA:

O’Reilly (2002). ISBN 0-596-00088-X.
Caffrey, Melanie, and Douglas Scherer. Oracle DBA Interactive Workbook.

Upper Saddle River, NJ: Prentice Hall (2001). ISBN 0-13-015742-2.
Carpenter, Larry. Oracle Data Guard 11g Handbook. Berkeley, CA:

McGraw-Hill/Oracle Press (2009). ISBN 978-0-07-162111-3.
Devraj, Venkat S. Oracle 24x7: Real-World Approaches to Ensuring

Database Availability. Berkeley, CA: Osborne/McGraw-Hill (2000).
ISBN 0-07-211999-3.

Foot, Christopher T. OCP Instructors Guide for Oracle DBA Certification.
Kittrell, NC: Rampant Techpress (2003). ISBN 0-9744355-3-8.

Freeman, Robert, and Matthew Hart. Oracle RMAN 11g Backup and
Recovery. Berkeley, CA: Oracle Press/McGraw-Hill (2010). ISBN 978-0-
07-162860-0.

Harrison, Guy. Oracle Performance Survival Guide: A Systematic Approach
to Database Optimization. Upper Saddle River, NJ: Prentice Hall (2009).
ISBN 978-0-13-701195-7.

Jesse, Scott, et al. Oracle Database 11g Release 2 High Availability:
Maximize Your Availability with Grid Infrastructure, RAC and Data
Guard. Berkeley, CA: McGraw-Hill (2011). ISBN 978-0-07-175208-4.

Kreines, David C., and Brian Laskey. Oracle Database Administration: The
Essential Reference. Sebastapol, CA: O’Reilly (1999). ISBN 1-56592-
516-5.

Kyte, Thomas. Effective Oracle by Design. New York, NY: McGraw-Hill
(2003). ISBN 0-07-223065-7.

———. Expert Oracle Database Architecture: Oracle Database 9i, 10g,
and 11g Programming Techniques and Solutions. New York, NY: Apress
(2010). ISBN 978-1-4302-2946-9.

Lawson, Christopher. The Art and Science of Oracle Performance Tuning.
Birmingham, UK: Curlingstone (2003). ISBN 1-904347-01-0.

Lewis, Jonathan. Cost-Based Oracle Fundamentals. New York, NY: Apress
(2006). ISBN 1-59059-636-6.

———. Oracle Core: Essential Internals for DBAs and Developers. New
York, NY: Apress (2011). ISBN 978-1-4302-3954-3.

Loney, Kevin. Oracle Database 11g: The Complete Reference. Berkeley,
CA: McGraw-Hill/Oracle Press (2008). ISBN 978-0-07-159875-0.

Niemic, Richard. Oracle Database 11g Release 2 Performance Tuning Tips
& Techniques. New York, NY: Oracle Press (2012). ISBN 978-0-07-
178027-8.

Owens, Kevin T. Building Intelligent Databases with Oracle PL/SQL,
Triggers, and Stored Procedures. Upper Saddle River, NJ: Prentice Hall
(1996). ISBN 0-13-443631-8.

Price, Jason. Java Programming with Oracle SQLJ. Sebastopol, CA:
O’Reilly (2001). ISBN 0-596-00087-1.

Theriault, Marlene L. Oracle8i Networking 101. Berkeley, CA: McGraw-
Hill/Oracle Press (2000). ISBN 0-07-212517-9.

Toledo, Hugo, Jr. Oracle Networking. Berkeley, CA: McGraw-Hill/Oracle
Press (1996). ISBN 0-07-882165-7.

Velpuri, Rama. Oracle Backup & Recovery Handbook. Berkeley, CA:
Osborne/McGraw-Hill (1995). ISBN 0-07-882323-4.

SQL Server
Baird, Sean, et al. SQL Server System Administration. Indianapolis, IN: New

Riders (1999). ISBN 1-56205-955-6.
Bertucci, Paul. Microsoft SQL Server High Availability. Indianapolis, IN:

SAMS (2005). ISBN 0-672-32625-6.
Colledge, Rod. SQL Server 2008 Administration in Action. Greenwich, CT:

Manning Publications (2010). ISBN 978-1-933988-72-6.
Fowler, Kevvie. SQL Server Forensic Analysis. Boston, MA: Addison-

Wesley (2009). ISBN 978-0-321-54436-0.
Kehayias, Jonathan, and Ted Krueger. Troubleshooting SQL Server: A

Guide for the Accidental DBA. Cambridge, UK: Red Gate (2011). ISBN
978-1-906434-77-9.

Henderson, Ken. The Guru’s Guide to SQL Server Architecture and
Internals. Boston, MA: Addison-Wesley (2004). ISBN 0-201-70047-6.

Horninger, Mark, et al. The Real MCTS SQL Server 2008 Exam 70-432:
Database Implementation and Maintenance Prep Kit. Burlington, MA:
Syngress (2009). ISBN 978-1-59749-420-5.

———. The Real MCTS SQL Server 2008 Exam 70-433: Database Design

Prep Kit. Burlington, MA: Syngress (2009). ISBN 978-1-59749-421-2.
McBath, Frank. SQL Server Backup and Recovery: Tools and Techniques.

Upper Saddle River, NJ: Prentice Hall (2001). ISBN 978-0-13-062298-3.
Otey, Michael. Microsoft SQL Server 2008 High Availability with Clustering

& Database Mirroring. Berkeley, CA: McGraw-Hill (2010). ISBN 978-0-
07-149813-5.

Stanek, William R. Microsoft SQL Server 2008 Administrator’s Pocket
Consultant. 2nd ed. Redmond, WA: Microsoft Press (2010). ISBN 978-0-
7356-2738-3.

Syverson, Bryan. Murach’s SQL for SQL Server. Fresno, CA: Mike Murach
& Associates (2002). ISBN 1-890774-16-2.

Thomas, Orin, et al. Administering Microsoft SQL Server 2012 Databases
Training Kit: Exam 70-462. Redmond, WA: Microsoft Press (2012).
ISBN 978-0-7356-6607-8.

Sybase
Garbus, Jeffrey. Administrator’s Guide to Sybase ASE 15. Plano, TX: Jones

& Bartlett (2006). ISBN 978-1-55622-360-9.
Hitchcock, Brian. Sybase Database Administrator’s Handbook. Upper

Saddle River, NJ: Prentice Hall (1996). ISBN 0-13-357477-6.
Kirkwood, John. Official Sybase Internals: Designing and Troubleshooting

for High Performance. New York, NY: ITP New Media (1997). ISBN
978-1850323341.

———. Sybase Architecture and Administration. Hertfordshire, UK: Ellis
Horwood (1993). ISBN 0-13-100330-5.

Rozenshtein, David, et al. Optimizing Transact-SQL: Advanced
Programming Techniques. Fremont, CA: SQL Forum Press (1995). ISBN
0-9649812-0-3.

Other Database Systems
Anderson, J. Chris, et al. CouchDB: The Definitive Guide. Sebastopol, CA:

O’Reilly (2010). ISBN 978-0-596-15589-6.
Hamilton, D. D. Inside Adabas. Wellesley, MA: WH&O International

(1995). ISBN 1-878960-03-2.

Husband, Robert E., et al. IDMS/R Systems Desk Reference. New York, NY:
Wiley-Interscience (1987). ISBN 0-471-85236-8.

Informix Software Staff. Evolution of the High Performance Database.
Upper Saddle River, NJ: Informix Press/Prentice Hall (1997). ISBN 0-13-
594730-8.

Lumbley, Joe. Informix Database Administrator’s Survival Guide. Upper
Saddle River, NJ: Informix Press/Prentice Hall (1995). ISBN 0-13-
124314-4.

White, Tom. Hadoop: The Definitive Guide. 3rd ed. Sebastopol, CA:
O’Reilly (2012). ISBN 978-1-449-31152-0.

Worsley, John C., and Joshua D. Drake. Practical PostgreSQL. Sebastopol,
CA: O’Reilly (2002). ISBN 1-56592-846-6.

Glossary

A
access path
The method used by the database to access data (as determined by the
database optimizer).
ACID
An acronym for atomicity, consistency, isolation, and durability. Each of
these four qualities is necessary for a transaction to be designed correctly.
active log
The instance of the database log that is currently in use.
Active Server Pages (ASP)
A Microsoft technology enabling programmers to develop custom code
that works with Microsoft’s Internet Information Server (IIS).
ad hoc query
A query constructed and executed to answer an immediate and
unanticipated question or need.
ADO
Short for Microsoft ActiveX Data Objects. ADO enables client
applications to access and manage data from a range of sources through an
OLE DB provider.
aggregate data
Data resulting from processes that combine and summarize atomic data.
alert
The notification of an event, usually exceeding a predefined threshold.
alias
An alternative synonym for a standard name or term.
allied agent
A configured software component that works or interacts with a DBMS.

alternate key
Unique identifier for an entity instance other than the primary key.
American National Standards Institute (ANSI)
A private not-for-profit organization that coordinates the development and
use of voluntary consensus standards in the United States and represents
the needs of U.S. stakeholders in worldwide standardization forums
(www.ansi.org).
analytics
Procedures and techniques for exploration and analysis of data to discover
and identify new and meaningful information and trends.
ANSI SQL
The standard form of SQL; originally defined by ANSI nationally but now
controlled by ISO.
application programming interface (API)
A published standard format for communicating with application
programs.
architecture
An organized set of consensus decisions on policies, principles, services,
common solutions, standards, and guidelines as well as specific vendor
products and technologies used to provide information technology (IT).
archive
Database archiving is a process of removing inactive data from the
operational databases on a regular basis and storing it in a different format
more appropriate for long-term data retention and access when needed.
archive log
Earlier version of the database log stored for posterity.
associative entity
An entity that resolves a many-to-many relationship.
asynchronous
A style of communication in which the initiator does not wait for a reply.
atomic data

http://www.ansi.org

Data at the lowest available level of detail or granularity.
atomicity
The characteristic of a transaction whereby database modifications must
adhere to an “all or nothing” rule. If any single part of a transaction fails,
the entire transaction fails. A database management system (DBMS) must
maintain atomicity despite software and hardware failures (the A in ACID).
attribute
An inherent fact, property, or characteristic describing an entity. Every
attribute does one of three things: describes, identifies, or relates.
audit
A formal verification of validity, accuracy, and conformance to
requirements, regulations, standards, and/or guidelines.
audit trail
Data maintained to trace activity, such as a transaction log, for purposes of
recovery or audit.
authentication
The process of confirming a user’s or computer’s identity.
authorization
The granting of authority allowing a person, group, or software agent to
access a resource.
automatic summary table
A database object providing automated aggregation and storage for
subsequent analysis and querying. Also known as materialized query table
or materialized view.
availability
The percentage of time a system or data resource is accessible compared to
the time it is expected to be accessible.

B
backup
(1) The process of making a copy of data from a database to ensure its
continued availability in the event of a hardware or software failure

requiring recovery of the database to restore the data. (2) The copy itself.
batch processing
A type of processing whereby computer programs are coded into jobs that
are submitted for execution and run to completion without online
interaction or manual intervention.
benchmark
A point of reference for measurement, comparison, and evaluation; for
database systems, a benchmark typically is a point-in-time snapshot
measurement for comparison with other benchmarks.
best practice
A technique, method, process, discipline, incentive, or reward generally
considered to be more effective at delivering a particular outcome than by
other means.
bitmap
An indexing technique using a string of zeroes and ones, or bits. For each
key value of the bitmap index a separate string of zeroes and ones is stored.
Boyce-Codd normal form (BCNF)
A relation is in Boyce-Codd normal form if every determinant is a
candidate key.
b-tree
A keyed, treelike index structure.
buffer pool
An area of memory set aside and used to avoid I/O operations when actual
data is being read from the database. Also referred to as a data cache.
business intelligence (BI)
Computer-based techniques used in identifying, extracting, and analyzing
business data. Common functions of BI technologies are reporting, online
analytical processing (OLAP), analytics, data and process mining, complex
event processing, business performance management, benchmarking, and
predictive analytics.
byte
A single character of data stored electronically in 16 binary bits.

C
cache
A store of something useful; in database systems, often an area of memory
for storing data, parameters, or program settings.
call-level interface (CLI)
Defines how a program should send SQL queries to the DBMS and how
the returned data should be handled by the application in a consistent way.
candidate key
An attribute or set of attributes that can be used to uniquely identify an
occurrence of the entity. Each entity may have one or more candidate keys.
One of these candidate keys is selected as the table primary key.
cardinality
The number of occurrences that may exist between a pair of entities.
Another way of looking at cardinality is as the number of entity
occurrences applicable to a specific relationship. Sometimes the term
degree is used instead of cardinality. An alternate usage of the term
cardinality within the realm of database administration is a database
statistic used by the relational optimizer defining the number of
occurrences of a value within a column (or set of columns).
Cartesian product
The result of a Cartesian join, occurring when every row of one table is
joined to every row of another table (or itself) without the use of join
predicates.
centralized processing
The use of computer assets consolidated in a single computer (or cluster of
coupled computers) and accessed using dumb terminals.
certification
The process by which an organization grants recognition to an individual,
organization, process, service, or product that meets certain established
criteria.
change data capture
The process of capturing changes made to a production data source;

typically used in data warehousing environments.
cipher
An algorithm for performing encryption or decryption.
CLI
See call-level interface.
client/server computing
A multitier approach to computing where applications access corporate
shared resources over a network connection.
cloud computing
The delivery of computing as a service. Cloud computing applications rely
on a network (typically the Internet) to provide users with shared
resources, software, and data.
clustering
(1) The condition whereby data is physically ordered contiguously by a
specified key (usually implemented by means of an index). (2) The use of
multiple, “independent” computing systems working together to form what
appears to users as a single highly available system.
COBIT (Control Objectives for Information and Related Technology)
Standards for IT governance published by the IT Governance Institute; see
www.aisca.org/cobit.
CODASYL (Conference on Data Systems Languages)
A consortium formed in 1959 to guide the development of a standard
programming language that could be used on many computers. This effort
led to the development of the network (navigational) data model for
DBMS and COBOL, among other standards.
column
A data attribute as implemented in a relational database as a vertical
component of a table, similar to a field in a flat file record.
COM (Common Object Model)
Microsoft’s programming specification for object interoperability through
sets of predefined routines called interfaces.
commit

http://www.aisca.org/cobit

SQL statement that concludes a unit of work.
compliance
The process of conforming, completing, performing, or adapting actions to
meet the rules, demands, or wishes of another party. Commonly used when
discussing conformance to external government or industry regulations.
composite key
A key with more than one attribute.
conceptual data model
A high-level data model identifying major entities and relationships, not
fully attributed and therefore not necessarily normalized.
concurrency
The condition when more than one user has access to a specific set of data
at the same time. Concurrency is also used to describe a database
management system’s capability to handle simultaneous queries against a
single set of tables.
config.ora
A file associated with the Oracle client that specifies certain defaults, files,
and directory names for the Oracle client.
consistency
The degree to which data values are equivalent across redundant databases.
With regard to transactions, consistency refers to the state of the data both
before and after the transaction is executed. A transaction maintains the
consistency of the state of the data. In other words, after a transaction is
run, all data in the database is “correct” (the C in ACID).
constraint
(1) A restriction on a business action and the resulting data. (2) The
database mechanism for enforcing such.
contention
A conflict over access to a shared resource such as memory, disk storage, a
database object, or a data page.
CORBA (Common Object Request Broker Architecture)
The Object Management Group’s vendor-independent architecture and

infrastructure for object-based programming interoperability.
cursor
A moving placement or pointer that indicates a position, used in programs
to overcome the impedance mismatch between SQL (set-at-a-time
processing) and application programs (record-at-a-time processing).

D
data
Facts represented as text, numbers, graphics, images, sound, or video (with
no additional defining context); the raw material used to create
information.
database
An organized collection of data, usually in digital form.
database administrator
An individual responsible for the installation, configuration,
administration, monitoring, and maintenance of the DBMS and its physical
databases.
database driver
Software that enables applications to request and retrieve data over the
network from the database server using database protocol packets.
database gateway
Software required to allow clients to access data stored on database servers
over a network connection.
database management system (DBMS)
A software package that can be used to control the creation, maintenance,
and use of a database. It allows organizations to conveniently develop
databases for various applications.
database writer (DBWR)
An Oracle process that writes data from the data cache contained in
memory out to the physical disk files.
data breach
The release of secure information to an untrusted environment. Other terms

for this occurrence include unintentional information disclosure, data leak,
and data spill.
data cache
An area of memory set aside and used to avoid I/O operations when actual
data is being read from the database. Also referred to as a buffer pool.
data cleansing
The act of detecting and removing and/or correcting data in a database.
Also called data scrubbing.
Data Control Language (DCL)
SQL statements used for controlling access to data and data structures, e.g.,
GRANT and REVOKE.
Data Definition Language (DDL)
SQL statements used for creating and modifying data structures, e.g.,
CREATE, ALTER, and DROP.
data dictionary
Software coupled with a data store for managing data definitions.
Data Manipulation Language (DML)
SQL statements used for accessing and modifying data, e.g., INSERT,
UPDATE, DELETE, and SELECT.
data stewardship
Responsibility and accountability for the actions taken upon a defined set
of data, including the definition of the consumers of the data. A data
steward is not necessarily the data owner.
data type
A classification identifying one of various types of data. Each column in a
physical database design must have a data type assigned. Examples include
integer, character, etc.
data warehouse
A database used for reporting and analysis.
DBA
See database administrator.

DBCC
Sybase utility for consistency and integrity checking.
DCL
See Data Control Language.
DDL
See Data Definition Language.
deadlock
A specific type of locking problem when concurrent processes are
competing for locks. For example, program1 holds a lock on A and is
waiting for a lock on B; program2 holds a lock on B and is waiting for a
lock on A.
decryption
The reverse of encryption; making the encrypted information readable
again (usually requiring a key).
delete
A SQL statement for removing rows from a relational database.
denormalization
Undoing the effect of normalization; the process of putting one fact in
numerous places in the database.
design reviews
A series of meetings wherein all aspects of the database and application
code are reviewed for efficiency, effectiveness, and accuracy.
dimension
In a data warehouse, a data element that categorizes each item in a data set
into nonoverlapping regions.
dirty data
Data that is incorrect, out-of-date, redundant, incomplete, or formatted
incorrectly.
disaster
Any event that has a small chance of transpiring, a high level of
uncertainty, and a potentially devastating outcome.

disaster recovery
The process and planning involved in recovering a data center from a
disaster.
distributed processing
The use of multiple computers to fulfill a service request.
DML
See Data Manipulation Language.
domain
Defines the universe of valid values for a data element.
DSNZPARM
System configuration parameters for mainframe DB2 subsystems.
DSN1COPY
A DB2 utility enabling database files to be copied outside the control of
the DBMS.
durability
Refers to the impact of an outage or failure on a running transaction. A
durable transaction will not impact the state of data if the transaction ends
abnormally. The data will survive any failures (the D in ACID).
dynamic SQL
SQL queries that are not preprocessed and whose access paths are
determined at run time right before execution.

E
encapsulation
(1) A language mechanism for restricting access to some of an object’s
components. (2) A language construct that facilitates the bundling of data
with methods (or other functions) operating on that data.
encryption
The process of transforming data using an algorithm (called a cipher) to
make it unreadable to anyone except those possessing special knowledge,
usually referred to as a key.

enterprise data model
A single data model that comprehensively describes the data needs of the
entire organization.
entity
Something that exists and is capable of being described. It is a person,
place, thing, concept, or event about which your organization maintains
facts.
entity integrity
The most basic level of data integrity provided by relational databases
stating that each occurrence of an entity must be uniquely identifiable.
entity-relationship (E/R) diagram
An E/R diagram graphically depicts the entities and relationships of a data
model.
ETL
Shorthand for extract/transform/load, describing a category of tools used
for populating data warehouses.
exclusive lock
The type of lock taken by the DBMS when data is modified to prohibit
other processes or users from reading or modifying the same data.
explain
Command (DB2, Oracle) used to externalize the access paths chosen by
the relational optimizer.
expression
An instruction to execute something that will return a value.

F
fact table
A central table in a dimensional model that contains numerical measures
and key facts relating to dimension tables.
fallback
The process of returning to a prior release of software after having updated
to a new release.

fat client
A client/server processing model in which significant functionality resides
on the client computer.
field
An attribute implemented on a screen or flat file record.
fifth normal form (5NF)
Specifies that every join dependency for the entity must be a consequence
of its candidate keys.
first normal form (1NF)
An entity is in first normal form if and only if all underlying domains
contain atomic values only.
FISMA
Federal Information Security Management Act, also known as the E-
Government Act. Governmental regulation stating that federal agencies,
contractors, and any entity that supports them must maintain security
commensurate with potential risk.
fixpack
A grouping of software patches that can be applied as a whole (as opposed
to individually) to correct bugs and security vulnerabilities.
flat file
Plain text file wherein each line of the file holds one record, typically with
fields separated by delimiters, such as commas or tabs.
foreign key
An attribute or set of attributes that identify relationships between entity
occurrences.
fourth normal form (4NF)
An entity is in fourth normal form (4NF) if and only if it is in 3NF and has
no multiple sets of multivalued dependencies.
function
A predefined algorithm supported by the DBMS for converting,
manipulating, or calculating data based upon input. Functions can be used
within SQL statements any place an expression can be used.

G
GDG (generation data group)
A type of file structure used on mainframe systems in which a group of
data sets are related to each other (chronologically and functionally) and
share a unique data set name. Every GDG data set has a generation and
version number assigned to it.
gigabyte (GB)
A billion bytes of storage; 1,000 megabytes (MB).
GLB
Gramm-Leach-Bliley Act, also known as the Financial Modernization Act
of 1999. A federal law enacted in the United States to control the ways that
financial institutions deal with the private information of individuals.
governance
Consistent management, cohesive policies, guidance, processes, and
decision rights for a given area of responsibility. For example, corporate
governance can involve policies on privacy, internal investment, and the
use of data.

H
hashing
A technique that transforms a key value via an algorithm to a physical
storage location to enable quick direct access to data. The algorithm is
typically referred to as a randomizer, because the goal of the hashing
routine is to spread the key values evenly throughout the physical storage.
heterogeneous
Relating to the uniformity or lack thereof in a system. A system that is
homogeneous is uniform in composition or character; one that is
heterogeneous lacks uniformity in at least one of these qualities. For
example, an application that uses both Oracle and DB2 would be said to be
heterogeneous.
hierarchical
An arrangement of items (objects, names, values, categories, etc.) in which

the items are represented as being “above,” “below,” or “at the same level
as” one another. In database parlance, a DBMS is said to be hierarchical if
the relationships among data in the database are established such that one
data item is present as the subordinate of another one.
HIPAA (Health Insurance Portability and Accountability Act)
Governmental regulation specifying that health care providers must protect
individuals’ health care information.
HTML (HyperText Markup Language)
The primary markup language for Web pages.

I
IDE (Integrated Development Environment)
A software application that provides comprehensive facilities to computer
programmers for software development.
identity property
A feature supported by several popular relational DBMS products. When
the identity property is assigned to a column, the DBMS treats that column
as a store for automatically generated incremental values. The user does
not provide values for the column when rows are inserted into the table;
the DBMS generates them instead.
incremental backup
A database backup containing only the data that has changed since the last
full backup or incremental copy was made.
index
A physical database object used to quickly access data in a database.
information
Data with additional context in the form of metadata, including definition
and relationships between data and possibly other information. Data in
context with metadata makes information.
infrastructure
The equipment, systems, software, and services used in common across an
organization, regardless of mission/program/project.

insert
The SQL statement used to add data to a table.
instance
(1) An occurrence of an entity. (2) The implementation of a database
server (e.g., an Oracle instance).
instantiate
To create an instance of a software object or database row.
intent lock
A type of lock placed on higher-level database objects when a user or
process acquires locks on data pages or rows. An intent lock stays in place
for the life of the lower-level locks.
isolation
A property of transactions meaning that multiple transactions can run at the
same time. Any transactions running in parallel have the illusion that there
is no concurrency. In other words, it appears that the system is running
only a single transaction at a time. To achieve isolation, a locking
mechanism is required (the I in ACID).
isolation level
Specifies the locking behavior for a transaction or statement. The higher
the isolation level, the stricter the locking protocol becomes. Examples
include UNCOMMITTED READ, COMMITTED READ, REPEATABLE
READ, and SERIALIZABLE.

J
Java Database Connectivity (JDBC)
A call-level interface (CLI) to allow Java programs to interact with
databases. Can be thought of as ODBC for Java programs.
join
An operation in which the data from two tables is combined into a larger
results table based on shared data values in each table.
JVM
Java virtual machine.

J2EE (Java 2 Platform, Enterprise Edition)
A set of coordinated specifications and practices that together enable
solutions for developing, deploying, and managing multitier enterprise
Java applications.

K
key
The attributes that identify entity occurrences and define relationships
between entities.
kilobyte (KB)
A thousand bytes of storage.
knowledge
The fact or condition of knowing something with familiarity gained
through experience or association. Knowledge adds understanding and
retention to information.

L
label-based access control (LBAC)
A form of fine-grained database security allowing control over who can
read and write to individual rows and columns.
lock
A DBMS function used to ensure the integrity of data. When a database
resource is locked by one process, another process is not permitted to
change the locked data. Locking is necessary to enable the DBMS to
facilitate the ACID properties of transaction processing.
lock escalation
The process of increasing the lock granularity for a process or program.
log
A collection of records describing the sequence of events that occur during
DBMS execution to be used for database recovery in the event of a DBMS
failure.
logical data model

A detailed data model consisting of fully normalized entities with all
attributes defined. Furthermore, the domain or data type of each attribute
must be defined, along with a primary key for each entity. A logical data
model should be a complete document from which a physical database can
be developed.
log off-loading
The process of moving active log data to an archive log (either on disk or
on tape) when the active log file fills up and the log records must be
retained.
log writer (LGWR)
An Oracle process that manages the redo log buffer.

M
many-to-many relationship
A link between two entities in which the cardinality of both sides of the
relationship is multiple.
megabyte (MB)
A million bytes of storage; 1,000 kilobytes (KB).
memory
Data storage in the form of chips.
messaging queuing
A form of data movement whereby data, in the form of messages, is placed
onto a queue by one application or process and is read from a queue by
another application or process.
metadata
The simplest definition of metadata is “data about data.” To be a bit more
precise, metadata describes data, providing information such as type,
length, textual description, and other characteristics.
middleware
Software that connects two otherwise separate applications.
multidimensional data
Cubed data used in OLAP and data warehousing; the data consists of

numeric facts categorized by dimensions for analytical querying.

N
NAS (network-attached storage)
Refers to storage that can be accessed directly from the network. With
NAS, hosts or client systems can read and write data over a network
interface.
.NET
A Microsoft framework for program development providing a
comprehensive platform for the construction, deployment, and
management of applications.
normalization
The process of organizing data to minimize redundancy and remove
ambiguity. In simple terms, normalization is the process of identifying the
one best place each fact belongs.
null
Represents missing or unknown information at the attribute (or column)
level. If an attribute (or column) “value” can be null, it can mean one of
two things: The attribute/column is not applicable for certain occurrences
of the entity, or the attribute applies to all entity occurrences, but the
information may not always be known. It could be a combination of these
two situations, too.

O
object
A structure consisting of data and methods together with their interactions.
An object is not just data, but the encapsulation of its state (data) and
behavior (methods).
object oriented
A programming paradigm that relies on objects (see object) to design
applications and computer programs.
object relational
Originally intended as a merging of object-oriented technology with

relational, but in general practice simply refers to a DBMS that supports
large multimedia data types and gives users the ability to define their own
data types and functions.
occurrence
An instance of an entity.
ODBC (Open Database Connectivity)
A call-level interface (CLI) for interacting with databases. ODBC provides
routines to allocate and deallocate resources, control connections to the
database, execute SQL statements, obtain diagnostic information, control
transaction termination, and obtain information about the implementation.
one-to-many relationship
A link between two entities in which the cardinality of one side of the
relationship is one and the other is multiple.
one-to-one relationship
A link between two entities in which the cardinality of both sides of the
relationship is one.
online analytical processing (OLAP)
A type of computer processing that provides analysis of data stored in a
database. OLAP tools enable users to analyze different dimensions of
multidimensional data.
online transaction processing (OLTP)
A type of computer processing in which the computer responds
immediately to user requests. Each request is a transaction. The opposite of
transaction processing is batch processing.
OO
Object oriented or object orientation.
Open Database Connectivity (ODBC)
A standard database access technology developed by Microsoft, the
purpose of which is to allow accessing any DBMS from any application,
regardless of which DBMS is managing the data.
operating system
The control program that enables a computer to function. An operating

system performs basic tasks, such as recognizing keyboard input, sending
output to the screen, keeping track of files and directories on disk, and
controlling peripheral devices such as disk drives and printers.
operational data store (ODS)
A database designed to integrate data from multiple sources for additional
operations on the data.
optical disc
A flat disc that encodes binary data (bits) in the form of pits (binary value
of 0 or off, due to lack of reflection when read) and lands (binary value of
1 or on, due to a reflection when read) on a special material (often
aluminum) on one of its flat surfaces. Examples include CDs and DVDs.
optimizer
The component of a relational database system responsible for analyzing
SQL queries and producing optimal access paths for retrieving data from
the database.
optionality
In data modeling, whether relationships are mandatory or optional is
commonly referred to as the optionality of the relationship.
ORM (object-relational mapping)
Whereby an object’s attributes are stored in one or more columns of a
relational table.

P
Pareto Principle
The general observation that a small amount of effort can derive a great
amount of rewards. Also known as the 80/20 rule because it often is stated
as 80 percent of the results come from 20 percent of the effort.
partition
(1) A subset of a database file. (2) A physical operating system storage
area that bypasses the file system.
password
A secret word or string of characters used for authentication, to prove

identity or to gain access to a resource.
PCI DSS (Payment Card Industry Data Security Standard)
Industry regulation developed by the major credit card companies to help
prevent credit card fraud, hacking, and other security issues.
physical data model
The logical data model transformed into a physical implementation using a
specific DBMS product (e.g., DB2, Oracle, SQL Server, etc.).
predicate
A statement that can be evaluated as true or false, such as a WHERE
clause of a SQL statement.
primary key
The attribute, or set of attributes, that is used to uniquely identify an
occurrence of the entity. Each entity must have one and only one primary
key.
privilege
An action or capability, such as table access, that can be granted to users of
the DBMS.
proactive
Engaging in corrective behavior or activity in advance of experiencing a
problem.
process monitor (PMON)
An Oracle background process that performs cleanup when a user process
fails with an error condition.
program global area (PGA)
Basic memory structure for Oracle processes used as a work area.
propagation
The distribution of data from one or more source databases to one or more
target databases, according to predefined rules.

Q
query

(1) A SQL SELECT statement written and issued against a database. (2)
To request data from a database.

R
RAID (Redundant Array of Independent [or Inexpensive] Disks)
A category of disk drives that employ two or more drives in combination
to deliver fault tolerance and improved performance.
reactive
Engaging in corrective behavior or activity only after experiencing a
problem.
read efficiency
A formula for calculating the efficiency of a data cache (or buffer pool). It
is calculated as the number of actual I/Os performed subtracted from the
total number of data requests, then divided by the total number of data
requests.
record
The physical representation of data about an instance in a flat file.
recovery
The restoration of a database to its state as of a previous point in time,
usually in response to a hardware or software failure.
recovery time objective (RTO)
An expression of the amount of time a business will tolerate the computing
system (hardware, software, DBMS, services) to be offline.
redo log files
A record of changes made to data used in recovery scenarios (Oracle).
referential constraint
A specification whereby the DBMS forces the values of a foreign key of
one table to contain either null, or existing primary key values of another
(or perhaps the same) table.
referential integrity (RI)
Through the specification of appropriate referential constraints, RI
guarantees that an acceptable value is always in each foreign key column.

regulatory compliance
The act of meeting the requirements of governmental legislation or
industry mandates.
relational closure
The feature of relational database systems whereby every operation
performed on a relational database operates on a table (or set of tables) and
results in another table.
relational model
A database model based on first-order predicate logic, first formulated and
proposed in 1969 by Edgar F. Codd (IBM). Most of today’s popular
DBMS offerings are loosely based on the relational model.
relationship
Defines how different entities are associated with each other. A
relationship is defined by the keys: the primary key in the parent entity and
the foreign key in the dependent entity.
release
A release represents a unique state of software. A release is typically
minor, with fewer changes and not as many new features as a version.
reliability
The ability for a component (server, application, database, etc.) or group of
components to consistently perform its functions.
remote procedure call (RPC)
A mechanism for invoking a service on another platform.
replication
The copying of data from a data source to one or more target environments
based on rules.
repository
A store of information about the data assets of an organization.
RMAN
Database system software for managing the backup and recovery of Oracle
data.

role
(1) Name used to refer to the logical set of related responsibilities
assignable to a person or organization, and to parties with these assigned
responsibilities. (2) A database security mechanism used to grant one or
more preassigned privileges to a user.
roll back
To undo the database statements performed prior to a commit of the
transaction.
row
A set of column values describing one logical instance in a table.
RTO
See recovery time objective.

S
SAN (storage area network)
Generally refers to an interconnected network of storage devices.
Sarbanes-Oxley (SOX)
The Sarbanes-Oxley Act, officially known as the U.S. Public Company
Accounting Reform and Investor Protection Act of 2002. Governmental
regulation with the goal of reducing fraud and conflicts of interest,
improving disclosure and financial reporting, and strengthening confidence
in public accounting.
scalability
The ability to increase or decrease size or capability in cost-effective
increments with minimal impact on the unit cost of business and the
procurement of additional services.
scan
The process of reading all the rows in a table (or tablespace) to satisfy a
query (as opposed to indexed access).
schema
(1) The logical or physical definition of data elements, physical
characteristics, and relationships. (2) The diagram representing a logical

data model.
second normal form (2NF)
An entity is in second normal form if and only if it is in first normal form
and every non-key attribute is fully dependent on the key.
security
The prevention of unauthorized access to a database and its data, and to
applications that have authorized access to databases.
select
A SQL statement for specifying data retrieval operations for a relational
database.
service-level agreement (SLA)
A contracted guarantee of service delivery for a program, transaction,
service, or workload.
service-level management (SLM)
The disciplined, proactive methodology and procedures used to ensure that
adequate levels of service are delivered to all IT users in accordance with
business priorities and at acceptable cost.
service-oriented architecture (SOA)
An application architecture in which all functions, or services, are created
with invokable interfaces that are called to perform business processes.
shared disk
A form of clustering in which all of the connected systems share the same
disk devices.
shared lock
The type of lock taken by the DBMS when data is read with no intent to
update it.
shared nothing
A form of clustering in which each system has its own private resources
(memory, disks, etc.).
SHOWPLAN
Command (SQL Server, Sybase ASE) used to externalize the access paths

chosen by the relational optimizer.
Simple Object Access Protocol
See SOAP.
SOAP (Simple Object Access Protocol)
A protocol specification for exchanging structured information in a Web
services implementation.
solid-state drive (SSD)
A data storage device that uses solid-state memory to store persistent data.
SOX
See Sarbanes-Oxley.
SQL
Originally an initialization of Structured Query Language but now stands
on its own. Pronounced “sequel” or “ess-cue-el,” SQL is the de facto
standard language for accessing relational databases.
SQL injection
A form of Web hacking whereby SQL statements are specified in a Web
form to expose data to the attacker.
standby database
An identical copy of an online production database that is close to being
up-to-date in terms of its data content. When a failure occurs, control is
transferred to the standby database, which is then opened as the online
production database to allow normal activity to continue.
star schema
A common form of a dimensional data model, where a fact table is directly
linked by foreign keys to several dimension tables.
static SQL
SQL queries that are preprocessed and whose access paths are determined
during the bind procedure, prior to execution.
stored procedure
A precompiled routine or program stored within the DBMS and executable
using DBMS commands.

system global area (SGA)
A group of shared memory structures for Oracle database instances that
contain data and control information.
system monitor (SMON)
An Oracle background process that provides instance recovery during
start-up.

T
table
A two-dimensional arrangement of data into rows and columns.
tablespace
A structure or database object used by some DBMS products for storing
and organizing database tables.
TCO
See total cost of ownership.
temporal
Having to do with time.
terabyte (TB)
A trillion bytes of storage; 1,000 gigabytes (GB).
thin client
A client/server processing model in which only limited functionality
resides on the client computer.
third normal form (3NF)
An entity is in third normal form if and only if it is in second normal form
and every non-key attribute is nontransitively dependent on the primary
key.
tier
A level of separation of computing responsibility.
time-out
After a process waits for the predetermined amount of time (usually
dictated by a system parameter), it is canceled. Time-outs typically are

associated with waiting for a lock to be granted.
total cost of ownership (TCO)
The cost to own, implement, and maintain a product throughout its life.
TPC
The Transaction Processing Performance Council, or TPC, is an
independent, not-for-profit organization that manages and administers
performance benchmark tests.
traffic
In network operations, the number of packets traversing the network.
transaction
An atomic unit of work with respect to recovery and consistency.
trigger
An event-driven specialized procedure that is attached to database tables;
typically implemented to support data integrity requirements.
two-phase COMMIT (2PC)
A feature of transaction processing systems that enables a database to be
returned to the pretransaction state if an error condition occurs.
tuple
A set of elements; the formal mathematical term for a row in a relational
table.

U
union
A SQL function that concatenates the results of two SELECT statements
with consistent column structures into a single answer set.
unit of work (UOW)
A series of processes, instructions, and messages that, when executed,
guarantee data integrity. It is important that transactions operate in terms of
units of work whereby either all, or none, of the processes are performed to
completion.
update

(1) A SQL statement for modifying data within a relational database. (2) A
general term referring to any change made to a database.
update lock
The type of lock taken by the DBMS when data must be read first before it
is modified. The update lock indicates that the data may be modified or
deleted in the future. If the data is actually modified or deleted, the DBMS
will promote the update lock to an exclusive lock.
user
Person or role recognized and authorized to access a particular application
or database resource.
user-defined data type (UDT)
Configurable data type added to the DBMS to be used like built-in data
types.
user-defined function
Extensible code added to the DBMS to be callable like built-in database
functions.

V
value
A data abstraction assigned to a single attribute representing a fact.
version
A version represents a unique state of software. A new version of software
is a major concern, with many changes and new features. Contrast with
release.
view
A virtual table, defined as a SQL SELECT statement, to provide a subset
of data from one or more tables.

W
workload
The amount of work performed or capable of being performed by a system,
usually within a specific period of time.

X
XML (eXtensible Markup Language)
A markup language, like HTML, that is based on SGML (Standard
Generalized Markup Language). HTML uses tags to describe how data
appears on a Web page. It is commonly used in Web applications to
describe data.
XQuery
A query language for retrieving data from an XML document or XML
database.

Z
zap
Utility or command for modifying data at the byte (or bit) level; usually
used to resolve system problems such as incorrect pointer values.
z Series
IBM’s mainframe computing hardware.

Index

NOTES:
Page numbers ending with an italic f (e.g. 192f) indicate tables or figures.
Numbers containing a lowercase n (e.g. 301n or 432n.5) indicate a footnote.
24/24 availability, 270–271
80/20 (Pareto) rule, 302
99.999% availability, 273–274
100 Year Archive Requirements Survey, 503n

A
Abbreviations, standards for, 96
Absolute positioning, 383–385
Access (Microsoft), 767
Access paths, 187
Accessibility, DBA to coworkers, 745
Accessing data. See Data access.
Accounts. See Logins.
ACID (atomicity, consistency, isolation, and durability) properties, 205–206
Acquire/release specification, 218
Actian Corporation, 764
Active databases, 426
Active metadata sources, 690
Actuate, 773
Adabas (Software AG), 764
Adaptive Ltd., 772
Adaptive Server Enterprise, 64
AD/Cycle (IBM), 695
Adding objects. See ALTER statements.
Adelphia, 485
Adjectives as

attributes, 116, 124

entities, 115
Adjust tables, data page layouts, 592
ADLC (application development life cycle), 9–10, 12
ADO.NET, 194–195
Advanced analytics, 269–270
AES (Advanced Encryption Standard), 472
Agile Modeling, 783
“Airline magazine” syndrome, 266
ALL privileges, 458–459
Allen Systems Group, 770, 772
Allied agents, 321–322
Allocation pages, data page layouts, 589
Allocation units, data page layouts, 589
ALLOW UPDATES parameter, 345
ALTER statements

changing database structures, 250–252, 252–253
changing management, 701–703
limitations, 252–253
purpose of, 250–252

ALTER TABLE statements, 436–437
AlwaysOn features, 285
Analytical processing versus transaction processing, 638–640
Analytics

advanced, 269–270
availability requirements, 268–270
benefits of, 269
DBA rule of thumb, 741–742
tools for, 721–724

ANSI Web site, 782
APIs, SQL, 192–193
Applets, 196–197
Application DBA, 34–35
Application development life cycle (ADLC), 9–10, 12

Application Security, 770
Application servers, 209–210, 664
Application time, 179–180
Applications. See also Database applications.

availability problems, 279–280
backing up, 516–517
code, design review, 238
complexity, upgrading the DBMS, 88
criticality of, ranking, 562–563
DBA staffing requirements, 38–39
development standards, 100
infrastructure design, 193–194
integration, 624–625
Java, 196–197
performance, 312, 711–713. See also Relational optimization; SQL
tuning.

Approach (Lotus), 767
Aquafold, 770
Archiving database logs, 77–78, 339, 529. See also Backup.
Archiving databases

100 Year Archive Requirements Survey, 503n
data life cycle, 499–500
definition, 500
e-discovery, effects on DBA, 506–507
hardware independence, 503–505
hardware obsolescence, 504
overview, 500–505
versus purging databases, 501
requirements, 503–505
software independence, 503–505
system components, 505–506

Archiving databases, data retention
overview, 498

scope, determining, 501–503
Associative entities, 127
Atomicity

definition, 758
transactions, 205–206

Atomicity, consistency, isolation, and durability (ACID) properties, 205–206
Attributes

adjectives as, 116, 124
data types, 116
definition, 115
discovering, 124–125
domains, 116
missing values, 119–120
naming conventions, 116–119
nouns as, 124
nulls, 119–120
prepositional phrases as, 124
purpose, 115–116
transforming to columns, 142–143
values, 119

Auditing
security, 477–478
tools for, 717–719

Auditing databases
common questions, 495
comprehensive methods, 494
data access tracking, 490–493
guidelines, 492–493
log-based auditing, 493–495
network sniffing, 494–495
noninvasive methods, 494
overview, 490–493
parsing database logs, 493–495

privileged users, 495–496
regulatory requirements, 491
selective methods, 494
tapping requests, 494–495
techniques for, 493–495
trace-based auditing, 493–495

Authentication, 452
Authority. See also Privileges; Security.

LBAC (label-based access control), 463–465
Authority, granting privileges

centralized administration, 457
database object privileges, 459
DCL (Data Control Language), 456–457
decentralized administration, 457
overview, 456–457
procedure privileges, 460
program privileges, 460
to PUBLIC authority, 460–461
system privileges, 459–460
table privileges, 458–459
types of privileges, 457–458. See also specific types.

Authority, revoking privileges
cascading REVOKEs, 462, 468
chronology and REVOKEs, 462–463
overview, 461

Authorization. See also Privileges; Security.
availability problems, 280
database administration tasks, 24–25
database administrator, 467
database maintenance, 467
for groups, 468
operations control, 467
for roles, 466, 468

security administrator, 467, 468
system administrator, 467

Automatic summary tables, 652–653
Automation

change management, 245
DBA functions, for availability, 290–291
DBA rule of thumb, 737–739

Autonomy, distributed databases, 626
Availability. See also Downtime.

“airline magazine” syndrome, 266
change management, 246
components of, 267–268
database administration tasks, 24
DBA staffing requirements, 38
definition, 267
versus downtime, 273
driving factors, 266–267
“fast food” mentality, 266
Internet databases, 676–677
Internet time, 266
manageability, 267
overview, 265–267
versus performance, 267
recoverability, 267
reliability, 267
response time, 266
serviceability, 268

Availability, ensuring
automating DBA functions, 290–291
clustering technology, 292–295
database architecture, 296
DB2 Data Sharing, 295
high-availability features, 291

load balancing, 293
nondisruptive utilities, 288–289
NoSQL, 296
online database reorganization, 288–289
performing routine maintenance, 288–289
recommended strategy, 287

Availability, problems
application problems, 279–280
authorization problems, 280
cluster failover techniques, 276
data corruption, 280–281
data replication and propagation failures, 283
DBA mistakes, 284, 286
DBMS software failure, 279
disk outages, 278
human error, 284, 286
loss of data, 282–283
loss of database objects, 281–282
loss of entire database, 277
loss of the data center, 274–275
maintenance outages, 286–287
network problems, 275
operating system failure, 279
planned outages, 286–287
recovery issues, 284
SAN failure, 278
security problems, 280
server hardware failure, 276
server performance, 283–284
standby systems, 276, 277
system memory failure, 276
unplanned outages, 286–287

Availability, requirements

24/24, 270–271
across time zones, 270–271
advanced analytics, 269–270
analytics, 268–270
business intelligence, 268–270
data warehousing, 270
decision support, 268–270
five nines, 273–274, 292
full time, 270–271
IT complexity, 271
maintenance window, 268
MTBF (mean time between failure), 273–274
overview, 268

Availability, tools. See also Standby databases.
AlwaysOn features, 285
Database Definition on Demand, 289–290
DB2 HADR (high-availability disaster recovery), 285
RAC (Real Application Clusters), 294
REORG, 288–289

B
Bachmann E/R method, 112
Background processes, 326
Backup. See also Archiving; Disaster planning; Recovery.

application failure, 516–517
concurrent access issues, 525–527
COPY utility, 525
data movement, 535
data warehouse, 656–657
database administration tasks, 26–27
database failure types, 516–517
database logs, 529
database objects, 523–524

DBMS control, 524–525
differential, 521
documenting your strategy, 536
DSN1COPY utility, 552
frequency, determining, 518
full image copy, 521–523
heterogeneous database migration, 534–535
hot versus cold, 527
image copies, guidelines, 519–520
importance of, 515–516
incremental, 521–523
indexes, 524
instance failure, 516–517, 533, 550
media failure, 517, 550
object definitions, 536–537
overview, 517–520
regulatory compliance, 508
release upgrades, 534
scheduling, 531–533
SQL Server transaction logs, 530
subsystem failure, 533, 550
tools for, 714–715
transaction failure, 516–517, 550

Backup, alternatives to
disk mirroring, 556–557
exporting data, 534–535
logical backups, 534–535
redundant data, 555–556
replication, 555–556
snapshot replication, 555–556
standby databases, 277, 554–555
storage management software, 535–536, 547
symmetric replication, 555–556

unloading data, 534–535
Backup, consistency

creating a recovery point, 528–529
definition, 29
overview, 527–528
quiesce point, 528
QUIESCE utility, 528

Backup files, data integrity, 411
BACKUP LOG command, 530
Batch processing, 221–222
Benchmarks, 65–66. See also Performance.
Big Data movement, 55–56
Big Three DBMS vendors, 762
BIND command, 477
Binding check constraints, 424
Bitemporal support, 179
Bitmap indexes, 155–156
Bitmaps, data page layouts, 589
Blind men and an elephant, 108
Block size, optimizing database performance, 364–365
Blocks, recovering, 553
Blogs, 780–781
BMC Software, 769
Booch, Grady, 113
Bradmark Technologies, 770
Bridge architecture drivers, 673
b-tree index, 154–155
Buffer pools, 78–79
Bulk data movement, 623–625. See also Distributed databases.
Bulk-logged recovery, 340, 540
Bunker Hill Corporation, 770
Business intelligence

availability, 268–270

tool vendors, 773
tools for, 721–724

Business Intelligence Network, 783
Business logic, 664–666
Business metadata, 689
Business service interruption, risk of, 561–563
Business time, 179–180
Business-critical applications, 562

C
CA Technologies, Inc., 770, 772
Cache

database log, 330
Internet structure, 330
memory usage, displaying, 413–414
procedure, 329–330, 335
program, 79
sort, 330
system performance, 328–330

Cache, data
definition, 78–79
system performance, 329–330, 332–335

Callable routines, 192
Candidate keys, indexes, 152
Candle Corporation, 770
Capacity planning, tools for, 313
Cardett Associates, 773
Cardinality, 112
Careers in DBA

DBAjobs.com, 782
demand for DBAs, 4
evaluating a job offer, 14–15
salaries, 4–6

sample job posting, 785–791
skill and knowledge requirements, 788–790
typical responsibilities, 786–788
workload, 6

Carnival blogs, 781
Cartesian products, 402
Cascading DROPs, 251, 701–703
Cascading REVOKEs, 462, 468
Cassandra, 56
Catalog query and analysis tools, 705–707
CDB Software, 770
CD/DVD storage, DBMS requirements, 77
Centralized data management model, 668
Centralized processing, 666–667
Certegy Check Services, Inc., 496
Certification

and job performance, 57
overview, 56–58
sources of, 58

Change management
automation, 245
availability, 246
checklists, 260
coordinating databases with applications, 260–261
DBA scripts, 262
free space, changing, 255–256
impact analysis, 245
indexes, recreating, 257n
intelligence, 245
overview, 243–244
perspective of the DBA, 246–247
planning analysis, 245
proactivity, 245

quick, efficient delivery, 246
reasons for change, 244
regulatory compliance, 261–262, 508
reliable, predictable processes, 246
requesting changes, 258–260
sample scenarios, 254–257
standardized procedures, 245
success factors, 244–246
tools for, 254, 701–703

Change management, database structures
adding columns, 255, 256. See also ALTER statements.
ALTER statements, 250–252, 252–253
cascading DROPs, 251
changing objects, 250–252
comparing structures, 257–258
CREATE statements, 250–252
creating objects, 250–252
in database change management, 250–253
DROP statements, 250–252
dropping objects, 250–252
overview, 250–252
removing objects. See DROP statements.

Change management, types of change
applications, 249–250
DBMS software, 248
hardware configuration, 248
logical design, 248–249
overview, 247
physical database structures, 250
physical design, 248–249

Change requests, 258–260
Check conditions, 420
Check constraints

benefits of, 420–421
binding, 424
check conditions, 420
constraint names, 420
definition, 28, 419
examples, 421–423
nulls, 423–426
versus referential integrity, 441–442
relational nulls, 423–426
rules, 424
semantic data integrity, 419–426

CHECK utility (DB2), 411
CHECKALLOC option, 413
CHECKCATALOG option, 413
CHECKDB option, 413
CHECKFILEGROUP option, 413
Checkpoint/restart, tools for, 725
CHECKTABLE option, 412
Chen E/R method, 112
Child tables, referential integrity, 433–434
CKPT (checkpoint) process, 326
Client computers, 665
Client-based drivers, 673
Client/server computing. See also Database connectivity; Network traffic.

application servers, 664
applications, types of, 667–670
business logic, 664–666
centralized data management model, 668
centralized processing, 666–667
client computers, 665
cooperative processing, 667
database management systems, 664–666
database servers, 664

decentralized user presentation model, 668
definition, 663, 665
distributed data management model, 668–669
distributed processing, 666–667
distributed user presentation model, 667–668
distributing tasks across a network, 668
fat clients, 670
file servers, 664
multitier implementation, 669–670
network traffic, 670–674
performance problems, 670–674
presentation logic, 664–666
print servers, 664
recommended hardware, 666
server computers, 665–666
software layers, 664–666
thin clients, 670

Cloud computing, effect on DBAs, 53–55
Cloud database systems, 74–75
Cluster failover techniques, 276
Cluster ratios, 369
Clustering. See also Interleaving data.

definition, 71, 94
indexes, 159–160
optimizing database performance, 356–358
shared-disk, 72
shared-nothing, 71–72
standards, 94
technology for availability, 292–295
types of, 71–72

COBIT, 509–510
CODASYL (Conference on Data Systems Languages), 754–755
Codd, E. F., 128

Code
design review, 238
memory usage, displaying, 413

Code generators
creating SQL, 191–192
SQL tuning, 405

Cogit, 770
Cold backup, 527
Column-oriented data models, 756
Columns

adding, 251, 255, 256
constraints, 144
deleting, 251
fixed-length, 144
identity property, 145
nullability, specifying, 144
ordering, 146
transforming attributes to, 142–143
unique identifiers for, 145
variable length, 144

COM, SQL, 193
Combined tables, optimizing database performance, 356
COMMIT statements

batch processing, 221–222
saving transaction changes, 205
SQL tuning, 404–405
two-phase, 631

COMMITTED READ isolation, 216–217
Communications, standards, 98
Compliance, tools for, 716–721
Comprehensive auditing methods, 494
Compression

data warehouse, 644

database design, 149–150
disaster planning, backup, 575
optimizing database performance, 361–362
performance tuning, 314
tools for, 726–727

Computer Associates, 773
Computer Associates International, 771
Compuware Corporation, 770
Conceptual data modeling, 125–128
Conceptual design review, 233–235
Concurrency, unloading data, 619
Concurrency control, purpose of, 758
Conference on Data Systems Languages (CODASYL), 754–755
config.ora file, 325
Configuring the DBMS. See also Installing the DBMS; Upgrading the
DBMS.

default parameters, 80
performance tuning. See System performance, DBMS installation and
configuration.
system parameters, 80

Confio Software, 770
Connection pooling, 674
Connectivity. See Database connectivity.
Consistency, transactions, 206
Consistency checking, 412–413
Constraint names, 420
Constraints

check, 28
columns, 144
data integrity, 28
enforcing while loading data, 615
referential, 28
unique, 28

Consultants, Web sites, 779–780
Consumption sources, 330–331
Contention

performance factor, 301
performance monitoring and tuning, 23
system performance, 341–342

Contingency planning. See Disaster planning.
Control files, 325
Converting data types while loading data, 616
Cooperative processing, 667
COPY utility, 525
Copying data. See also Loading data; Unloading data.

bulk data movement, 623–625
EXPORT utility, 622–623
IMPORT utility, 622–623
to multiple databases. See Distributed databases.

CoSort/IRI, 773
Cost-based optimization versus rule-based, 344
Costs of

CPU, relational optimization, 376
of data breaches, 450
I/O, relational optimization, 376
ownership, 67
performance, across the ADLC, 307
poor data quality, 488, 489
regulatory compliance, 485
regulatory non-compliance, 488
upgrading the DBMS, 84, 85

CouchDB databases, 56, 766
CPU parallelism, 391
CREATE statements, 250–252
CREATE TABLE statements, 436–437
Creating objects. See CREATE statements.

Critical applications, 562–563
Criticality of data, ranking, 562–563
Cursor, SQL, 190
Cursor stability, 216–217

D
DA (data administration), 15–18, 19
DAMA (Data Management Association), Web site, 783
Darwin Professional Underwriters, 450
Data. See also Backup; Disaster planning; Recovery.

abstraction levels, DBMS, 757
breaches, 449–450
cleansing, 645–649
compression, 644
content, 654
corruption, 280–281
definition, 686
dictionaries, 695–696
encryption. See Encryption.
freshness, 654
independence, 757
latency, 574, 654
length, semantic data integrity, 417–418
moving. See Moving data.
placement, distributed databases, 629
privacy, policies and statutes, 11
profiling, 489, 719–720
protection, tools for, 716–721
quality, 488–489, 648. See also Data integrity.
rate of growth, 581
record layouts, data page layouts, 590
replication and propagation failures, 283
rows, data page layouts, 588–589

security, DBMS, 758
stewardship, 688
usage, 655

Data access
DBMS, 758–759
to noncurrent versions, 177–180
tracking, 490–493

Data administration (DA), 15–18, 19
Data Administration Newsletter, 782
Data administration standards, 98–99
Data and Technology Today blog, 781
Data Control Language (DCL), 456–457
Data Definition Language (DDL), 177, 250–252
Data Dictionary. See System catalog.
Data Encryption Standard (DES), 472
Data files, 325
Data governance. See also Regulatory compliance.

IT Governance Institute, 509
overview, 489–490
tools for, 716–721

Data Governance blog, 781
Data integrity. See also Data, quality.

backup consistency, 29
constraints, 28
data cleansing, 646
data warehouse, 646
database administration tasks, 27–29
DBMS, 758–759
index consistency, 29
pointer consistency, 29
problems, loading data, 615
types of, 409–410

Data integrity, database structure

backup files, 411
consistency checking, 412–413
database checking, 413
headers, 411
memory usage, 413–414
page header corruption, 411
problem management, 411–414
types of problems, 410–411
utilities for, 411–414

Data integrity, semantic
check constraints, 419–426
data length, 417–418
data types, 417–418
default values, 419
DQS (Data Quality Services), 415
entity integrity, 416–417
example, 28
overview, 414–415
primary key constraints, 416–417
triggers, 426–433
UDT (user-defined data types), 418–419
unique constraints, 417
unique entity identification, 416–417

Data life cycle, 499–500
Data Management Association (DAMA), Web site, 783
Data mart, 638
Data masking and obfuscation. See also Encryption.

definition, 496–497
encryption, 497
nulling out, 498
number and date variance, 497
shuffling, 497
substitution, 497

table-to-table synchronization, 498
techniques for, 497–498
tools for, 720

Data mining, 639
Data modeling

concepts, 108–113
conceptual, 125–128
DA (data administration), 17–18
DBA tasks, 33
definition, 107
enterprise data model, 109
E/R (entity relationship diagram), 110–113
homonyms, 118
importance of, 107
issues, 135–136
logical, 125–128
physical, 125–128
rules for, 110
synonyms, 118
tool vendors, 771–772
tools for, 700–701
types of, 125–128

Data modeling, components
attributes, 115–119
entities, 113–115
keys, 120–122
relationships, 122–123

Data models
CODASYL (Conference on Data Systems Languages), 754–755
column-oriented, 756
DBMS, 754–755, 756
definition, 754
denormalization, 163

hierarchical, 754–755
network, 754–755
NoSQL system, 756
object-oriented, 754–755
operations, 754
relational, 754–755
relations, 755
structure, 754

Data page layouts
allocation pages, 589
allocation units, 589
bitmaps, 589
data record layouts, 590
data rows, 588–589
header information, 592
index key values, 592
index page layouts, 592–594
offset and adjust tables, 592
offset tables, 588–590
overview, 588–589
page header, 588–589
page pointer, 592
row data, 590
row header, 590
row length, 592
sample, 589
space page map, 589
table size, calculating, 591–592
transaction logs, 594–595

Data resource management (DRM), 40–42
Data retention

DBA source materials, rule of thumb, 736–737
disaster planning backup, 571

Data sets. See Files and data sets.
Data spaces, database design, 148
Data types

attributes, 116
converting, while loading data, 616
semantic data integrity, 417–418

Data warehouse
administrators, 36–37
analytical versus transaction processing, 638–640
availability, 270
data mining, 639
definition, 637–638
design, 641–644
dimensions, 639
DSS (decision support systems), 639
facts, 639
Information Center, 640
metadata, 688
OLAP (online analytical processing), 639
OLAP versus OLTP, 640
tools for, 721–724

Data warehouse, administering
backup and recovery, 656–657
data cleansing, 645–649
data compression, 644
data content, 654
data freshness, 654
data integrity problems, 646
data latency, 654
data movement, 644–645
data quality issues, 648
data usage, 655
data warehouse design, 641–644

denormalization, 643
financial chargeback, 655–656
focus on technology, 641
identifying unused data, 655
meeting business requirements, 657
metadata, 654
operational problems, 648–649
overview, 640–641
purging data, 655
scalability, 649
size issues, 649
snowflake schema, 643
standardizing default values, 647
star schema, 641–643

Data warehouse, performance
automatic summary tables, 652–653
data management, 650
extract performance, 650
indexes, 651
materialized query tables, 652–653
materialized views, 653
monitoring, 652
perspectives on, 650
query performance, 650
server performance, 650

The Data Warehousing Information Center, 783
The Data Warehousing Institute, 783
Database administration. See also DBA (database administrator).

importance of, 3–4
management discipline, 9–14

Database administration tasks. See also specific tasks.
availability, 24
backup and recovery, 26–27

data integrity, 27–29
database design, 21–22
governance and regulatory compliance, 26
jack-of-all-trades, 29–31
performance monitoring and tuning, 22–23
security and authorization, 24–25

Database administrator (DBA). See DBA (database administrator).
Database applications, designing. See also Design review; SQL (Structured
Query Language); Transactions.

ADO.NET, 194–195
application infrastructure, 193–194
hardware environment, 193–194
issues, 186
J2EE (Java 2 Enterprise Edition), 195–196, 198
Java program types, 196–197
.NET framework, 194–195, 198
overview, 185–186
Ruby on Rails, 198
software environment, 193–194

Database architects, DBAs as, 32–33
Database connectivity. See also Client/server computing; Internet; Network
traffic; Web services.

application servers, 664
business issues, 662
client/server computing, 663–666
database servers, 664
downsizing, 662
file servers, 664
history of, 661–662
print servers, 664
rightsizing, 662
upsizing, 662

Database Definition on Demand, 289–290

Database design. See also Indexes; Views.
compression, 149–150
data spaces, 148
database administration tasks, 21–22
domains, transforming to data types, 143–144
for e-business, 677–680
entities, transforming to tables, 142
filegroups, 149
logical model to physical database, 141–150
overview, 141–142
physical data structure, 147–150
primary keys, 144
raw files, 149
referential constraints, 146–147
referential integrity, 146–147
row size, specifying, 148
storage requirements, 148
tablespaces, 148
temporal requirements, 177–180

Database design, columns
constraints, 144
fixed-length, 144
identity property, 145
nullability, specifying, 144
ordering, 146
transforming attributes to, 142–143
unique identifiers for, 145
variable length, 144

Database drivers, 672–674
Database environments. See also specific environments.

education, 101
integration testing, 101
multiplatform issues, 42–43

production versus test, 44–46
quality assurance testing, 101
unit testing, 101
user acceptance testing, 101

Database files, Oracle, 325
Database gateways, 671–672
Database ID. See Users, names.
Database logs

active, 529
archiving, 77–78, 339, 529
backing up, 529, 530
bulk-logged recovery, 340
configuring, 338–339, 340
DBMS, 758
definition, 336
disabling, 341
disabling while loading data, 617
disaster planning, backup, 570–571
filling up, 339
full recovery, 340
log archival process, 529
log off-loading, 339
log-based auditing, 493–495
“out of space” conditions, 339–341
placement for optimizing performance, 363
during recovery, 338, 340
recovery models, 340
selecting candidates for, 339–341
simple recovery, 340
system checkpoints, 337
system performance, 336–341
transaction logs, 336
types of information on, 337

write-ahead, 337
Database management system (DBMS). See DBMS (database management
system).
Database performance. See also Optimizing database performance;
Reorganizing databases; SQL tuning.

80/20 (Pareto) rule, 302
versus availability, 267
common problems, 302–304
contention, 301
cost, across the ADLC, 307
definition, 23, 300–302
diagnosing, 302–304
estimating, 307–308
guidelines, 315–316
historical trends, 308
main factors, 301–302
overview, 299–302
resources, 301
SLM (service-level management), 308–311
throughput, 301
tools for, 711
tracker tables, 308
tuning SQL, 303–304
workload, 301

Database performance, managing
analysis, 305
components of, 304–306
definition, 304–306
versus monitoring, 304–306
overview, 304–306
reactive versus proactive, 306

Database performance, monitoring
contention, 23

database administration tasks, 22–23
factors affecting, 22–23
resources, 22
throughput, 22
tools for, 313
workload, 22

Database performance, tuning
application, 312
caching, 314
capacity planning, 313
compression, 314
contention, 23
database, 312
database administration tasks, 22–23
estimation, 313
factors affecting, 22–23
monitoring, 313
reorganizing databases, 314
resources, 22
sorting, 314
SQL analysis and tuning, 313
system, 311
throughput, 22
tools for, 313–315
workload, 22

Database servers
definition, 664
hosting, 675
location, upgrading, 88

Database Site portal, 781
Database Trends and Applications, 779
Database views. See Views.
Database wire drivers, 674

Database writer (DBWR) process, 326
Database-coupled application logic, 46–50
Databases

architecture for availability, 296
change management. See Change management.
checking for data integrity, 413
comparison, tools for, 703–704
DBA staffing requirements, 37
versus DBMS, 7–8
definition, 7, 753–754
dropping, 250–252
links, 94
logic, managing, 46
maintenance, authorization, 467
management systems, 664–666
object privileges, 459
objects, backing up, 523–524
Oracle, 325
structures, comparing, 257–258
tools for. See Tools.
users, security, 455–456

DataBee, 771
Datanamic, 771
DB2 (IBM)

blogs, 780
IDUG (International DB2 User Group), 740, 783
nonstandard database objects, 94
vendor contact, 63
Web site, 778

DB2 Catalog. See System catalog.
DB2 Data Sharing, 295
DB2 EDM pools, 335
DB2 HADR (high-availability disaster recovery), 285

DBA (database administrator). See also Database administration.
authorization, 467
versus DA, 15–18, 19, 21
a day in the life of, 12–14
demand for, 4
description, 1–3
job scope, defining, 42–43
jobs. See Careers in DBA.
multiplatform issues, 42–43
reporting structures, 40–42
responsibilities, 12, 786–788
versus SA, 21
skill and knowledge requirements, 788–790
staffing, 37–40
standards and procedures, 98–99
tools for. See Tools, for DBAs.
typical responsibilities, 786–788
workload, 6, 12–14

DBA (database administrator), rules of thumb
accessibility to coworkers, 745
analysis, 741–742
automation, 737–739
being prepared, 743
calm in the face of adversity, 742–743
documenting your work, 735–736
effective use of resources, 745–746
focus, 741–742
investing in professional advancement, 747–748
retaining source materials, 736–737
sharing knowledge, 739–741
simplification, 741–742
technical education, 746–747
Twitter, as a resource, 741

understanding your business, 743–745
user group associations, 740

DBA (database administrator), types of
application, 34–35
data modeler, 33
data warehouse administrator, 36–37
database analysts, 33
database architects, 32–33
performance analysts, 36
system, 31–32
task-oriented, 36
technical focus versus business, 31–32

DBA Direct, 779
DBAjobs.com, 782
dBase, 767
DBCC utility, options, 412–414
DBE Software, 771
DBI Software, 771
dbMaestro, 771
DBMS (database management system)

architectures, 68–71
atomicity, 758
availability problems, 279
buying. See Vendors, DBMS.
clustering. See Clustering.
concurrency control, 758. See also Locking.
data abstraction levels, 757
data access, 758–759
data independence, 757
data integrity, 758–759
data models, 754–755, 756
data security, 758
versus database, 7–8

database logging, 758
definition, 8, 753–754
departmental architecture, 70
durability, 758
enterprise architecture, 69
mobile architecture, 70
organizational strategy. See Strategies for DBMS.
personal architecture, 70
proliferation, 73
upgrading, 87–88
vendors. See Vendors, DBMS.

DBWR (database writer) process, 326
DCL (Data Control Language), 456–457
DDL (Data Definition Language), 177, 250–252
Deadlock detection, 341
Deadlocks, 214–215, 342
Debugging, tools for, 726
Decentralized user presentation model, 668
Decision support, availability, 268–270
Decision support systems (DSS), 639
Defragmenting indexes, 413
DELETE privileges, 458–459
DELETE rule, 435–436
DELETE statements

modifying temporal data, 180
in triggers, 429

DELETE trigger, 438–441
Deleting objects. See also DROP statements.

columns, 251
purging data, data warehouses, 655
purging databases, versus archiving, 501
rows, 435–436

Denormalization

benefits, evaluating, 175
combined tables, 168
data warehouse, 643
derivable data, 170–171
description, 160–161
evaluating the need for, 161–162, 174–175
hierarchies, 171–173
identifying candidates for, 162–163
Internet databases, 680
issues, 161–162
logical data models, 163
mirror tables, 165
optimizing database performance, 355–356
overview, 161–163
physical implementation requirements, 173
prejoined tables, 164
redundant data, 168–169
repeating groups, 169–170
report tables, 164–165
speed tables, 172–173
split tables, 165–166
splitting text columns, 166–168
types of, 174

Density, relational optimization, 377
Departmental DBMS architectures, 70
Deprecated features, 85n.7
Derivable data, 170–171, 356
Derived data, storing versus calculating, 170–171
DES (Data Encryption Standard), 472
Design review

guidelines, 102, 228–229
output, 239–240
overview, 227–228

purpose of, 228
Design review, participants

knowledge and skills required, 232
leader of, 229–230
mediator, 230–231
mentorship and knowledge transfer, 240–241
recommended personnel, 231
remote staff, 232
scribe, 230

Design review, types of
in the ADLC, 234
code, 238
conceptual, 233–235
logical, 235
organizational, 237
overview, 233
physical, 236
post-implementation, 239
pre-implementation, 239

Designing
applications. See Database applications, designing.
databases. See Database design.

Determinant, 135
Devices, naming conventions, 364
Diagramming entity relationships. See E/R (entity relationship diagram).
Differential backup, 521
Dimensions, data warehouse, 639
Direct index lookup, 383
Dirty read, 216–217
DISABLE option, 477
Disabling

database logs, 341
passwords, 453

Disaster, definition, 559–560
Disaster planning. See also Backup; Recovery.

business-critical applications, 562
critical applications, 562–563
criticality of data, ranking, 562–563
lengthy outages, 568
need for, 559–563
noncritical applications, 563
prevention, 575–576
required applications, 563
very critical applications, 562
Web sites about, 576

Disaster planning, backup
compression, 575
data latency, 574
data retention, 571
database logs, 570–571
encryption, 575
important files and data, 574–575
indexes, 570
order of recovery, 574
over a WAN (wide-area network), 573
post-recovery image copies, 575
remote mirroring, 573
standby databases, 573
storage management software, 572–573
on tape, 570–571

Disaster planning, recovery
off-site locations, 564
personnel, 569
plan content, 566
recovery site, choosing, 564
rehearsing, 567–569

team members, 569
testing your plan, 567–569, 574
written plans, 564–566

Disaster planning, risk
assessing, 561–563
business service interruption, 561–563
categories of, 561
financial loss, 561–563
legal responsibilities, 561–563

Discovering attributes and entities, 124–125
Disk drives

MTBF (mean time between failures), 580
overview, 580

Disk storage
DBMS requirements, 76–78
SSDs (solid state devices) versus traditional disks, 323–324
system performance, 322–324

Disks. See also Storage management.
allocation, optimizing database performance, 364
fragmentation, 595
JBOD (just a bunch of disks), 604
mirroring, as a backup/recovery alternative, 556–557
outages, 278
performance improvement, 584–585
raw partitions versus file systems, 586–587
SCSI (small computer system interface), 605
short-stroking, 584–585
size terminology, 582
storage management option, 596
striping, 597
usage spikes, 580

DISTINCT clause, 387
Distributed data

accessing, 630–631
distributed request, 631
distributed unit of work, 631
DRDA (Distributed Relational Database Architecture), 629–630
placement for optimum performance, 363–364
RDA (Remote Database Access), 629–630
remote requests, 630–631
remote unit of work, 630–631
standards, 629–630
two-phase COMMIT, 631

Distributed data management model, 668–669
Distributed databases. See also Bulk data movement; Copying data; Moving
data.

autonomy, 626
characteristics of, 626
data placement, 629
definition, 626
environment, setting up, 627–629
federated multidatabase schemes, 627
isolation, 626
performance problems, 632–633
system performance, 344
transparency, 626
unfederated multidatabase schemes, 627
usage guidelines, 629

Distributed processing, 666–667
Distributed request, 631
Distributed unit of work, 631
Distributed user presentation model, 667–668
Distributing tasks across a network, 668
Document Type Definition (DTD), 204
Documentation

DBA activities, 735–736

online standards manuals, 727–728
Domains

attributes, 116
transforming to data types, 143–144

Downsizing, and database connectivity, 662
Downtime. See also Availability.

versus availability, 273
cost of, 271–273
DBA staffing requirements, 38
negative publicity, 272

DQS (Data Quality Services) (Microsoft), 415
DRDA (Distributed Relational Database Architecture), 629–630
Drivers

JDBC, 673–674
ODBC, 192, 673

DRM (data resource management), 40–42
DROP statements

cascading DROPs, 251, 701–703
in database change management, 250–252

Dropped database objects, recovering, 552–553
Dropping

database objects, 250–252
tables, 250–252

DSN1COPY utility, 552
DSNZPARM parameter, 80n.4
DSS (decision support systems), 639
DTD (Document Type Definition), 204
Duplicate values, relational optimization, 377
Durability

DBMS, 758
transactions, 206

Dynamic SQL, 201

E

Ebbers, Bernard, 485
E-business. See also Internet.

effects on DBAs, 50–51
infrastructure, 52

E-discovery, effects on DBA, 506–507
EDM pools, 335
Education

database environment, 101
recommended courses, 103

E-Government Act, 484–485
80/20 (Pareto) rule, 302
Elephant and blind men, 108
Embarcadero Technologies, 770–771
Embedded SQL, 191–192, 201
ENABLE option, 477
Encoding scheme, specifying, 620
Encryption. See also Data masking and obfuscation.

data at rest, 472
data in transit, 472
data masking and obfuscation, 497
disaster planning, backup, 575
overview, 470, 472
techniques for, 472
transparent, 473
wallets, 473

End-to-end performance, tools for, 713–714
Enron Corporation, 485
Enterprise data model, 109
Enterprise DBMS architectures, 69
Entities. See also Relationships.

adjectives as, 115
associative, 127
definition, 113

discovering, 124–125
instances, 115
naming conventions, 113
nouns as, 115, 124
transforming to tables, 142

Entity integrity, 416–417
Entity occurrences, 115
Environments, system. See Database environments.
Epsilon, data breach, 449
E/R (entity relationship diagram)

Bachmann method, 112
cardinality, 112
Chen method, 112
definition, 110
diagramming methods, 111–113
example, 111
Information Engineering method, 112
Martin method, 112
Ross method, 112
Rumbaugh method, 112
UML (Unified Modeling Language), 113

Error correction coding, 599
Estimating

memory requirements, 331–332
performance, 307–308
tools for, 313

ETL (extract, transfer, load), 623–625, 721–723
ETL tool vendors, 773
E-vailability, 676–677
EXCEPT clause, 388
Exclusive locks, 213
EXECUTE privileges, 460
EXPLAIN command, 394–398, 712

Exploiting versus supporting, 91
EXPORT utility, 622–623. See also UNLOAD utility.
Exporting data

backup/recovery alternative, 534–535
EXPORT utility, 622–623

EXtensible Markup Language (XML), 204
External security, 478–480
Extract performance, 650

F
Fabian Pascal’s site, 779
Facts, data warehouse, 639
Fallback planning, 92
“Fast food” mentality, 266
Fat clients, 670
Fault tolerance, 601–602
Federal Rules of Civil Procedure (FRCP), 506–507
Federated multidatabase schemes, 627
Fiber channel, storage management option, 605
File extents, reorganizing databases, 366
File servers, database connectivity, 664
File systems versus raw partitions, 586–587
Filegroups

database design, 149
definition, 94
standards, 94

FileMaker, 767
Files and data sets. See also Storage management.

optimal placement, 584–586
overview, 583–584
placement and allocation, optimizing database performance, 362–364
temporary database files, 587

Fill factor. See Free space.

Financial chargeback, 655–656
Financial loss, risk of, 561–563
Financial Modernization Act of 1999, 484–485
Firing triggers, 428–429
FISMA (Federal Information Security Management Act), 485
Five-nines availability, 273–274, 292
Fixed-length columns, 144
Fixpacks and maintenance, 480–481
Floating-point data

loading, 616
unloading data, 620

Focus, DBA rule of thumb, 741–742
FORCEPLAN option, 398–399
Forcing access path choices, 398–399
Foreign key perspective, 434–435
Foreign key values, 434–436
Foreign keys, indexes, 151
Forrester Research, 450
Fragmentation

disks, 595
indexes, 595
reorganizing databases, 366

FRCP (Federal Rules of Civil Procedure), 506–507
Free space

changing, 255–256
optimizing database performance, 360–361

FREEPAGE parameter, 360
Full image copy, 521–523
Full recovery, 340, 540
Full-time availability, 270–271

G
Gerstner, Lou, 581

Giga Research Group, 582
GLB (Gramm-Leach-Bliley) Act, 484–485, 491
Governance. See Data governance.
Grandite, 772
GRANT statements, 456–457
Granularity

locks, 210–211, 219–220
triggers, 431–432

GROUP BY clause, 388
Groups, authorization, 468
“Guilty until proven innocent,” 13

H
Hadoop databases, 766
Hardware

configuration for system performance, 322–324
environment, designing, 193–194
issues, strategies for, 73–74
requirements, installing the DBMS, 76

Hash function, 389, 390
Hash joins, 379
Hashed access, 389–390
Hashing, randomizing, 158
HBase databases, 56, 766
Header information, data page layouts, 592
Headers, data integrity, 411
Health Net Federal Services, 450
Heterogeneous database migration, 534–535
Hibernate, ORM library, 200
Hierarchical data models, 754–755
Hierarchies, 171–173
HIPAA (Health Insurance Portability and Accountability Act), 484–485, 491
Hit Software, 771

Homonyms, in data modeling, 118
Horizontal restriction, 469
Hostile databases, 678–679
Hosting database servers, 675
Hot backup, 527
Human error, availability problems, 284, 286
100 Year Archive Requirements Survey, 503n
Hybrid joins, 379

I
IBM Corporation

DB2 Web site, 778
DBMS vendor, 63–64, 762, 765
rate of data growth, 581
tool vendor, 772, 773

IBM Data Management, 779
IDC Corporation, 581
IDE (integrated development environment), 191–192
Identity property, columns, 145
Identity values, system performance, 344
Idera, 771
IDMS (Cullinet), 765
IDUG (International DB2 User Group), 740, 783
IIUG (International Informix Users Group), 740, 783
ILM (information life cycle management), 606
Image copies

backup guidelines, 519–520
backups, unloading data from, 619
disaster planning, post-recovery, 575

Impact analysis, change management, 245
IMPORT utility, 622–623. See also LOAD utility.
Importing data, 622–623
IMS (IBM), 765

Incremental backup, 521–523
Independent Oracle Users Group (IOUG), 740
Index covering, 386–387
Indexed access, 382–389
Indexes

absence of, 151
avoiding, 354
avoiding sorts, 387–388
backup, 524
based on workload, 152
bitmap, 155–156
b-tree, 154–155. See also Partitioned index; Reverse key index.
candidate keys, 152
clustering, 159–160
consistency, 29
costs of, 153–154
data warehouse, 651
defragmenting, 413
designing, 150–154
disaster planning, backup, 570
file placement, 584
foreign keys, 151
fragmentation, 595
indexing by object, 152
index-only access, 152
key values, 592
leaf pages, 155
locking, 212
nodes, 155
optimal number per table, 353
optimizing database performance, 352–355
ordered, 157
overloading, 355

page layouts, 592–594
partitioned, 157. See also b-tree index.
primary keys, 151
recovery, 550–551
recreating, 257n
reorganizing, 369–370
reverse key, 156–157. See also b-tree index.
screening, 386
size, calculating, 592–594
sorting, 152
table scans, 151
unused, dropping, 153

Indexing by object, 152
Index-only access, 152, 386–387
Informatica, 773
Information, definition, 687
Information Builders, 773
Information Center, 640
Information Engineering, E/R method, 112
Information life cycle management (ILM), 606
Information Management, 779
Information Schema. See System catalog.
Informix, 763

IIUG (International Informix Users Group), 740, 783
vendor contact, 64
Web site, 778

InfoTel Corporation, 771
Ingres, 763–764
INIT.ORA, 80n.4
Inner table, 379
INSERT privileges, 458–459
INSERT rule, 434–436
INSERT statements

modifying temporal data, 180
recording in the transaction log, 341
in triggers, 429

INSERT trigger, 438–441
Installing the DBMS. See also Configuring the DBMS; Upgrading the
DBMS.

connecting to infrastructure software, 81
hardware requirements, 76
memory requirements, 78–79
in multiple environments, 82
performance tuning. See System performance, DBMS installation and
configuration.
prerequisites, 75–76
storage requirements, 76–78
verifying the install, 81

Instance failure, backup, 516–517, 533, 550
Instances

entities, 115
Oracle databases, 325

INSTEAD OF trigger, 432
Integrated development environment (IDE), 191–192
Integrated metadata sources, 690
Integration testing, 101
Integrity. See Data integrity; RI (referential integrity).
Intelligence, change management, 245
Intent locks, 213
Interconnected databases, 676–680
Interleaving data. See also Clustering.

optimizing database performance, 360
performance design, 160

International DB2 User Group (IDUG), 740, 783
International Informix Users Group (IIUG), 740, 783
International issues, Internet databases, 679

International Oracle Users Group, 783
International Sybase User Group (ISUG), 740, 783
Internet, and e-business

effect on DBAs, 50–52
infrastructure, 52

Internet, database connectivity. See also Web services.
availability, 676–677
denormalization, 680
designing for e-business, 677–680
effect on DBA duties, 676–680
e-vailability, 676–677
hostile databases, 678–679
hosting database servers, 675
interconnected databases, 676–680
international issues, 679
Internet time, 677
key design, 679
normalization, 679
RAD (rapid application development), 677

Internet resources
blogs, 780–781
database portals, 781–782
industry standards, 782
jobs, 782
mailing lists, 776–778
Usenet newsgroups, 775–776

Internet resources, Web sites
consultants, 779–780
magazines, 778–779
Mullins, Craig, 780
user group associations, 740
vendors, 778

Internet time, 266, 677

INTERSECT clause, 388
Invasive performance tools, 710
I/O parallelism, 390–391
IOUG (Independent Oracle Users Group), 740
ISO Web site, 782
Isolation

distributed databases, 626
levels, 216–218
transactions, 206

ISQL, 81n.5
ISUG (International Sybase User Group), 740, 783
IT complexity, and availability, 271
IT Governance Institute, 509

J
J2EE (Java 2 Enterprise Edition), 195–196, 198
Jack-of-all-trades, 29–31
Jacobson, Ivar, 113
Java

applets, 196–197
applications, 196–197
choosing a program type, 196–197
Hibernate, ORM library, 200
LINQ (Language Integration Query), 200
NHibernate, ORM library, 200
program types, 196–197
servlets, 196–197

JBOD (just a bunch of disks), 604
JDBC (Java Database Connectivity)

bridge architecture drivers, 673
client-based drivers, 673
database wire drivers, 674
drivers, 673–674
network protocol architecture drivers, 673–674
overview, 192–193
Pure Java drivers, 673–674
Type 1 drivers, 673
Type 2 drivers, 673
Type 3 drivers, 673–674
Type 4 drivers, 673

Job scheduling, security, 479
Jobs in DBA. See Careers in DBA.
Join order, 381
Joining tables

hash join, 379
hybrid join, 379

inner table, 379
join order, 381
merge-scan join, 379–380
nested-loop join, 379–380
outer table, 379
qualifying rows, 380
relational optimization, 379–381

Joins, SQL, 189

K
Kernel memory usage, displaying, 413
Keys

candidate, 115, 121
description, 120
designing for Internet connectivity, 679
foreign, 121–122
primary, 121

Knowledge, definition, 687
Kozlowski, Dennis, 485

L
Lay, Ken, 485
LBAC (label-based access control), 463–465
Leader, design review, 229–230
Leaf distance, reorganizing databases, 370
Leaf pages, 155
Legal responsibilities, risks, 561–563
LGWR (log writer) process, 326
Life cycle

ADLC (application development life cycle), 9–10, 12
data, 499–500

LIKE logical operator, 403–404
LIMIT parameter, 620–621

LINQ (Language Integration Query), 200
List servers, 777
Listservs. See Mailing lists.
Load balancing, 293
LOAD parameters, 620
LOAD utility, 614–618, 621–622. See also IMPORT utility.
Loading data. See also Unloading data.

for application test beds, 621–622
converting data types, 616
data integrity problems, 615
describing the input file, 615
disabling logging, 617
efficiency, 617–618
enforcing constraints, 615
firing triggers, 615
floating-point data, 616
LOAD utility, 614–618, 621–622
nulls, 616

Lock duration
acquire/release specification, 218
definition, 215
isolation level, 216–218
SKIP LOCKED DATA parameter, 219
skipping locked rows, 219

Lock escalation, 219–220
Lock suspensions, 341
Locking

COMMITTED READ isolation, 216–217
cursor stability, 216–217
deadlocks, 214–215
description, 210
dirty read, 216–217
exclusive locks, 213

granularity, 210–211, 219–220
index entries, 212
intent locks, 213
levels. See Granularity.
minimizing problems, 220
passwords, 453
phantoms, 218
read locks, 212–213
REPEATABLE READ isolation, 217
SERIALIZABLE isolation, 218
shared locks, 212–213
system performance, 341–342
time outs, 213–214
types of locks, 212–213
UNCOMMITTED READ isolation, 216–217
update locks, 213
write locks, 212–213

Log writer (LGWR) process, 326
Logging. See Database logs.
Logical backups, 534–535
Logical data independence, 757
Logical data modeling, 125–128
Logical design review, 235
Logical models, converting to a physical database, 141–150
Logic-oriented security, 470
Logins

administration, rules of thumb, 453, 455
definition, 455–456
limiting, 455
required information, 452–453

Loss of
data, 282–283
data center, 274–275

database objects, 281–282
entire database, 277

Lotus, 767
LPARS (Logical PARtitions), 295n

M
Magazines, Web sites, 778–779
Mailing lists, 776–778
Main-memory database management systems (MMDBMSs), 596
Maintenance

outages, availability problems, 286–287
patches for Oracle databases, 480–481
scheduling for availability, 288–289
window, availability, 268

Manageability, availability, 267
Mapping physical files to database tables, 350–352
Martin E/R method, 112
Masking data. See Data masking and obfuscation.
Master Data Services. See SQL Server.
Matching index scan, 383–385
Materialized query tables, 652–653
Materialized views, 653
Mean time between failures (MTBF)

availability, 273–274
disk drives, 580

Media failure, backup, 517, 550
Mediator, design review, 230–231
Memory, requirements

buffer pools, 78–79
data cache, 78–79
installing the DBMS, 78–79
program cache, 79

Memory, system performance

caches, 328–330
consumption sources, 330–331
data cache, 329–330, 332–333
data integrity, 413–414
database log cache, 330
DB2 EDM pools, 335
estimating sufficient, 331–332
Internet structure cache, 330
procedure cache, 329–330, 335
sort cache, 330

MEMUSAGE option, 413–414
Merge-scan joins, 379–380
Message queuing software, 624–625
Messaging software, 624–625
Metadata

active sources, 690
business metadata, 689
data, definition, 686
data dictionaries, 695–696
data stewardship, 688
data warehouse, 654
data warehousing, 688
definition, 16, 488
examples, 16–17
information, definition, 687
integrated sources, 690
knowledge, definition, 687
nonsubvertible sources, 690
overview, 685–686
repositories, 691–695
sources for, 690
strategy for, 687–688
system catalog, 689–691

technology metadata, 689
types of, 689–691

Microsoft Corporation
DBMS vendor, 63, 762, 767
tool vendor, 772

Middleware, 192–193
Migration. See Upgrading the DBMS.
Mirror tables, 356
Mirroring, 597
MMDBMSs (main-memory database management systems), 596
Mobile DBMS architectures, 70
Mobile platforms, effect on DBAs, 53–55
ModelRight, 772
mongoDB, 56, 766
Monitoring

data warehouse performance, 652
SP_MONITOR procedure, 345–346
system-level performance, 345–346

Monitoring, database performance
contention, 23
database administration tasks, 22–23
factors affecting, 22–23
optimization, 23
resources, 22
throughput, 22
tools for, 313
workload, 22

Monotonic page splits, 358–359
Moving data. See also EXPORT utility; IMPORT utility; Loading data;
Unloading data.

backup, 535
bulk movement, 623–625
data warehouses, 644–645

EXPORT utility, 622–623
IMPORT utility, 622–623
to multiple databases. See Distributed databases.
tool vendors, 773

MTBF (mean time between failures)
availability, 273–274
disk drives, 580

Mullins, Craig, Web site, 780
Multi-index access, 387
Multiple platforms, strategies for, 61–62
Multitier implementation, 669–670
MySQL, 64, 765

N
Naming conventions

attributes, 116–119
databases, 93–96
devices, 364
entities, 113

NAS (network-attached storage), 605, 606
Nested triggers, 343–344, 429
Nested-loop joins, 379–380
.NET framework, 194–195, 198
NetIQ, 771
Network data models, 754–755
Network protocol architecture drivers, 673–674
Network traffic

availability problems, 275
connection pooling, 674
database drivers, 672–674
database gateways, 671–672
performance problems, 670–671
sniffing, 494–495

Newsgroups, 775–776
NHibernate, ORM library, 200
99.999% availability, 273–274
NIST Web site, 782
Nodes, 155
Noncritical applications, 563
Noninvasive auditing methods, 494
Nonmatching index scan, 385
Nonstandard database objects, 94
Nonsubvertible metadata sources, 690
Normal forms

1NF (first normal form), 129
2NF (second normal form), 129, 131, 132
3NF (third normal form), 132–133
4NF (fourth normal form), 134
5NF (fifth normal form), 134
atomic, 129
BCNF (Boyce Codd normal form), 134
examples, 130–131

Normal page splits, 358–359
Normalization

definition, 128
goals of, 128
Internet databases, 679
mapping logical to physical, 135

Normalized data model, 133–134
NoSQL

for availability, 296
data models, 756
DBMS vendors, 765–766
effect on DBAs, 55–56

Nouns as
attributes, 124

entities, 115, 124
Nullability, specifying, 144
Nulling out, data masking, 498
Nulls

attributes, 119–120
check constraints, 423–426
loading data, 616

Number and date variance, data masking, 497

O
Obfuscation. See Data masking and obfuscation.
Object definitions, backup, 536–537
Object Management Group, 783
Object migration, tools for, 704–705
Object orientation

data models, 754–755
DBMS vendors, 766
ORM (object-relational mapping), 200
relational databases, 199–200
SQL, 199–200
SQL (Structured Query Language), 199–200

Object Store (Progress Software), 766
Object-relational mapping (ORM), 200
Obsessive-Compulsive Data Quality blog, 781
ODBC (Object Database Connectivity)

callable routines, 192
definition, 192
drivers, 192, 673
overview, 192–193

Off-loading logs, 339, 529
Offset tables, 588–590, 592
Off-site disaster recovery, 547
Off-site locations, disaster planning, 564

OLAP (online analytical processing), 639, 640
The OLAP Council, 783
OLAP tool vendors, 773
OLE DB, 193
100 Year Archive Requirements Survey, 503n
Online database reorganization, 288–289
Online resources. See Internet resources.
Ontos, 766
Open database objects, system performance, 336
The Open Group, 783
Open-source software

belief system, 764–765
choosing, 64
DBMS vendors, 764
definition, 764
vendors, 764–765

Operating system failure, availability problems, 279
Operating system support, strategies for, 65
Operational support, standards, 102
Operations, data models, 754
Operations control, authorization, 467
Optimizer, 374
Optimizing database performance. See also Database performance; Relational
optimization; Reorganizing databases.

cost-based versus rule-based, 344
database performance, managing, 305
performance monitoring and tuning, 23
split tables, 356

Optimizing database performance, techniques for
block size, 364–365
clustering, 356–358
combined tables, 356
compression, 361–362

database log placement, 363
denormalizing tables, 355–356
derivable data, 356
disk allocation, 364
distributed data placement, 363–364
file placement and allocation, 362–364
free space, 360–361
indexing, 352–355
interleaving data, 360. See also Clustering.
mapping physical files to database tables, 350–352
mirror tables, 356
monotonic page splits, 358–359
normal page splits, 358–359
overview, 349–350
page size, 364–365
page splitting, 358–359
parallelism, 351
partitioning, 350–352
physical denormalization, 356
prejoined tables, 355
raw partition versus file system, 351–352
redundant data, 356
repeating groups, 356
report tables, 355
speed tables, 356
split tables, 356

OR logical operator, 403
Oracle Corporation

DBMS vendor, 63, 762
nonstandard database objects, 94
vendor contact, 63, 772

Oracle Corporation (Hyperion), 773
Oracle Magazine, 779

Oracle program
blogs, 780
IOUG (Independent Oracle Users Group), 740
Web site, 778

Oracle program, architecture
background processes, 326
CKPT (checkpoint) process, 326
config.ora file, 325
control files, 325
data files, 325
database files, 325
databases, 325
DBWR (database writer) process, 326
file categories, 325
instances, 325
LGWR (log writer) process, 326
Oracle processes, 326
overview, 325–327
parameter files, 325
PGA (program global area), 326
physical structures, 325
PMON (process monitor) process, 326
processes, 326
RECO (recover) process, 326
redo log buffer, 326
redo log files, 325
server processes, 326
SGA (system global area), 326
SMON (system monitor) process, 326
sort area, 326
user processes, 326

Oracle transportable tablespaces, 625
ORDER BY clause, 388

Ordered indexes, 157
Ordering columns, 146
Organization type, effect on DBMS strategy, 65
Organizational design review, 237
ORM (object-relational mapping), 200
“Out of space” log conditions, 339–341
Outer table, 379
Overloading indexes, 355

P
Page header

corruption, 411
data page layouts, 588–589

Page pointer, data page layouts, 592
Page size, optimizing database performance, 364–365
Page splits

optimizing database performance, 358–359
reorganizing databases, 366

Pages, recovering, 553
Paradox, 767
Parallel access, 390–391
Parallelism

CPU, 391
I/O, 390–391
optimizing database performance, 351
system, 391

Parameter files, Oracle, 325
Parent tables, 433–435
Pareto (80/20) rule, 302
Parity bits, 597
Parsing database logs, 493–495
Partial recovery, 542–543
Partition scans, 381–382

Partitioned index, 157. See also b-tree index.
Partitioning, 350–352
Passwords. See also Security.

changing, 453
creating, 454
definition, 452
disabling, 453
embedding in code, 479
guidelines for, 454
limiting, 455
locking, 453

Patches
critical updates, 480–481
for Oracle databases, 480–481
security alerts, 480–481

PCI (Payment Card Industry) DSS (Data Security Standard), 485, 491
PCTFREE parameter, 360
Performance. See also Applications, performance; Database performance;
System performance.

benchmarks, 65–66
DBA staffing requirements, 38
gains from upgrading the DBMS, 85
management, tools for, 708–714
monitoring, tools for, 709–710
RAID levels, 603

Performance analysts, DBAs as, 36
Performance problems

client/server computing, 670–674
distributed databases, 632–633
network traffic, 670–671

Permissions. See Privileges.
Personal computing, effect on DBAs, 53–55
Personal DBMS architectures, 70

Personnel, disaster planning, 569
PGA (program global area), 326
Phantoms, 218
Physical data

dependence, 376
independence, 757
modeling, 125–128

Physical denormalization, 356
Physical design review, 236
PII (Personally Identifiable Information), 497
PIT (point-in-time) recovery, 542–543, 545
Planning

change management, 245
for disaster. See Disaster planning.
outages, 286–287
SQL, 201
storage capacity, 608–609

Plans (DB2), 94
PLAN_TABLE, 395–398
PMON (process monitor) process, 326
Poet, 766
Pointer consistency, 29
Pointers for very large objects, 410–411
Point-in-time recovery, 27
Ponemon Institute, 450
PostgreSQL, 765
Post-implementation design review, 239
Powersoft, 772
Pre-implementation design review, 239
Prejoined tables, 355
Prepositional phrases, as attributes, 124
Presentation logic, 664–666
Primary key constraints, 416–417

Primary key perspective, 435–436
Primary keys

database design, 144
indexes, 151

Print servers, database connectivity, 664
Privacy. See Data, privacy.
Privacy Rights Clearinghouse, 449–450
Privileged users, auditing, 495–496
Privileges. See also Authority; Authorization; Security.

monitoring and reporting, 465
types of, 457–458

Privileges, granting
centralized administration, 457
database object privileges, 459
DCL (Data Control Language), 456–457
decentralized administration, 457
overview, 456–457
procedure privileges, 460
program privileges, 460
to PUBLIC authority, 460–461
system privileges, 459–460
table privileges, 458–459

Privileges, revoking
cascading REVOKEs, 462, 468
chronology and REVOKEs, 462–463
overview, 461

Proactive performance, 306
Proactivity, change management, 245
Procedural DBAs

duties of, 49
effect on DBAs, 46–50
managing database logic, 46
procedural database objects, 48, 49

role of, 49–50
stored procedures, 47, 48–50
triggers, 47, 48–50
UDFs (user-defined functions), 47, 48–50

Procedure privileges, 460
Procedures (programmatic). See Triggers.
Procedures (standards). See Standards and procedures.
Process monitor (PMON) process, 326
Processes, Oracle, 326
Professional advancement, DBA rule of thumb, 747–748
Professional Association for SQL Server, 740, 783
Professional certification. See Certification.
Profiling data, 489
Program global area (PGA), 326
Program privileges, 460
Programming and development, tools for, 724–726
Progress Software, 766
Propagation, 623–624, 722
PUBLIC authority, 460–461
Pure Java drivers, 673–674
Purging data, data warehouse, 655
Purging databases, versus archiving, 501
The Pythian Group, 779, 781

Q
Qualifying rows, 380
Quality assurance testing, 101
Quality of data. See Data, quality; Data integrity.
Queries

analysis, 378–379
performance, 650
tools for, 723–724
XML data, 203–205

Query rewrite, 392–393
Quest Software, 771
Quiesce point, 528
QUIESCE utility, 528

R
RAC (Real Application Clusters), 294
RAD (rapid application development), 677
RAID (redundant array of independent disks)

definition, 597
disk striping, 597
error correction coding, 599
fault tolerance, 601–602
mirroring, 597
parity bits, 597
storage type, choosing, 603–604
striping, 597

RAID levels
performance, 603
RAID-0, 597–598
RAID-0+1, 602
RAID-1, 598
RAID-2, 599
RAID-3, 599
RAID-4, 600
RAID-5, 600–601
RAID-6, 601
RAID-10, 601
RAID-50, 602

Raw files, database design, 149
Raw partitions versus file systems, 351–352, 586–587
RDA (Remote Database Access), 629–630
Read efficiency, 333–335

Read locks, 212–213
RECO (recover) process, 326
Recover to current, 26–27
RECOVER utility, 553–554
Recoverability

availability, 267
goals of, 509–510

Recover-to-current recovery, 541
Recovery. See also Backup; Disaster planning.

availability problems, 284
basic steps, 540–541
broken blocks or pages, 553
bulk-logged, 540
COBIT, 509–510
common reasons for, 548
data warehouse, 656–657
database administration tasks, 26–27
database logs, 338, 340
designing for, 533–534
dropped database objects, 552–553
duration of, 518, 549
full, 540
importance of, 515–516
indexes, 550–551
models, 340
objects, 534
optimum strategy, 547–549
options, determining, 538–539
overview, 537–538
planning for, 551
point-in-time recovery, 27
recover to current, 26–27
RECOVER utility, 553–554

regulatory compliance, 508
RMAN (Recovery Manager), 525–526
rows, 534
simple, 540
SQL Server models, 540
test databases, populating, 553–554
testing your plan, 551
tools for, 714–715
transaction recovery, 27
types of, 26–27
UNLOAD utility, 553–554

Recovery, alternatives to
disk mirroring, 556–557
redundant data, 555–556
replication, 555–556
snapshot replication, 555–556
standby databases, 554–555
symmetric replication, 555–556

Recovery, types of
matching to failure type, 549
off-site disaster, 547
partial, 542–543
PIT (point-in-time), 542–543, 545
recover to current, 541
to a recovery point, 543–544
REDO, 545–547
selecting, 548
transaction, 544–545
UNDO, 545–546

Recovery Manager (RMAN), 525–526
Red Gate Software, 771
Redman, Thomas C., 489
Redo log buffer, 326

Redo log files, 325
REDO recovery, 545–547
Redundant array of independent disks (RAID). See RAID (redundant array of
independent disks).
Redundant data

backup/recovery alternative, 555–556
database design, 168–169
optimizing database performance, 356

Reference customers, 68
Referential constraints, 28, 146–147, 433
Referential integrity (RI). See RI (referential integrity).
Regulatory compliance. See also Data governance; specific regulations.

best practices, 509
change management, 261–262
COBIT, 509–510
a collaborative approach to, 486–488
costs of compliance, 485
costs of non-compliance, 488
DBA tasks, 26, 487–488
importance to DBAs, 487–488
overview, 483–485
prosecution for non-compliance, 485
recoverability, 509–510

REINDEX option, 413
Relational Architects, 771
Relational closure, 189–191
Relational data models, 754–755
Relational databases

application design issues, 373–374
object orientation, 199–200

Relational nulls, 423–426
Relational optimization

CPU costs, 376

database statistics, 376–378
definition, 375
density, 377
design issues, 374
duplicate values, 377
I/O costs, 376
joining tables, 379–381
optimizer, 374
physical data dependence, 376
query analysis, 378–379
query rewrite, 392–393
rule-based optimization, 393–394
view access, 391–392
view materialization, 392
view merging, 392

Relational optimization, access path choices
absolute positioning, 383–385
avoiding sorts, 387–388
CPU parallelism, 391
direct index lookup, 383
forcing, 398–399
hashed access, 389–390
index covering, 386–387
index screening, 386
indexed access, 382–389
index-only access, 386–387
I/O parallelism, 390–391
matching index scan, 383–385
multi-index access, 387
nonmatching index scan, 385
parallel access, 390–391
partition scans, 381–382
relative positioning, 385

reviewing, 394–398
system parallelism, 391
table scans, 381–382
tablespace scans, 381–382

Relations, data models, 755
Relationships, 122–123
Relationships between entities

cardinality, 122–123
definition, 122
degree. See Cardinality.
description, 122
discovering, 124–125
optionality, 123
verbs as, 124

Relative positioning, 385
Release schedules, effect on DBMS strategy, 68
Release upgrades, backup, 534
Releases versus versions, 82–87
Reliability, availability, 267
Remote Database Access (RDA), 629–630
Remote mirroring, disaster planning, 573
Remote requests, 630–631
Remote unit of work, 630–631
Removing. See Deleting.
REORG, 288–289
REORG utility, 368–369
Reorganizing databases. See also Database performance; Optimizing
database performance.

automation, 371
causes of disorganization, 365–369
cluster ratios, 369
determining the need for, 369
disorganized tablespace, 367–368

ensuring availability, 288–289
file extents, 366
fragmentation, 366
gathering statistics, 370
indexes, 369–370
leaf distance, 370
manually, 368–369
online, 288–289
page splits, 366
row chaining, 366
row migration, 366
tools for, 314
unclustered data, 366
utilities for, 368–369

REPAIR utility (DB2), 411–412
REPEATABLE READ isolation, 217
Repeating groups

denormalization, 169–170
optimizing database performance, 356

Replication
backup/recovery alternative, 555–556
bulk data movement, 623–624
tools, 722

Report tables, 355
Reporting, tools for, 723–724
Repositories, 691–695
Repository Manager (IBM), 695
Repository tools, vendors, 772–773
Required applications, 563
Resources

effective use of, DBA rule of thumb, 745–746
performance factor, 301
performance monitoring and tuning, 22

Response time, 266
Responsive Systems, 771
REST (representational state transfer), 681
Reverse key index, 156–157
Reviewing access path choices, 394–398
REVOKE statements, 456–457, 461
RI (referential integrity)

versus check constraints, 441–442
child tables, 433–434
DBMS support for, 438
definition, 433
deleting rows, 435–436
foreign key perspective, 434–435
foreign key values, 434–436
overview, 146–147, 433–434
parent tables, 433–435
primary key perspective, 435–436
versus program logic, 441–442
referential constraints, 433
relationships, setting up, 436–437
rules, 434–436
rules of thumb, 442–444
self-referencing constraints, 437
system-managed, 441
tools for, 705
with triggers, 438–441
user-managed, 441

Riak, 56
Richard Foote’s Oracle Blog, 780
Rigas, John, 485
Rigas, Tony, 485
Rightsizing, and database connectivity, 662
Risk, disaster planning

assessing, 561–563
business service interruption, 561–563
categories of, 561
financial loss, 561–563
legal responsibilities, 561–563

Risk management
tools for, 716–721
upgrading the DBMS, 84–86

RMAN (Recovery Manager), 525–526
Rocket Software, 771
Roles and responsibilities

authorization by, 466, 468
standards, 96–98, 97

Ross E/R method, 112
Row-level triggers, 432
Rows

chaining, 366
data page layouts, 590
deleting, 435–436
headers, data page layouts, 590
length, data page layouts, 592
migration, 366
recovering, 534
size, specifying, 148

Ruby on Rails, 198
Rule-based optimization

versus cost-based, 344
relational optimization, 393–394

Rules. See also specific rules.
check constraints, 424
definition, 94
referential integrity, 434–436
standards, 94

Rumbaugh, James, 113
Rumbaugh E/R method, 112
RUNSTATS utility, 377–378

S
SA (system administration), 20, 21
Salaries of DBAs, 4–6
SAN (storage area network), 278, 604–605, 606
SAP (Business Objects), 773
Sarbanes-Oxley (SOX) Act, 483, 485, 491
SAS Institute, 773
Scalability

data warehouse, 649
effect on DBMS strategy, 66

Scribe, design review, 230
Scripts, change management, 262
SCSI (small computer system interface), 605
SearchDataManagement portal, 781
SearchOracle portal, 781
SearchSQLServer portal, 781
Secured Hash Algorithm (SHA-1), 472
Security. See also Authority; Encryption; Passwords; Privileges.

administrator authorization, 467, 468
auditing, 477–478
authentication, 452
availability problems, 280
basics, 451–455
centralizing, 26
costs of data breaches, 450
data breaches, 449–450
data theft (example), 496
database administration tasks, 24–25
database users, 455–456

external threats, 478–480
fixpacks and maintenance, 480–481
horizontal restriction, 469
job scheduling, 479
logic-oriented, 470
non-DBA, 480
options for system performance, 344
replacement tools for, 721
scope of the problem, 449–450
sensitive data sets, 478–479
standards, 100–101
with stored procedures, 470
tools for, 720–721
user names, 456
using views for, 468–470
vertical restriction, 469

Security, login
administration, rules of thumb, 453, 455
definition, 455–456
limiting, 455
required information, 452–453

Security, passwords
changing, 453
creating, 454
definition, 452
disabling, 453
embedding in code, 479
guidelines for, 454
limiting, 455
locking, 453

SEGUS Inc., 771
SEI Web site, 782
SELECT INTO statements, 341

SELECT INTO/BULKCOPY option, 341
SELECT privileges, 458–459
Selective auditing methods, 494
Self-referencing constraints, 437
Semantic data integrity. See Data integrity, semantic.
Semantic integrity, 28
Serena, 773
SERIALIZABLE isolation, 218
Server processes, 326
Servers. See also Client/server computing; SQL Server (Microsoft).

application, 664
availability problems, 276, 283–284
database, 664
definition, 665–666
file, 664
hardware failure, availability problems, 276
list, 777
performance, 283–284, 650
print, 664
transaction, 207–210

Servers, database
definition, 664
hosting, 675
location, upgrading, 88

Service level agreements (SLAs), 38
Serviceability, availability, 268
Service-level management (SLM), 308–311
Service-oriented architecture (SOA), 680
Servlets, 196–197
Set theory, SQL, 190
Set-at-a-time processing, 189–191
SGA (system global area), 326
SHA-1 (Secured Hash Algorithm), 472

SHA-256 hashing, 472
Shared locks, 212–213
Shared-disk clustering, 72, 294
Shared-nothing clustering, 71–72, 294
Sharing knowledge, DBA rule of thumb, 739–741
SHOWPLAN command, 394–398, 712
Shuffling, data masking, 497
Silos, in a fractured environment, 310–311
Simple Object Access Protocol (SOAP), 680
SIMPLE parameter, 620–621
Simple recovery, 340, 540
Simplification, DBA rule of thumb, 741–742
Size terminology, data storage, 582
Skilling, Jeff, 485
SKIP LOCKED DATA parameter, 219
Skipping

interim releases, 86–87
locked rows, 219

SLAs (service level agreements), 38
SLM (service-level management), 308–311
Small computer system interface (SCSI), 605
SMON (system monitor) process, 326
Snapshot replication, 555–556
SNIA (Storage Networking Industry Association), 503n, 783
Snowflake schema, data warehouse, 643
SOA (service-oriented architecture), 680
SOAP (Simple Object Access Protocol), 680
Softbase Systems Inc., 771
Software AG, 764
Software environment, designing, 193–194
SoftwareOnZ LLC, 771
Solid state devices (SSDs), 323–324, 596
SolidDB (IBM), 596

Sort area, 326
Sorting

avoiding, 387–388
indexes, 152
SQL tuning, 404
tools for, 314

SOX (Sarbanes-Oxley) Act, 483, 485, 491
Space management. See also Storage management.

monitoring usage, 587–588
tools for, 726

Space management, data page layouts
allocation pages, 589
allocation units, 589
bitmaps, 589
data record layouts, 590
data rows, 588–589
header information, 592
index key values, 592
index page layouts, 592–594
offset and adjust tables, 592
offset table, 588–589
offset tables, 590
overview, 588–589
page header, 588–589
page pointer, 592
row data, 590
row header, 590
row length, 592
sample, 589
space page map, 589
table size, calculating, 591–592
transaction logs, 594–595

Space page map, data page layouts, 589

SP_CONFIGURE procedure, 80n.4
Speed tables, optimizing database performance, 356
Split tables

horizontally split, 166
overview, 165–166
vertically split, 166

Splitting text columns, 166–168
SP_MONITOR procedure, 345–346
SPUFI, 81n.5
SQData, 773
SQL (Structured Query Language)

access paths, 187
APIs, 192–193
benefits of, 188
binding, 477
callable routines, 192
code, design review, 238
coding for performance, 202–203
COM, 193
creating with code generators, 191–192
cursor, 190
definition, 186–187
dynamic, 201
embedded, 201
embedding in programs, 191–192
JDBC (Java Database Connectivity), 192–193
joins, 189
middleware, 192–193
object orientation, 199–200
ODBC (Object Database Connectivity), 192–193
OLE DB, 193
overview, 186–188
planned, 201

query analysis, 378–379, 713
query rewrite, 392–393
querying XML data, 203–205
relational closure, 189–191
set theory, 190
set-at-a-time processing, 189–191
SQL/XML, 204
standalone, 201
standards Web site, 782–783
static, 201
subqueries, 189
syntax, 187
types of, 200–201
unplanned, 201
usage considerations, 188, 202
XQuery language, 204

SQL injection attacks
examples, 474
overview, 201–202, 473–475
preventing, 475–476
static versus dynamic SQL, 476

SQL Is Your Friend blog, 780
SQL Marklar blog, 780
SQL Rockstar blog, 780
SQL Server (Microsoft)

filegroups, 149
nonstandard database objects, 94
Professional Association for SQL Server, 740
transaction logs, backup, 530
vendor contact, 63
Web site, 778

SQL Server Pro, 779
SQL tuning

basic steps, 399–400
Cartesian products, 402
code generators, 405
COMMIT frequency, 404–405
finding problem statements, 303–304, 406–407
LIKE logical operator, 403–404
OR logical operator, 403
overview, 202–203
rules of thumb, 400–406
sorts, 404
stored procedures, 405–406
tools for, 313

SQL...User Group portal, 782
SQL/XML, 204
SSDs (solid state devices), 323–324, 596
Standalone SQL, 201
Standardizing default values, data warehouse, 647
Standards and procedures

abbreviations, 96
application development, 100
clusters, definition, 94
communications, 98
data administration, 98–99
database links, definition, 94
database naming conventions, 93–96
definition, 93
design review guidelines, 102
distributed data, 629–630
filegroups, definition, 94
importance of, 93
Internet resources, 782
migration and turnover, 101–102
nonstandard database objects, 94

online manuals, 727–728
operational support, 102
plans, definition, 94
roles and responsibilities, 96–98, 97
rules, definition, 94
security, 100–101
storage groups, definition, 94
system administration, 100

Standby databases
availability problems, 276, 277
backup/recovery alternative, 554–555
versus backups, 277
DB2 HADR (high-availability disaster recovery), 285
definition, 276
disaster planning, backup, 573
Oracle, 277

Star schema, data warehouse, 641–643
Statement-level triggers, 432
Static SQL, 201
Storage. See specific media.
Storage area network (SAN), 278, 604–605, 606
Storage groups, 94
Storage management. See also Files and data sets; Space management;
specific media.

capacity planning, 608–609
cool data, 607–608
dormant data, 607–608
fragmentation, 595
goals for, 583
hot data, 607–608
integrity versus availability, 580
multitemperature data, 607–608
overview, 579–583

rate of data growth, 581–582
size terminology, 582
warm data, 607–608

Storage management, media options. See also specific media.
disk, 596
fiber channel, 605
JBOD (just a bunch of disks), 604
MMDBMSs (main-memory database management systems), 596
NAS (network-attached storage), 605, 606
overview, 596
SAN (storage area network), 604–605, 606
SCSI disks, 605
SSDs (solid state devices), 596
tape, 596
tiered storage, 606–608

Storage management, software
backup/recovery alternative, 535–536, 547
disaster planning, backup, 572–573

Storage Networking Industry Association (SNIA), 503n, 783
Storage requirements

database design, 148
installing the DBMS, 76–78

Stored procedures
procedural DBAs, 47, 48–50
as security tools, 470
SQL tuning, 405–406

Strategies for DBMS
benchmarks, TPC, 65–66
choosing a DBMS, 63–68. See also Vendors, DBMS.
cloud database systems, 74
cost of ownership, 67
DBMS architectures, 68–71
DBMS clustering, 71–73

DBMS proliferation, 73
factors affecting, 65–68
hardware issues, 73–74
multiple platforms, 61–62
operating system support, 65
organization type, 65
product complexity, 68
reference customers, 68
release schedules, 68
scalability, 66
technical support, 67
tool availability, 66

Striping, 597
Structural data integrity. See Data integrity, database structure.
Structure, data models, 754
Structured Query Language (SQL). See SQL (Structured Query Language).
Subqueries, SQL, 189
Substitution, data masking, 497
Subsystem failure, backup, 533, 550
Suppliers. See Vendors.
Support polices for old releases, 89
Supporting versus exploiting, 91
Swartz, Mark, 485
Sybase Inc.

ISUG (International Sybase User Group), 740, 783
vendor contact, 64, 763
Web site, 778

Symmetric replication, 555–556
Synonyms, in data modeling, 118
Sysplex (IBM), 294–295
System administration (SA), 20, 21
System administration standards, 100
System administrators

authorization, 467
limiting number of, 468

System catalog, 342–343, 689–691
System catalog tables, 345
System DBAs, 31–32
System global area (SGA), 326
System memory failure, 276
System monitor (SMON) process, 326
System monitoring, 345–346
System parallelism, 391
System performance

allied agents, 321–322
DBMS components, 324
disk storage and I/O, 322–324
hardware configuration, 322–324
operating system interaction, 320–321
overview, 319–320
tools for, 709–710

System performance, DBMS installation and configuration
cache, 328–330
configuration types, 327–328
contention, 341–342
data cache, 329–330, 332–335
database log cache, 330
database logs, 336–341
deadlock detection, 341
deadlocks, 342
defaults, 344
distributed database, 344
guidelines, 344
identity values, 344
Internet structure cache, 330
lock suspensions, 341

locking, 341–342
memory, 328–332
nested trigger calls, 343–344
open database objects, 336
optimization, cost-based versus rule-based, 344
procedure cache, 329–330, 335
read efficiency, 333–335
sample options, 343–344
security options, 344
sort cache, 330
system catalog, 342–343
time-outs, 342

System privileges, 459–460
System time, 179–180
System-managed referential integrity, 441

T
Table editors, 707–708
Table scans, 151, 381–382
Tables

adjust, 592
combined, 168
dropping, 250–252
mirror, 165
naming conventions, 95–96
offset, 592
prejoined, 164
privileges, 458–459
report, 164–165
size, calculating, 591–592
size control, 585
speed, 172–173
split, 165–166

storage requirements, calculating, 590–592
Sybase segments, 585

Tablespace
database design, 148
disorganized, 367–368
scans, 381–382

Table-to-table synchronization, 498
Tamino (Software AG), 764
Tape storage. See also Storage management.

DBMS requirements, 77
disaster planning, backup, 570–571
storage management option, 596
WORM (write once, read many) technology, 596

Tapping requests, 494–495
Task-oriented DBAs, 36
TBCHECK utility (Informix), 411
TDES (Triple DES), 472
Team members, disaster planning and recovery, 569
Technical education, DBA rule of thumb, 746–747
Technical support, effect on DBMS strategy, 67
Technology, effects on DBAs

Big Data movement, 55–56
cloud computing, 53–55
database-coupled application logic, 46–50
Internet and e-business, 50–52
managing database logic, 46–50
mobile platforms, 53–55
NoSQL, 55–56
personal computing, 53–55
procedural DBAs, 46–50

Technology metadata, 689
Technology silos, in a fractured environment, 310–311
TechTarget, 781

Temporal data support, 177–180
Temporal database systems, data integrity, 444–446
Temporal requirements, database design, 177–180
Teradata Corporation, 64, 607, 763
Teradata Magazine, 779
Test beds, loading/unloading data for, 621–622
Test databases, populating, 553–554
Testing

disaster planning, recovery, 567–569, 574
recovery plans, 551
tools for, 725

Thin clients, 670
Throughput

performance factor, 301
performance monitoring and tuning, 22

Tibbetts, Hollis, 488
Tier-1 DBMS vendors, 63, 762
Tier-2 DBMS vendors, 64, 763
Tiered storage, 606–608
Time outs, locks, 213–214
Time zones, availability across, 270–271
Time-outs, system performance, 342
TimesTen (Oracle), 596
Tool vendors. See Vendors, tools.
Tools, for. See also specific tools.

capacity planning, 313
catalog query and analysis, 705–707
checkpoint/restart, 725
compliance, 716–721
debugging, 726
end-to-end performance, 713–714
replication, 722
repositories, 772–773

trending, 719
utility management, 716

Tools, for availability. See also Standby databases.
AlwaysOn features, 285
Database Definition on Demand, 289–290
DB2 HADR (high-availability disaster recovery), 285
effect on DBMS strategy, 66
RAC (Real Application Clusters), 294
REORG, 288–289

Tools, for DBAs
analytics, 721–724
application performance, 711–713
auditing tools, 717–719
availability, effect on DBMS strategy, 66
backup and recovery, 714–715
benefits of, 699–700
business intelligence, 721–724
catalog query and analysis, 705–707
catalog visibility, 706
change management, 254, 701–703
checkpoint/restart, 725
compliance, 716–721
compression, 726–727
cost justification, 702, 731
data integrity, 411–414
data masking, 720
data modeling and design, 700–701
data profiling, 719–720
data protection, 716–721
data warehousing, 721–724
database comparison, 703–704
database performance, 711
database utilities, 715–716

DBA staffing requirements, 39
debugging, 726
end-to-end performance, 713–714
ETL (extract, transfer, load), 721–723
governance, 716–721
homegrown, 732–733
invasive performance tools, 710
native versus third-party, 728
object migration, 704–705
online standards manuals, 727–728
performance management, 708–714
performance monitor, 709–710
programming and development, 724–726
propagation, 722
query, 723–724
reorganizing databases, 368–369
replication, 722
reporting, 723–724
RI (referential integrity), 705
risk management, 716–721
security replacement, 721
security tools, 720–721
space management, 726
system performance, 709–710
table editors, 707–708
testing, 725
trending, 719
types of, 699–700
utility management, 716
vendors, evaluating, 729–732

Tools, vendors for. See also specific vendors.
business intelligence tools, 773
data modeling tools, 771–772

data movement tools, 773
DBA tools, 729–732, 770–771
ETL tools, 773
OLAP tools, 773
repository tools, 772–773

TP (transaction processing) system, 207–209
TPC (Transaction Processing Performance Council), 66–67
Trace-based auditing, 493–495
Tracker tables, 308
Transaction failure, backup, 516–517, 550
Transaction logs. See also Database logs.

backing up, 530
data page layouts, 594–595
file placement, 585

The Transaction Processing Council, 783
Transaction processing monitor, 207–209
Transaction recovery, 27, 544–545
Transaction servers, 207–209
Transaction time, 179–180
Transactions

ACID properties, 205–206
application servers, 209–210
atomicity, 205–206
consistency, 206
definition, 205
durability, 206
example, 206–207
guidelines, 207
isolation, 206
TP (transaction processing) system, 207–209
transaction processing monitor, 207–209
transaction servers, 207–209
UOW (unit of work), 207

Transition tables, 430–431
Transition variables, 430–431
Transparency, distributed databases, 626
Transparent encryption, 473
Transportable tablespaces (Oracle), 625
Treehouse Software, 773
Trending, tools for, 719
Triggers

active databases, 426
definition, 426
DELETE, 438–441
example, 431
firing, 428–429
firing while loading data, 615
granularity, 431–432
implementing referential integrity, 429–430
INSERT, 438–441
INSTEAD OF, 432
multiple on same table, 428–429
nested, 429
overview, 426–428
procedural DBAs, 47, 48–50
referential integrity, 438–441
row level, 432
semantic data integrity, 426–433
statement level, 432
transition tables, 430–431
transition variables, 430–431
UPDATE, 438–441

Triple DES (TDES), 472
TRUNC LOG ON CHKPT option, 340, 530
TRUNCATE TABLE statements, 341
Tuning performance. See Database performance, tuning.

Turnover, standards, 101–102
TUSC, 779
24/24 availability, 270–271
Twitter, as a resource, 741
Two-phase COMMIT, 631
Tyco, 485
Type 1 drivers, 673
Type 2 drivers, 673
Type 3 drivers, 673–674
Type 4 drivers, 673

U
UDFs (user-defined functions), 47, 48–50
UDT (user-defined data types), 418–419
UML (Unified Modeling Language), 113, 114
Unclustered data, reorganizing databases, 366
UNCOMMITTED READ isolation, 216–217
UNDO recovery, 545–546
Unfederated multidatabase schemes, 627
UNION clause, 388
Unique constraints, 28, 417
Unique entity identification, 416–417
Unique identifiers for columns, 145
Unit testing, database environment, 101
UNLOAD utility, 553–554, 618–621, 621–622. See also EXPORT utility.
Unloading data. See also Loading data.

for application test beds, 621–622
backup/recovery alternative, 534–535
concurrency, 619
encoding scheme, specifying, 620
floating-point data, 620
generating LOAD parameters, 620
from image copy backups, 619

LIMIT parameter, 620–621
limiting, 620–621
number of rows, specifying, 620–621
partial unload, 620–621
selection criteria, specifying, 620–621
SIMPLE parameter, 620–621
UNLOAD utility, 618–621, 621–622
from views, 621
WHEN clause, 620–621

Unplanned outages, 286–287
Unplanned SQL, 201
UOW (unit of work), 207
Update locks, 213
UPDATE privileges, 458–459
UPDATE rule, 434–436
UPDATE statements

modifying temporal data, 180
in triggers, 429

UPDATE STATISTICS command, 377–378
UPDATE trigger, 438–441
Upgrading the DBMS. See also Configuring the DBMS; Installing the
DBMS.

application complexity, 88
benefits of, 83–84
costs, 84, 85
database server location, 88
DBA staff skill set, 90
DBMS environment complexity, 87–88
deprecated features, 85n.7
fallback planning, 92
features and complexity, 87
migration standards, 101–102
migration verification, 92

organizational style, 89–90
overview, 82–87
performance gains, 85
platform support, 90–91
risks, 84–86
skipping interim releases, 86–87
strategy for, 92
support polices for old releases, 89
supporting software, 91
supporting versus exploiting, 91
vendor reputation, 89
versions versus releases, 82–87

Upsizing, and database connectivity, 662
U.S. Public...Protection Act of 2002, 483
Usenet newsgroups, 775–776
User acceptance testing, database environment, 101
User processes, 326
User-defined data types (UDT), 418–419
User-defined functions (UDFs), 47, 48–50
User-managed referential integrity, 441
Users

DBA staffing requirements, 38, 39
group associations, 740
names, 456
privileged, auditing, 495–496
security, 455–456

Utility management, tools for, 716
Utility programs. See Tools; specific programs.

V
V$ tables, 370
Valid time, 179–180
Variable-length columns, 144

Vendors
evaluating, 729–732
reputation, importance of, 89

Vendors, DBMS
Actian Corporation, 764
Big Three, 762
dBase, 767
FileMaker, 767
IBM Corporation, 762
Informix, 763
Ingres, 763–764
Lotus, 767
main groups, 761–762
Microsoft, 762, 767
NoSQL systems, 765–766
object-oriented systems, 766
Ontos, 766
open-source systems, 764
Oracle Corporation, 762
PC-based systems, 766–767
Poet, 766
Progress Software, 766
Software AG, 764
Sybase Inc., 763
Teradata Corporation, 763
tier 1, 63, 762
tier 2, 64, 763
Web sites for, 778

Vendors, tools. See also specific vendors.
business intelligence tools, 773
data modeling tools, 771–772
data movement tools, 773
DBA tools, 729–732, 770–771

ETL tools, 773
OLAP tools, 773
repository tools, 772–773

Verifying the DBMS install, 81
Versions versus releases, 82–87
Vertical restriction, 469
Very critical applications, 562
View access, relational optimization, 391–392
View materialization, relational optimization, 392
View merging, relational optimization, 392
Views

description, 175–176
as security tools, 468–470
unloading data from, 621
uses for, 176–177

Visible Systems, 772
Vision Solutions, 773
Visual Insights, 773
Volatility, DBA staffing requirements, 39
VPD (Virtual Private Database) (Oracle), 471

W
Wallets, 473
WAN (wide-area network), disaster planning, 573
Web Farming site, 783
Web resources. See Internet resources.
Web services. See also Database connectivity; Internet.

definition, 680
REST (representational state transfer), 681
SOA (service-oriented architecture), 680
SOAP (Simple Object Access Protocol), 680

WHEN clause, 620–621
White Sands Technology, Inc., 771

Wide-area network (WAN), disaster planning, 573
Winter Corporation, 581–582
WITH GRANT OPTION, 457
Workload

performance factor, 301
performance monitoring and tuning, 22

WorldCom, 485
Write locks, 212–213
Write-ahead logs, 337

X
XML (eXtensible Markup Language), 204
XML data, querying, 203–205
The XML portal, 783
XQuery language, 204

Y
Yevich, Lawson & Associates, 779

Z
z/OS, data sharing, 295

Footnotes

Chapter 1
1. Social media have made this trend even more pronounced. People are living their

lives out loud and in a recorded, and therefore data-driven, format.
2. GridApp Systems study titled “Trends in Database Management: The Automation

Opportunity,” 2006.
3. Dice.com is a career Web site for technology and engineering professionals and the

companies that seek to employ them.
4. Global Knowledge is a technology training firm.
5. Tech Republic is a Web portal published by ZDNet.
6. Janco Associates, Inc., is a management consulting firm that focuses on Management

Information Systems.
7. www.computerworld.com/s/article/9224243/IT_Salary_Survey_2012.
8. www.bls.gov/.
9. I refer to Adabas and Ingres as “fringe” not due to any functional or technical

deficiencies, but only because of their minimal market share.
10. http://dataprivacyday2010.org/.
11. Regulatory impacts on database administration are covered in depth in Chapter 15,

“Regulatory Compliance and Database Administration.”
12. Even if they occur during regular working hours?
13. The META Group was acquired by Gartner, Inc., in 2004. If the dated META Group

research note is still available, it would have to be acquired through Gartner. The
META Group research note was published March 20, 1998 (Open Computing &
Server Strategies, File: 656).

Chapter 2
1. If you prefer commercial software over open source, there are commercial offerings

of some of the NoSQL products. For example, DataStax is based on Cassandra.
2. FileMaker is offered in a professional, multiuser version, too.
3. In DB2, the area used for caching program structures in memory is referred to as the

EDM pool. In SQL Server it is called the SQL cache, and in Oracle two structures are
used, the PGA and the shared pool in the SGA.

4. In DB2, system parameters are set by assembling the DSNZPARM member. SQL
Server uses the SP_CONFIGURE system procedure to set system parameters, and

http://www.computerworld.com/s/article/9224243/IT_Salary_Survey_2012
http://www.bls.gov/
http://dataprivacyday2010.org/

Oracle parameters are controlled using INIT.ORA.
5. In DB2, the SQL interface is referred to as SPUFI. IBM also provides Data Studio for

GUI-based SQL creation and submission. SQL Server calls the interface ISQL, and
when using Oracle you can choose to submit SQL using SQL*Plus or the SQL
Worksheet in Oracle Enterprise Manager.

6. Be careful, too, to examine the specifications for any new DBMS version or release.
Sometimes features and functionality are removed from the DBMS, which might
result in having to spend additional money to replace the lost functionality. For
example, IBM removed its formerly free database utilities from DB2 between
Versions 6 and 7 and bundled them for sale.

7. When a feature is deprecated it is no longer supported in the software.

Chapter 3
1. Performance problems due to pessimistic locking concurrency are common when

Microsoft Access developers try to upsize their single-user applications to Microsoft
SQL Server or Oracle.

Chapter 4
1. Some DBMS products, such as DB2 for z/OS, offer hardware-assisted compression,

which can mitigate the CPU overhead incurred when compressing and decompressing
data.

Chapter 5
1. The Microsoft information about moving from OLE DB to ODBC can be found at

http://social.technet.microsoft.com/Forums/en/sqldataaccess/thread/e696d0ac-f8e2-
4b19-8a08-7a357d3d780f

2. There are options for deploying .NET applications on other operating systems, one of
which is Mono (http://www.go-mono.com/mono-downloads/download.html).

3. For more details and specifics regarding XML, refer to the following Web sites:
www.xml.org and www.w3.org/XML/.

4. For example, DB2 for z/OS.

Chapter 6
1. Realistically, most participants will have only a few of the traits described here. This

means that the design review leader must be prepared to engage in the review process
under less than ideal circumstances at times.

Chapter 7

http://social.technet.microsoft.com/Forums/en/sqldataaccess/thread/e696d0ac-f8e2-4b19-8a08-7a357d3d780f
http://www.go-mono.com/mono-downloads/download.html
http://www.xml.org
http://www.w3.org/XML/

1. It is possible that a physical change (for example, to add storage) will not need to be
recorded in the logical and conceptual data models as certain physical characteristics
of the database are not pertinent to those models. However, other changes, such as
modifying a data type or adding a new column, will need to be reflected in the logical
and conceptual data models.

2. You might choose to recreate the indexes earlier in the process here, for example,
before the data is loaded. It should depend on whether the DBMS being used builds
indexes more efficiently before data is in the table or after.

Chapter 8
1. Availability Groups in SQL Server 2012 offer a similar failover technology.
2. This type of clustering refers to hardware and differs from the clustering discussed in

Chapter 4, which refers to the organization of data on disk.
3. Known as LPARs (Logical PARtitions).

Chapter 9
1. Conducting extensive design reviews, as discussed in Chapter 6, can help to ferret out

the bad SQL before it hits production systems.
2. How can you know what abnormal is if you do not know what normal is?
3. Rick Sturm, Wayne Morris, and Mary Jander, Foundations of Service Level

Management (Indianapolis, IN: SAMS Publishing, 2000).

Chapter 10
1. Or you have enabled bulk-logged recovery mode.
2. Oracle strongly advises customers to use cost-based optimization and plans to

deprecate rule-based optimization in a future Oracle DBMS release.

Chapter 11
1. A multicore processor is a single computing component with two or more

independent actual processors (called cores).
2. Raw partitions can be created in a Windows environment, too; it is just very rare.
3. Dynamic Management Views in Microsoft SQL Server are similar to Oracle Dynamic

Performance Tables. DB2 for z/OS provides Real Time Statistics.

Chapter 14
1. This is a particularly vexing problem with purchased third-party applications. Many

such applications rely on SA authority because it is easier. However, it is not a secure

practice.

Chapter 15
1. Thomas C. Redman, “Data: An Unfolding Quality Disaster,” DMReview, August

2004.
2. http://hollistibbetts.sys-con.com/node/1975126.
3. Thomas C. Redman, Data Quality: Management and Technology (New York, NY:

Bantam, 1992).
4.

www.computerworld.com/s/article/9026166/Database_admin_steals_2.3M_consumer_records_at_Fidelity_National_subsidiary
5. In 2007, the SNIA (Storage Networking Industry Association) Data Forum published

the 100 Year Archive Requirements Survey. The survey validates the need for long-
term data retention. Eighty percent of the survey’s respondents declared they have
information they must keep more than 50 years, and 68 percent of respondents said
they must keep it more than 100 years.
www.sresearch.com/100_Year_Archive_Requirements_Survey_and_Report.html.

Chapter 16
1. Some recovery options or products can find quiet points on the database log without

requiring quiesce during image copy backups.
2. By default, this occurs about once every minute.

Chapter 17
1. Not including damage to roads and bridges or public buildings, as well as contents

inside buildings and residences.

Chapter 18
1. DBAs may work in conjunction with a storage administration group, if one exists at

their shop.
2. www.informationweek.com/816/gerstner.htm.
3. www.emc.com/collateral/demos/microsites/emc-digital-universe-2011/index.htm.
4. “The Petabyte Challenge: 2011 IOUG Database Growth Survey,” conducted by

Unisphere Research and sponsored by Oracle.
5. www.wintercorp.com/WhitePapers/WC_TopTenWP.pdf.
6. Lou Agosta, “How Much Data Is on the Planet?” Giga IdeaByte, September 20, 2000.
7. Either tools supplied by the DBMS vendor or purchased from a third-party vendor.
8. An interesting article on the topic can be found online at

http://hollistibbetts.sys-con.com/node/1975126
http://www.computerworld.com/s/article/9026166/Database_admin_steals_2.3M_consumer_records_at_Fidelity_National_subsidiary
http://www.sresearch.com/100_Year_Archive_Requirements_Survey_and_Report.html
http://www.informationweek.com/816/gerstner.htm
http://www.emc.com/collateral/demos/microsites/emc-digital-universe-2011/index.htm
http://www.wintercorp.com/WhitePapers/WC_TopTenWP.pdf

www.teradatamagazine.com/v11n03/Tech2Tech/Why-Multi-Temperature-Data-
Matters/.

Chapter 19
1. Loading before indexes are built is not a good idea for Sybase and Microsoft SQL

Server because clustered indexes directly affect the physical ordering of rows in the
table.

2. In most cases the CPU increase should be minimal. The additional CPU is required to
combine the results from the parallel operations back into a single result.

Chapter 20
1. Ralph Kimball, The Data Warehouse Toolkit (New York, NY: John Wiley & Sons,

1996).

Chapter 22
1. www.pbs.org/wgbh/roadshow/.

Chapter 23
1. In most cases, the DBMS vendor DBA tools support only the DBMS products offered

by that vendor. For example, you would generally not expect Oracle DBA tools to
manage Microsoft SQL Server databases.

Chapter 24
1. IBMLink is a proprietary network that IBM opens up only to its customers.

http://www.teradatamagazine.com/v11n03/Tech2Tech/Why-Multi-Temperature-Data-Matters/
http://www.pbs.org/wgbh/roadshow/

	Title Page
	Copyright Page
	Accolades for Database Administration
	Dedication Page
	Contents
	Preface
	Acknowledgments
	About the Author
	1. What Is a DBA?
	2. Creating the Database Environment
	3. Data Modeling and Normalization
	4. Database Design
	5. Application Design
	6. Design Reviews
	7. Database Change Management
	8. Data Availability
	9. Performance Management
	10. System Performance
	11. Database Performance
	12. Application Performance
	13. Data Integrity
	14. Database Security
	15. Regulatory Compliance and Database Administration
	16. Database Backup and Recovery
	17. Disaster Planning
	18. Data and Storage Management
	19. Data Movement and Distribution
	20. Data Warehouse Administration
	21. Database Connectivity
	22. Metadata Management
	23. DBA Tools
	24. DBA Rules of Thumb
	A. Database Fundamentals
	B. The DBMS Vendors
	C. DBA Tool Vendors
	D. DBA Web Resources
	E. Sample DBA Job Posting
	Bibliography
	Glossary
	Index
	Footnotes
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 22
	Chapter 23
	Chapter 24

